organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Bromo-2-[(phenyl­imino)­meth­yl]phenol

aInstitute of Molecular Science, Key Laboratory of Chemical Biology and Molecular, Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
*Correspondence e-mail: miaoli@sxu.edu.cn

Edited by G. S. Nichol, University of Edinburgh, Scotland (Received 22 April 2014; accepted 29 June 2014; online 5 July 2014)

The title compound, C13H10BrNO, is essentially planar (r.m.s. deviation = 0.026 Å) and the dihedral angle between the planes of the two aryl rings is 1.5 (3)°. An intra­molecular O—H⋯N hydrogen bond generates an S(6) ring.

Keywords: crystal structure.

Related literature

For background to the biological activity of Schiff bases, see: Han et al. (2012[Han, H., Lu, L. P., Wang, Q. M., Zhu, M. L., Yuan, C. X., Xing, S. & Fu, X. Q. (2012). Dalton Trans. 41, 11116-11124.]); Rehman et al. (2008[Rehman, W., Saman, F. & Ahmad, I. (2008). Russ. J. Coord. Chem. 34, 678-682.]); Ritter et al. (2009[Ritter, E., Przybylski, P., Brzezinski, B. & Bartl, F. (2009). Curr. Org. Chem. 13, 241-249.]); Vanco et al. (2008[Vanco, J., Marek, J., Travnicek, Z., Racanska, E., Muselik, J. & Svajlenova, O. (2008). J. Inorg. Biochem. 102, 595-605.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10BrNO

  • Mr = 276.13

  • Orthorhombic, P c a 21

  • a = 12.353 (3) Å

  • b = 4.5092 (9) Å

  • c = 19.778 (4) Å

  • V = 1101.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.71 mm−1

  • T = 298 K

  • 0.20 × 0.15 × 0.05 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.524, Tmax = 0.836

  • 4926 measured reflections

  • 1674 independent reflections

  • 1444 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.078

  • S = 1.04

  • 1674 reflections

  • 149 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.33 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 924 Friedel pairs

  • Absolute structure parameter: 0.039 (18)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.89 (6) 1.81 (5) 2.583 (6) 144 (5)

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Experimental top

Synthesis and crystallization top

4.0204g (20.0 mmol) 5-bromo-salicyl­aldehyde was dissolved in 30 mL of absolute ethanol. To it 1.822 mL (20.0 mmol) of aniline was added dropwise with a constant stirring. The reaction mixture was heated under refluxing for 3h. After cooling slowly, the light orange powder was separated out. The separated compound, (I), was filtered, washed thoroughly with absolute ethanol and dried in a vacuum desiccator with P2O5. Yield 91%. 0.2761g of (I) (1.0mmol) dissolved in 15 mL of absolute ethanol was heated under refluxing until thoroughly dissolved and 0.163 g (1.0 mmol) of VOSO4 in 5 mL of water was added dropwise with a constant stirring. The reaction mixture was adjusted to pH = 7 with NaOH solution, and then it was heated under refluxing for 3h. After cooling slowly, the yellow-green precipitates were separated out. Orange-red crystal (I) was obtained from the filtrate after two weeks. Selected IR(KBr, cm-1): 1614s.

Refinement top

H atoms attached to C of (I) were placed in geometrically idealized positions with Csp2—H = 0.93Å. H atom attached to O of (I) was refined freely with the distance of O—H = 0.89 (6) Å.

Results and discussion top

We report here the synthesis and characterization a potentially bidentate Schiff base derivative, (I), and prepared from the condensation reaction of an equimolar proportion of 5-bromo-salicyl­aldehyde and aniline in absolute ethanol. A Schiff base is condensed by primary amines and carbonyl compounds, containing strong electronegative with atoms O and N, so it is easily coordinated with metal ions to form stable complexes (Rehman et al., 2008). It is reported that metal complexes of schiff base derivatives have a variety of important biological activity,such as anti-bacterial, anti-cancer, anti-tumor, hypoglycemic and so on.(Vanco et al., 2008; Ritter et al., 2009).Our reports indicated that copper and vanadium complexes of Schiff bases are potential inhitors over protein tyrosine phosphatases. As part of the ongoing study of vanadium complexes inhibiting protein tyrosine phosphatases (Han et al., 2012), the aim of us is to synthesize new vanadium complex. Unfortunately, only the crystal structure of the title compound (I) was obtained.

The molecular structure and the crystal packing are depicted in Figure 1. X-ray structural analysis confirmed the title compound,(I), the dihedral angle between the two benzene rings is nearly 180° and and all non-H atoms are roughly coplanar with an r.m.s. deviation of 0.0255 Å for a mean plane fitted atomsin the model. There is a strong intra­molecular O—H···N hydrogen bonds with a distance of 2.583 (6) Å between donor and acceptor, which generate S(6) ring.

The strong band in IR at 1614 cm-1 corresponds to the C7===N1, with a bond length of 1.283 (7) Å, stretching frequency of the imine group of Schiff base.

Related literature top

For background to the biological activity of Schiff bases, see: Han et al. (2012); Rehman et al. (2008); Ritter et al. (2009); Vanco et al. (2008). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the structure of (I) with displacement ellipsoids drawn at the 50% probability level. Dot line indicates hydrogen bonding interaction.
4-Bromo-2-[(phenylimino)methyl]phenol top
Crystal data top
C13H10BrNOF(000) = 552
Mr = 276.13Dx = 1.665 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2025 reflections
a = 12.353 (3) Åθ = 2.1–26.0°
b = 4.5092 (9) ŵ = 3.71 mm1
c = 19.778 (4) ÅT = 298 K
V = 1101.7 (4) Å3Block, orange-red
Z = 40.20 × 0.15 × 0.05 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1674 independent reflections
Radiation source: fine-focus sealed tube1444 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
phi and ω scansθmax = 25.1°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1314
Tmin = 0.524, Tmax = 0.836k = 55
4926 measured reflectionsl = 2317
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0329P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1674 reflectionsΔρmax = 0.47 e Å3
149 parametersΔρmin = 0.33 e Å3
1 restraintAbsolute structure: Flack (1983), 924 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.039 (18)
Crystal data top
C13H10BrNOV = 1101.7 (4) Å3
Mr = 276.13Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 12.353 (3) ŵ = 3.71 mm1
b = 4.5092 (9) ÅT = 298 K
c = 19.778 (4) Å0.20 × 0.15 × 0.05 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1674 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
1444 reflections with I > 2σ(I)
Tmin = 0.524, Tmax = 0.836Rint = 0.049
4926 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.078Δρmax = 0.47 e Å3
S = 1.04Δρmin = 0.33 e Å3
1674 reflectionsAbsolute structure: Flack (1983), 924 Friedel pairs
149 parametersAbsolute structure parameter: 0.039 (18)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.57515 (4)1.03271 (10)0.49809 (4)0.04069 (18)
C10.6938 (4)0.5393 (12)0.3358 (3)0.0283 (13)
C20.8024 (4)0.6143 (12)0.3347 (3)0.0310 (14)
C30.8434 (5)0.8206 (15)0.3824 (3)0.0401 (16)
H30.91630.87200.38170.048*
C40.7755 (5)0.9449 (13)0.4299 (3)0.0394 (14)
H40.80221.08190.46080.047*
C50.6671 (5)0.8650 (13)0.4313 (3)0.0340 (14)
C60.6257 (5)0.6708 (12)0.3845 (3)0.0315 (13)
H60.55230.62550.38500.038*
C70.6489 (4)0.3280 (12)0.2878 (3)0.0305 (13)
H70.57500.28810.28820.037*
C80.6684 (4)0.0149 (12)0.1984 (3)0.0314 (13)
C90.5609 (5)0.1095 (13)0.1966 (3)0.0379 (15)
H90.51080.03270.22710.045*
C100.5286 (5)0.3203 (13)0.1487 (3)0.0428 (17)
H100.45730.38660.14810.051*
C110.6026 (5)0.4316 (12)0.1020 (3)0.0401 (15)
H110.58100.56890.06950.048*
C120.7067 (6)0.3361 (15)0.1046 (4)0.0445 (16)
H120.75650.41050.07360.053*
C130.7409 (5)0.1310 (12)0.1521 (3)0.0373 (14)
H130.81300.07100.15280.045*
N10.7101 (4)0.1963 (10)0.2449 (2)0.0304 (12)
O10.8726 (3)0.4998 (10)0.2894 (2)0.0398 (10)
H10.840 (4)0.348 (13)0.269 (3)0.029 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0408 (3)0.0520 (3)0.0293 (3)0.0062 (3)0.0020 (4)0.0049 (6)
C10.033 (3)0.028 (3)0.023 (3)0.000 (3)0.002 (2)0.006 (3)
C20.032 (3)0.033 (3)0.029 (4)0.001 (3)0.000 (3)0.003 (3)
C30.034 (4)0.047 (4)0.039 (4)0.006 (3)0.005 (3)0.000 (3)
C40.042 (3)0.046 (3)0.030 (4)0.002 (3)0.007 (3)0.002 (3)
C50.040 (3)0.034 (3)0.028 (4)0.002 (3)0.000 (3)0.004 (3)
C60.031 (3)0.033 (3)0.031 (4)0.003 (3)0.001 (3)0.003 (3)
C70.031 (3)0.032 (3)0.029 (4)0.001 (3)0.002 (3)0.005 (3)
C80.039 (3)0.029 (3)0.026 (3)0.000 (3)0.000 (2)0.003 (3)
C90.035 (3)0.044 (3)0.034 (4)0.003 (3)0.005 (3)0.002 (3)
C100.039 (4)0.038 (4)0.051 (5)0.010 (3)0.014 (3)0.008 (3)
C110.056 (4)0.034 (3)0.029 (4)0.004 (3)0.010 (3)0.001 (3)
C120.057 (4)0.044 (4)0.032 (4)0.001 (4)0.007 (3)0.004 (3)
C130.039 (4)0.036 (3)0.037 (4)0.007 (3)0.001 (3)0.001 (3)
N10.030 (3)0.032 (2)0.029 (3)0.002 (2)0.002 (3)0.000 (2)
O10.027 (2)0.054 (3)0.038 (3)0.000 (2)0.0047 (19)0.012 (2)
Geometric parameters (Å, º) top
Br1—C51.899 (6)C8—C131.385 (8)
C1—C21.383 (7)C8—C91.396 (7)
C1—C61.411 (8)C8—N11.421 (7)
C1—C71.454 (8)C9—C101.400 (8)
C2—O11.350 (7)C9—H90.9300
C2—C31.419 (9)C10—C111.394 (9)
C3—C41.378 (9)C10—H100.9300
C3—H30.9300C11—C121.358 (9)
C4—C51.387 (8)C11—H110.9300
C4—H40.9300C12—C131.384 (8)
C5—C61.372 (8)C12—H120.9300
C6—H60.9300C13—H130.9300
C7—N11.283 (7)O1—H10.89 (6)
C7—H70.9300
C2—C1—C6119.1 (5)C13—C8—C9118.9 (5)
C2—C1—C7121.4 (5)C13—C8—N1116.6 (5)
C6—C1—C7119.6 (5)C9—C8—N1124.5 (5)
O1—C2—C1122.6 (5)C8—C9—C10119.7 (6)
O1—C2—C3117.6 (5)C8—C9—H9120.1
C1—C2—C3119.8 (6)C10—C9—H9120.1
C4—C3—C2120.1 (6)C11—C10—C9120.4 (6)
C4—C3—H3119.9C11—C10—H10119.8
C2—C3—H3119.9C9—C10—H10119.8
C3—C4—C5119.8 (6)C12—C11—C10118.8 (6)
C3—C4—H4120.1C12—C11—H11120.6
C5—C4—H4120.1C10—C11—H11120.6
C6—C5—C4120.7 (6)C11—C12—C13121.8 (7)
C6—C5—Br1120.0 (4)C11—C12—H12119.1
C4—C5—Br1119.2 (5)C13—C12—H12119.1
C5—C6—C1120.5 (5)C12—C13—C8120.3 (6)
C5—C6—H6119.8C12—C13—H13119.8
C1—C6—H6119.8C8—C13—H13119.8
N1—C7—C1120.6 (5)C7—N1—C8121.6 (5)
N1—C7—H7119.7C2—O1—H1108 (4)
C1—C7—H7119.7
C6—C1—C2—O1179.6 (5)C2—C1—C7—N12.9 (8)
C7—C1—C2—O10.5 (9)C6—C1—C7—N1177.0 (5)
C6—C1—C2—C30.1 (8)C13—C8—C9—C100.6 (9)
C7—C1—C2—C3179.8 (5)N1—C8—C9—C10179.7 (5)
O1—C2—C3—C4180.0 (5)C8—C9—C10—C111.4 (9)
C1—C2—C3—C40.3 (9)C9—C10—C11—C121.2 (9)
C2—C3—C4—C50.8 (9)C10—C11—C12—C130.3 (10)
C3—C4—C5—C62.2 (9)C11—C12—C13—C80.5 (10)
C3—C4—C5—Br1178.8 (5)C9—C8—C13—C120.4 (9)
C4—C5—C6—C12.6 (9)N1—C8—C13—C12179.4 (5)
Br1—C5—C6—C1178.4 (4)C1—C7—N1—C8178.8 (5)
C2—C1—C6—C51.6 (8)C13—C8—N1—C7176.6 (5)
C7—C1—C6—C5178.4 (5)C9—C8—N1—C73.1 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.89 (6)1.81 (5)2.583 (6)144 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.89 (6)1.81 (5)2.583 (6)144 (5)
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (21171109 and 21271121), SRFDP (20111401110002 and 20121401110005), the Natural Science Foundation of Shanxi Province of China (2011011009–1), and the Research Project supported by Shanxi Scholarship Council of China (2012–004 and 2013–026).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHan, H., Lu, L. P., Wang, Q. M., Zhu, M. L., Yuan, C. X., Xing, S. & Fu, X. Q. (2012). Dalton Trans. 41, 11116–11124.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRehman, W., Saman, F. & Ahmad, I. (2008). Russ. J. Coord. Chem. 34, 678–682.  Web of Science CrossRef CAS Google Scholar
First citationRitter, E., Przybylski, P., Brzezinski, B. & Bartl, F. (2009). Curr. Org. Chem. 13, 241–249.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVanco, J., Marek, J., Travnicek, Z., Racanska, E., Muselik, J. & Svajlenova, O. (2008). J. Inorg. Biochem. 102, 595–605.  Web of Science PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds