organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Iso­propyl 1-benzoyl-4-benzo­yl­oxy-2,6-di­phenyl-1,2,3,6-tetra­hydro­pyridine-3-carboxyl­ate

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bDepartment of Chemistry, Saveetha Engineering College, Chennai, India
*Correspondence e-mail: a_sp59@yahoo.in

Edited by G. S. Nichol, University of Edinburgh, Scotland (Received 7 December 2013; accepted 28 June 2014; online 5 July 2014)

In the title compound, C35H31NO5, the piperidine ring has an envelope conformation, with the phenyl-substituted C atom adjacent to the methyl­ene C atom as the flap. This flap atom deviates by 0.633 (2) Å from the mean plane of the other five essentially coplanar atoms in the ring (r.m.s. deviation = 0.044 Å). Intra­molecular C—H⋯O hydrogen bonds form S(7) and S(9) ring motifs. In the crystal, mol­ecules are linked by pairs of C—H⋯O hydrogen bonds, forming inversion dimers with R22(16) loops.

Keywords: crystal structure.

Related literature

For general background to piperidine derivatives, see: Mishra & Ghosh (2011[Mishra, S. & Ghosh, R. (2011). Tetrahedron Lett. 52, 2857-2861.]); Ramachandran et al. (2011[Ramachandran, R., Zhao, X. F. & Goldman, D. (2011). Proc. Natl. Acad. Sci USA, 108, 15858-15863.]); Natarajan & Mathews (2011[Natarajan, S. & Mathews, R. (2011). Acta Cryst. E67, o1530.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C35H31NO5

  • Mr = 545.61

  • Triclinic, [P \overline 1]

  • a = 10.1788 (6) Å

  • b = 11.4325 (7) Å

  • c = 13.1395 (9) Å

  • α = 81.847 (2)°

  • β = 86.662 (3)°

  • γ = 69.654 (2)°

  • V = 1419.08 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.22 × 0.19 × 0.17 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.952, Tmax = 0.959

  • 25561 measured reflections

  • 4996 independent reflections

  • 3876 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.109

  • S = 1.02

  • 4996 reflections

  • 372 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O5i 0.93 2.57 3.500 (2) 173
C11—H11⋯O5 0.93 2.53 3.171 (2) 126
C24—H24⋯O4 0.93 2.36 3.2898 (19) 179
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Piperidine iminocyclitols have shown significant pharmacological results against HIV and in cancer therapy. Alkaloids containing the piperidine nucleus exhibited a promising wide range of biological activities such as antimicrobial, antiparasitic, cytotoxicity, anti-inflammatory, pesticidal and anti-HIV-1 properties (Mishra and Ghosh, 2011). The motivation for the biological trial arises as piperidine derivatives are an important class of heterocyclic compounds with potent pharmacological/biological activities (Ramachandran et al., 2011). Against this background, and in order to obtain detailed information on molecular conformations in the solid state, an X-ray study of the title compound was carried out.

X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The bond lengths N1—C1=1.477 (2), O5—C12=1.221 (2) are normal and comparable with the corresponding values observed in the related structure of Ethyl 3-methyl-2,6-diphenylpiperidine-1-carboxylate (Natarajan & Mathews, 2011). The sum of the bond angle around atom N1 (359.9°) of the piperidine ring indicates sp2 hybridization. Both phenyl rings are axial substituents on the piperidine ring and the angle between least-squares mean planes fitted through both rings is 45.28 (8)°.

The acetate group is almost extended conformation which can be seen from the torsion angle [C4—C32—O2—C33 = -179.6 (2)°] The piperidine ring adopts a distorted envelope conformation. In the crystal, molecules are linked into cyclic centrosymmetric dimers via C10–H10···O5 hydrogen bonds with the ring motif R22(16), which propagates along the b axis, as shown in Fig. 2. An intramolecular C11—H11···O5 hydrogen bond form an S(7) [H11,C11,C6,C5,N1,C12 and O5] ring motif (Bernstein et al., 1995).

Related literature top

For general background to piperidine derivatives, see: Mishra & Ghosh (2011); Ramachandran et al. (2011); Natarajan & Mathews (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

3-Isopropyl-2,6-diphenylpiperidin-4-one carboxylate were syntheized by Mannich condensation of benzaldehyde with isopropyl acetoacetate. Isopropyl acetoacetate (0.01 mol), benzaldehydes (0.02 mol) and ammonium acetate (0.01 mol) were taken in a 500 ml round bottom flask. Further ethanol (25 ml) was added to the flask, warmed for about 10 min. and set aside until the product crystallized. The product obtained was filtered and the solid product was collected and washed with cold water. The product was dried at room temperature and recrystallized from ethanol to obtain 3-isopropyl-2,6-diphenylpiperidin-4-one carboxylate. Equimolar amounts of 3-isopropyl-2,6-diphenylpiperidin -4-one carboxylate (3.37 g, 100 mmol), benzoyl chloride (2 ml, 100 mmol) ethylene triamine (2 ml, 200 mmol) and benzene (50 ml) were heated to reflux for 6–10 h. The reaction was monitored by TLC, after completion of the reaction solvent was washed with 2 N HCl followed by water. solvent was removed under vacuum and the residue was recrystalized form ethanol. The yield of the isolated product was 2.65 g (70%).

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The crystal structure showing the centrosymmetric hydrogen bond motif R22(16). For the sake of clarity, the H atoms not involved in the motif have been omitted.
Isopropyl 1-benzoyl-4-benzoyloxy-2,6-diphenyl-1,2,3,6-tetrahydropyridine-3-carboxylate top
Crystal data top
C35H31NO5V = 1419.08 (15) Å3
Mr = 545.61Z = 2
Triclinic, P1F(000) = 576
Hall symbol: -P 1Dx = 1.277 Mg m3
a = 10.1788 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.4325 (7) ŵ = 0.09 mm1
c = 13.1395 (9) ÅT = 293 K
α = 81.847 (2)°Block, white
β = 86.662 (3)°0.22 × 0.19 × 0.17 mm
γ = 69.654 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4996 independent reflections
Radiation source: fine-focus sealed tube3876 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and ϕ scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1112
Tmin = 0.952, Tmax = 0.959k = 1313
25561 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0614P)2 + 0.1791P]
where P = (Fo2 + 2Fc2)/3
4996 reflections(Δ/σ)max = 0.001
372 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C35H31NO5γ = 69.654 (2)°
Mr = 545.61V = 1419.08 (15) Å3
Triclinic, P1Z = 2
a = 10.1788 (6) ÅMo Kα radiation
b = 11.4325 (7) ŵ = 0.09 mm1
c = 13.1395 (9) ÅT = 293 K
α = 81.847 (2)°0.22 × 0.19 × 0.17 mm
β = 86.662 (3)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4996 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3876 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.959Rint = 0.028
25561 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.02Δρmax = 0.21 e Å3
4996 reflectionsΔρmin = 0.17 e Å3
372 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C200.96506 (16)0.08716 (14)0.67253 (11)0.0519 (4)
H200.89670.07630.63470.062*
C211.09259 (18)0.08065 (17)0.62695 (13)0.0646 (5)
H211.10960.06520.55890.078*
C221.19444 (18)0.09692 (18)0.68161 (14)0.0673 (5)
H221.28050.09240.65100.081*
C231.16822 (16)0.11983 (17)0.78179 (13)0.0614 (4)
H231.23650.13170.81890.074*
C241.04077 (15)0.12537 (14)0.82808 (12)0.0490 (4)
H241.02460.13990.89630.059*
C190.93736 (14)0.10950 (12)0.77359 (10)0.0405 (3)
C10.79798 (13)0.10671 (12)0.82094 (10)0.0395 (3)
H10.78850.02810.80690.047*
C20.78325 (14)0.10737 (12)0.93686 (10)0.0415 (3)
H2B0.71130.07290.96250.050*
H2A0.87090.05390.96920.050*
C30.74623 (13)0.23572 (12)0.96537 (10)0.0386 (3)
C40.69662 (13)0.34103 (12)0.90037 (10)0.0386 (3)
C50.65643 (14)0.33967 (12)0.79121 (10)0.0392 (3)
H50.55510.38450.78740.047*
C60.72113 (14)0.41264 (12)0.70991 (10)0.0407 (3)
C70.84932 (16)0.42433 (14)0.72253 (12)0.0520 (4)
H70.90040.38470.78180.062*
C80.90280 (18)0.49434 (16)0.64800 (13)0.0622 (4)
H80.98970.50110.65710.075*
C90.8275 (2)0.55393 (15)0.56055 (13)0.0617 (4)
H90.86360.60080.51040.074*
C100.6998 (2)0.54443 (14)0.54719 (11)0.0586 (4)
H100.64880.58510.48810.070*
C110.64622 (16)0.47421 (13)0.62156 (11)0.0482 (4)
H110.55900.46830.61210.058*
C320.66009 (14)0.46966 (13)0.93018 (10)0.0428 (3)
C330.72277 (18)0.59541 (14)1.03681 (13)0.0607 (4)
H330.62290.64591.03170.073*
C340.7649 (3)0.56499 (19)1.14784 (15)0.0892 (6)
H34A0.86300.51631.15280.134*
H34B0.71180.51751.18490.134*
H34C0.74690.64171.17680.134*
C350.8054 (3)0.6625 (2)0.97090 (19)0.0940 (7)
H35A0.78200.74600.98870.141*
H35B0.78380.66710.90000.141*
H35C0.90360.61750.98160.141*
N10.67724 (11)0.21014 (10)0.77234 (8)0.0401 (3)
O10.56508 (11)0.55833 (9)0.89218 (8)0.0572 (3)
O20.74703 (10)0.47477 (9)1.00008 (8)0.0530 (3)
O30.74902 (9)0.24164 (9)1.07066 (7)0.0441 (2)
O40.98397 (11)0.18061 (10)1.06863 (8)0.0535 (3)
O50.48623 (13)0.27894 (10)0.67147 (10)0.0748 (4)
C250.87486 (15)0.21460 (12)1.11539 (11)0.0409 (3)
C260.86017 (15)0.23327 (12)1.22445 (10)0.0430 (3)
C130.58887 (14)0.05921 (14)0.70980 (11)0.0468 (4)
C120.58068 (15)0.19148 (14)0.71550 (11)0.0484 (4)
C310.73276 (17)0.26105 (15)1.27588 (12)0.0569 (4)
H310.65230.26831.24170.068*
C270.97936 (17)0.22454 (14)1.27551 (12)0.0523 (4)
H271.06510.20611.24100.063*
C140.62173 (17)0.00964 (16)0.61776 (13)0.0605 (4)
H140.64270.05730.55990.073*
C180.55352 (17)0.01192 (15)0.79366 (13)0.0552 (4)
H180.52990.02060.85580.066*
C170.55295 (18)0.13089 (16)0.78597 (15)0.0656 (5)
H170.52750.17760.84250.079*
C300.7256 (2)0.27799 (17)1.37821 (13)0.0691 (5)
H300.64040.29511.41340.083*
C280.9705 (2)0.24314 (16)1.37712 (13)0.0638 (5)
H281.05030.23771.41130.077*
C290.8442 (2)0.26963 (16)1.42834 (13)0.0690 (5)
H290.83880.28201.49710.083*
C160.58985 (19)0.18005 (17)0.69509 (16)0.0696 (5)
H160.59200.26110.69040.084*
C150.62343 (19)0.11043 (18)0.61150 (16)0.0704 (5)
H150.64770.14400.54980.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C200.0513 (9)0.0568 (9)0.0435 (9)0.0144 (7)0.0085 (7)0.0009 (7)
C210.0614 (11)0.0797 (12)0.0432 (9)0.0157 (9)0.0018 (8)0.0006 (8)
C220.0450 (9)0.0867 (13)0.0607 (11)0.0155 (9)0.0049 (8)0.0003 (9)
C230.0402 (9)0.0773 (11)0.0652 (11)0.0170 (8)0.0040 (8)0.0111 (9)
C240.0401 (8)0.0544 (9)0.0483 (9)0.0094 (7)0.0061 (7)0.0082 (7)
C190.0381 (7)0.0337 (7)0.0433 (8)0.0055 (6)0.0063 (6)0.0001 (6)
C10.0383 (7)0.0337 (7)0.0432 (8)0.0086 (6)0.0095 (6)0.0002 (5)
C20.0384 (7)0.0381 (7)0.0443 (8)0.0107 (6)0.0072 (6)0.0032 (6)
C30.0324 (7)0.0455 (7)0.0350 (7)0.0104 (6)0.0019 (5)0.0027 (6)
C40.0333 (7)0.0388 (7)0.0404 (7)0.0090 (6)0.0033 (6)0.0021 (6)
C50.0349 (7)0.0350 (7)0.0430 (8)0.0066 (5)0.0080 (6)0.0003 (5)
C60.0444 (8)0.0334 (7)0.0402 (8)0.0081 (6)0.0023 (6)0.0043 (5)
C70.0480 (9)0.0497 (8)0.0536 (9)0.0139 (7)0.0062 (7)0.0039 (7)
C80.0566 (10)0.0623 (10)0.0680 (11)0.0247 (8)0.0062 (8)0.0013 (8)
C90.0815 (12)0.0510 (9)0.0515 (10)0.0248 (9)0.0148 (9)0.0041 (7)
C100.0828 (12)0.0497 (9)0.0387 (8)0.0182 (8)0.0062 (8)0.0005 (7)
C110.0579 (9)0.0428 (8)0.0416 (8)0.0138 (7)0.0097 (7)0.0030 (6)
C320.0387 (8)0.0426 (8)0.0432 (8)0.0103 (6)0.0004 (6)0.0031 (6)
C330.0617 (10)0.0438 (8)0.0788 (12)0.0160 (7)0.0105 (9)0.0162 (8)
C340.1236 (18)0.0702 (12)0.0775 (14)0.0304 (12)0.0076 (13)0.0259 (10)
C350.1025 (16)0.0748 (13)0.1143 (18)0.0469 (12)0.0037 (13)0.0003 (12)
N10.0372 (6)0.0365 (6)0.0442 (7)0.0098 (5)0.0112 (5)0.0007 (5)
O10.0547 (6)0.0426 (6)0.0625 (7)0.0012 (5)0.0115 (5)0.0040 (5)
O20.0485 (6)0.0433 (5)0.0659 (7)0.0095 (5)0.0121 (5)0.0138 (5)
O30.0385 (5)0.0524 (6)0.0362 (5)0.0103 (4)0.0044 (4)0.0017 (4)
O40.0424 (6)0.0679 (7)0.0501 (6)0.0175 (5)0.0011 (5)0.0118 (5)
O50.0707 (8)0.0547 (7)0.0959 (9)0.0160 (6)0.0504 (7)0.0059 (6)
C250.0406 (8)0.0381 (7)0.0432 (8)0.0138 (6)0.0051 (6)0.0002 (6)
C260.0478 (8)0.0384 (7)0.0410 (8)0.0131 (6)0.0058 (6)0.0011 (6)
C130.0383 (8)0.0504 (8)0.0533 (9)0.0164 (6)0.0131 (6)0.0038 (7)
C120.0448 (8)0.0490 (8)0.0505 (9)0.0156 (7)0.0148 (7)0.0013 (7)
C310.0519 (9)0.0659 (10)0.0482 (9)0.0143 (8)0.0031 (7)0.0063 (7)
C270.0542 (9)0.0510 (8)0.0509 (9)0.0172 (7)0.0117 (7)0.0016 (7)
C140.0596 (10)0.0691 (11)0.0584 (10)0.0285 (8)0.0030 (8)0.0091 (8)
C180.0555 (9)0.0579 (9)0.0561 (10)0.0241 (8)0.0056 (7)0.0064 (7)
C170.0631 (11)0.0602 (10)0.0787 (12)0.0308 (8)0.0044 (9)0.0007 (9)
C300.0712 (12)0.0734 (12)0.0476 (10)0.0059 (9)0.0054 (9)0.0097 (8)
C280.0780 (13)0.0586 (10)0.0557 (10)0.0214 (9)0.0236 (9)0.0063 (8)
C290.0971 (15)0.0557 (10)0.0447 (9)0.0107 (9)0.0136 (10)0.0104 (8)
C160.0620 (11)0.0574 (10)0.0978 (15)0.0262 (9)0.0010 (10)0.0222 (10)
C150.0672 (11)0.0764 (12)0.0767 (12)0.0284 (10)0.0042 (9)0.0319 (10)
Geometric parameters (Å, º) top
C20—C211.380 (2)C33—O21.4609 (17)
C20—C191.382 (2)C33—C351.490 (3)
C20—H200.9300C33—C341.503 (2)
C21—C221.373 (2)C33—H330.9800
C21—H210.9300C34—H34A0.9600
C22—C231.371 (2)C34—H34B0.9600
C22—H220.9300C34—H34C0.9600
C23—C241.385 (2)C35—H35A0.9600
C23—H230.9300C35—H35B0.9600
C24—C191.3823 (19)C35—H35C0.9600
C24—H240.9300N1—C121.3586 (17)
C19—C11.5244 (19)O3—C251.3574 (16)
C1—N11.4775 (16)O4—C251.2042 (16)
C1—C21.5225 (19)O5—C121.2210 (17)
C1—H10.9800C25—C261.4700 (19)
C2—C31.4800 (18)C26—C311.383 (2)
C2—H2B0.9700C26—C271.387 (2)
C2—H2A0.9700C13—C181.381 (2)
C3—C41.3303 (18)C13—C141.382 (2)
C3—O31.3970 (16)C13—C121.498 (2)
C4—C321.4901 (19)C31—C301.380 (2)
C4—C51.5179 (19)C31—H310.9300
C5—N11.4761 (16)C27—C281.374 (2)
C5—C61.5225 (19)C27—H270.9300
C5—H50.9800C14—C151.381 (2)
C6—C71.379 (2)C14—H140.9300
C6—C111.3866 (19)C18—C171.380 (2)
C7—C81.384 (2)C18—H180.9300
C7—H70.9300C17—C161.369 (3)
C8—C91.375 (2)C17—H170.9300
C8—H80.9300C30—C291.377 (3)
C9—C101.364 (2)C30—H300.9300
C9—H90.9300C28—C291.372 (3)
C10—C111.385 (2)C28—H280.9300
C10—H100.9300C29—H290.9300
C11—H110.9300C16—C151.362 (3)
C32—O11.2013 (16)C16—H160.9300
C32—O21.3326 (17)C15—H150.9300
C21—C20—C19121.03 (15)O2—C33—C34106.04 (13)
C21—C20—H20119.5C35—C33—C34113.85 (17)
C19—C20—H20119.5O2—C33—H33109.5
C22—C21—C20120.23 (16)C35—C33—H33109.5
C22—C21—H21119.9C34—C33—H33109.5
C20—C21—H21119.9C33—C34—H34A109.5
C23—C22—C21119.41 (16)C33—C34—H34B109.5
C23—C22—H22120.3H34A—C34—H34B109.5
C21—C22—H22120.3C33—C34—H34C109.5
C22—C23—C24120.53 (16)H34A—C34—H34C109.5
C22—C23—H23119.7H34B—C34—H34C109.5
C24—C23—H23119.7C33—C35—H35A109.5
C19—C24—C23120.50 (14)C33—C35—H35B109.5
C19—C24—H24119.8H35A—C35—H35B109.5
C23—C24—H24119.8C33—C35—H35C109.5
C20—C19—C24118.30 (13)H35A—C35—H35C109.5
C20—C19—C1118.08 (12)H35B—C35—H35C109.5
C24—C19—C1123.50 (13)C12—N1—C5118.36 (10)
N1—C1—C2107.94 (10)C12—N1—C1123.35 (11)
N1—C1—C19112.29 (10)C5—N1—C1118.21 (10)
C2—C1—C19116.08 (11)C32—O2—C33118.20 (11)
N1—C1—H1106.7C25—O3—C3118.50 (10)
C2—C1—H1106.7O4—C25—O3122.40 (13)
C19—C1—H1106.7O4—C25—C26125.44 (13)
C3—C2—C1111.93 (10)O3—C25—C26112.16 (12)
C3—C2—H2B109.2C31—C26—C27119.87 (14)
C1—C2—H2B109.2C31—C26—C25122.37 (13)
C3—C2—H2A109.2C27—C26—C25117.75 (13)
C1—C2—H2A109.2C18—C13—C14118.73 (14)
H2B—C2—H2A107.9C18—C13—C12120.89 (14)
C4—C3—O3119.97 (12)C14—C13—C12120.19 (14)
C4—C3—C2124.51 (12)O5—C12—N1122.03 (13)
O3—C3—C2115.02 (10)O5—C12—C13119.46 (12)
C3—C4—C32123.90 (12)N1—C12—C13118.48 (12)
C3—C4—C5121.79 (12)C30—C31—C26119.66 (16)
C32—C4—C5113.95 (11)C30—C31—H31120.2
N1—C5—C4110.68 (10)C26—C31—H31120.2
N1—C5—C6114.62 (11)C28—C27—C26119.90 (16)
C4—C5—C6113.74 (11)C28—C27—H27120.1
N1—C5—H5105.6C26—C27—H27120.1
C4—C5—H5105.6C15—C14—C13120.17 (16)
C6—C5—H5105.6C15—C14—H14119.9
C7—C6—C11118.44 (13)C13—C14—H14119.9
C7—C6—C5122.49 (12)C17—C18—C13120.56 (16)
C11—C6—C5119.02 (12)C17—C18—H18119.7
C6—C7—C8120.72 (14)C13—C18—H18119.7
C6—C7—H7119.6C16—C17—C18119.94 (17)
C8—C7—H7119.6C16—C17—H17120.0
C9—C8—C7120.01 (16)C18—C17—H17120.0
C9—C8—H8120.0C29—C30—C31120.16 (17)
C7—C8—H8120.0C29—C30—H30119.9
C10—C9—C8120.09 (15)C31—C30—H30119.9
C10—C9—H9120.0C29—C28—C27120.19 (16)
C8—C9—H9120.0C29—C28—H28119.9
C9—C10—C11120.01 (15)C27—C28—H28119.9
C9—C10—H10120.0C28—C29—C30120.21 (16)
C11—C10—H10120.0C28—C29—H29119.9
C10—C11—C6120.73 (15)C30—C29—H29119.9
C10—C11—H11119.6C15—C16—C17120.10 (16)
C6—C11—H11119.6C15—C16—H16120.0
O1—C32—O2124.75 (13)C17—C16—H16120.0
O1—C32—C4122.82 (13)C16—C15—C14120.44 (17)
O2—C32—C4112.39 (11)C16—C15—H15119.8
O2—C33—C35108.43 (15)C14—C15—H15119.8
C19—C20—C21—C220.3 (2)C4—C5—N1—C136.21 (15)
C20—C21—C22—C230.1 (3)C6—C5—N1—C194.06 (13)
C21—C22—C23—C240.6 (3)C2—C1—N1—C12117.56 (14)
C22—C23—C24—C190.8 (2)C19—C1—N1—C12113.23 (14)
C21—C20—C19—C240.1 (2)C2—C1—N1—C559.05 (14)
C21—C20—C19—C1175.99 (13)C19—C1—N1—C570.17 (14)
C23—C24—C19—C200.5 (2)O1—C32—O2—C332.6 (2)
C23—C24—C19—C1176.31 (14)C4—C32—O2—C33179.61 (12)
C20—C19—C1—N166.15 (15)C35—C33—O2—C3291.49 (17)
C24—C19—C1—N1118.01 (14)C34—C33—O2—C32145.87 (15)
C20—C19—C1—C2169.00 (12)C4—C3—O3—C25108.81 (14)
C24—C19—C1—C26.84 (18)C2—C3—O3—C2578.95 (14)
N1—C1—C2—C345.79 (14)C3—O3—C25—O43.28 (18)
C19—C1—C2—C381.25 (14)C3—O3—C25—C26176.06 (10)
C1—C2—C3—C416.21 (18)O4—C25—C26—C31173.77 (14)
C1—C2—C3—O3171.96 (10)O3—C25—C26—C316.91 (18)
O3—C3—C4—C328.7 (2)O4—C25—C26—C277.4 (2)
C2—C3—C4—C32179.86 (12)O3—C25—C26—C27171.88 (11)
O3—C3—C4—C5163.98 (11)C5—N1—C12—O57.5 (2)
C2—C3—C4—C57.5 (2)C1—N1—C12—O5175.88 (14)
C3—C4—C5—N11.40 (17)C5—N1—C12—C13170.63 (12)
C32—C4—C5—N1171.94 (10)C1—N1—C12—C136.0 (2)
C3—C4—C5—C6129.34 (13)C18—C13—C12—O5106.54 (18)
C32—C4—C5—C657.32 (15)C14—C13—C12—O568.5 (2)
N1—C5—C6—C798.31 (15)C18—C13—C12—N171.66 (19)
C4—C5—C6—C730.45 (18)C14—C13—C12—N1113.33 (16)
N1—C5—C6—C1184.44 (15)C27—C26—C31—C301.0 (2)
C4—C5—C6—C11146.80 (13)C25—C26—C31—C30179.75 (14)
C11—C6—C7—C81.0 (2)C31—C26—C27—C280.2 (2)
C5—C6—C7—C8178.23 (14)C25—C26—C27—C28179.03 (13)
C6—C7—C8—C90.5 (2)C18—C13—C14—C152.1 (2)
C7—C8—C9—C100.2 (3)C12—C13—C14—C15177.24 (14)
C8—C9—C10—C110.3 (2)C14—C13—C18—C170.9 (2)
C9—C10—C11—C60.2 (2)C12—C13—C18—C17175.96 (14)
C7—C6—C11—C100.8 (2)C13—C18—C17—C161.1 (3)
C5—C6—C11—C10178.19 (13)C26—C31—C30—C291.2 (3)
C3—C4—C32—O1146.00 (15)C26—C27—C28—C290.4 (2)
C5—C4—C32—O127.18 (18)C27—C28—C29—C300.1 (3)
C3—C4—C32—O236.14 (18)C31—C30—C29—C280.7 (3)
C5—C4—C32—O2150.68 (12)C18—C17—C16—C151.8 (3)
C4—C5—N1—C12140.57 (12)C17—C16—C15—C140.5 (3)
C6—C5—N1—C1289.16 (14)C13—C14—C15—C161.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O5i0.932.573.500 (2)173
C11—H11···O50.932.533.171 (2)126
C24—H24···O40.932.363.2898 (19)179
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O5i0.932.573.500 (2)173.2
C11—H11···O50.932.533.171 (2)126
C24—H24···O40.932.363.2898 (19)179
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors thank Dr Babu Varghese, SAIF, IIT, Chennai, India for the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMishra, S. & Ghosh, R. (2011). Tetrahedron Lett. 52, 2857–2861.  Web of Science CSD CrossRef CAS Google Scholar
First citationNatarajan, S. & Mathews, R. (2011). Acta Cryst. E67, o1530.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRamachandran, R., Zhao, X. F. & Goldman, D. (2011). Proc. Natl. Acad. Sci USA, 108, 15858–15863.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds