metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-amino-4-phenyl-1,3-thia­zol-3-ium) tetra­chlorido­palladate(II)

aFacultad de Química, Universidad Autónoma de Yucatán, Calle 41 No. 421, Col. Industrial, CP97150, Mérida, Yucatán, Mexico, and bInstituto de Química, Universidad Nacional Autónoma de México, Circuito exterior, Ciudad Universitaria, México, DF, 04510, Mexico
*Correspondence e-mail: david.caceres@uady.mx

Edited by T. J. Prior, University of Hull, England (Received 18 June 2014; accepted 1 July 2014; online 11 July 2014)

The title compound, (C9H9N2S)2[PdCl4], consists of two monoprotonated 2-amino-4-phenyl-1,3-thia­zole molecules and one tetra­chlorido­palladate anion. The organic molecules exhibit a dihedral angle between the main rings planes of 31.82 (9)°. In the anion, the PdII atom is located on a crystallographic centre of symmetry with a square-planar geometry. In the crystal, the anions and cations are connected through bifurcated N—H⋯Cl hydrogen bonds, and these inter­actions lead to hydrogen-bonded tapes of cations and anions along [100].

Keywords: crystal structure.

Related literature

For the potential biological activity of compounds containing thia­zole rings, see: Annadurai et al. (2012[Annadurai, S., Martinez, R., Canney, D. J., Eidem, T., Dunman, P. M. & Abou-Gharbia, M. (2012). Bioorg. Med. Chem. Lett. 22, 7719-7725.]); Alam et al. (2011[Alam, M. S., Liu, L., Lee, Y.-E. & Lee, D.-U. (2011). Chem. Pharm. Bull. 5, 568-573.]). For the synthesis of thia­zole compounds, see: Cáceres-Castillo et al. (2012[Cáceres-Castillo, D., Carballo, R. M., Tzec-Interián, J. A. & Mena-Rejón, G. J. (2012). Tetrahedron Lett. 53, 3934-3936.]). For similar structures with protonated molecules, see: Form et al. (1974[Form, G. R., Raper, E. S. & Downie, T. C. (1974). Acta Cryst. B30, 342-348.]); Jin et al. (2011[Jin, S., Wang, D. & Xu, Y. (2011). J. Chem. Crystallogr. 41, 1876-1883.], 2013[Jin, S., Zhu, Q., Wei, S. & Wang, D. (2013). J. Mol. Struct. 1049, 132-148.]). For the crystal structure of non-protonated thia­zole, see: Au-Alvarez et al. (1999[Au-Alvarez, O., Peterson, R. C., Acosta Crespo, A., Rodríguez Esteva, Y., Marquez Alvarez, H., Plutín Stiven, A. M. & Pomés Hernández, R. (1999). Acta Cryst. C55, 821-823.]).

[Scheme 1]

Experimental

Crystal data
  • (C9H9N2S)2[PdCl4]

  • Mr = 602.68

  • Triclinic, [P \overline 1]

  • a = 7.2880 (2) Å

  • b = 8.9214 (3) Å

  • c = 9.8192 (3) Å

  • α = 66.258 (1)°

  • β = 73.778 (1)°

  • γ = 84.468 (1)°

  • V = 561.04 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.50 mm−1

  • T = 298 K

  • 0.46 × 0.28 × 0.21 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: analytical (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.658, Tmax = 0.842

  • 4857 measured reflections

  • 2060 independent reflections

  • 1982 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.051

  • S = 1.11

  • 2060 reflections

  • 143 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯Cl2 0.89 (1) 2.41 (2) 3.237 (2) 155 (2)
N2—H2A⋯Cl2i 0.89 (1) 2.78 (2) 3.3572 (19) 123 (2)
N2—H2A⋯Cl1ii 0.89 (1) 2.44 (1) 3.291 (2) 159 (2)
N1—H1⋯Cl2 0.88 (1) 2.79 (2) 3.4028 (17) 129 (2)
N1—H1⋯Cl1 0.88 (1) 2.49 (2) 3.2593 (17) 147 (2)
Symmetry codes: (i) -x+2, -y, -z+2; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Introduction top

The thia­zole ring system is an important structural motif found in numerous molecules with potential biological activities, for instance; as anti­infective agents (Annadurai et al., 2012; Alam et al., 2011). On the other hand, in recent years there has been a growing inter­est in organic derivatives of transition metals in order to modify the biological properties of these organic compounds. Thus, in this opportunity we would like to report the crystal structure of bis-(2-amino-4-phenyl-1,3-thia­zolium) tetra­chloro­palladate (II).

Experimental top

Synthesis and crystallization top

The compound 2-amino-4-phenyl-1,3-thia­zole was synthesized as reported by our group (Cáceres-Castillo et al., 2012). The PdCl2 (25 mg, 0.14 mmol) was dissolved in 1 mL of concentrated HCl and then diluted with 5 mL of methanol. To the resulting mixture a methanol (5mL) solution of 2-amino-4-phenyl-1,3-thia­zole (50 mg, 0.28 mmol) was added. The reaction mixture was stirred for four hours at room temperature, after which time the resulting solution was allowed to slowly evaporate to produce brown X-ray diffraction quality crystals after few days.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

All H atoms were included in calculated positions (C—H = 0.93 Å), and refined using a riding model with Uiso(H) = 1.2 Ueq of the carrier atom. H atoms on N were located in a Fourier map and refined isotropically with Uiso(H) = 1.2 × Ueq(N).

13 badly-fitted reflections were omitted from the final refinement.

Results and discussion top

The title compound, [C9H9N2S]2[PdCl4], is centrosymmetric and consists of two monoprotonated 2-amino-4-phenyl-1,3-thia­zole molecules and one tetra­chloro­palladate anion. This compound, crystallized in the triclinic P-1 space group. The asymmetric unit is composed of one monoprotaned 2-amino-4-phenyl-1,3-thia­zole and half of the tetra­chloro­palladate anion, the other half is generated by application of an inversion centre. The dihedral angle between the planes of the phenyl and thia­zole rings in the cation is of 31.82 (9)°.This value is larger than those reported in other compounds containing the 2-amino-4-phenyl-1,3-thia­zole molecule, protonated (Form et al., 1974; Jin et al., 2013; Jin et al., 2011) or in the free molecule (Au-Alvarez et al., 1999). The angle C2—N1—C5 (115.25 (17)°) is similar in value other salts reported and is longer than that reported for the neutral compound (110.5 °).

The palladium atom of the anion is in a special position (0.5, 0, 1), Wyckoff site 1d, and exhibits a square-planar geometry with Pd—Cl distances of 2.3031 (5) and 2.3061 (6) Å. The cation and the anion are linked by a bifurcate hydrogen bond between the chloride atoms and the hydrogen of the thia­zole ring (Figure 1). The NH and NH2 groups exhibit N—H···Cl hydrogen bonds with the chloride atoms generating a linear arrangement in the orientation [100] (Figure 2).

Related literature top

For the potential biological activity of compounds containing thiazole rings, see: Annadurai et al. (2012); Alam et al. (2011). For the synthesis of thiazole compounds, see: Cáceres-Castillo et al. (2012). For similar protonated structures, see: Form et al. (1974); Jin et al. (2011, 2013). For the crystal structure of non-protonated thiazole, see: Au-Alvarez et al. (1999).

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of title compound with displacement ellipsoids at the 40% probability. Hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Linear arrangement due hydrogen bond patterns in crystal structure of the title compound.
Bis(2-amino-4-phenyl-1,3-thiazol-3-ium) tetrachloridopalladate(II) top
Crystal data top
(C9H9N2S)2[PdCl4]Z = 1
Mr = 602.68F(000) = 300
Triclinic, P1Dx = 1.784 Mg m3
a = 7.2880 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.9214 (3) ÅCell parameters from 4506 reflections
c = 9.8192 (3) Åθ = 2.4–25.4°
α = 66.258 (1)°µ = 1.50 mm1
β = 73.778 (1)°T = 298 K
γ = 84.468 (1)°Prism, brown
V = 561.04 (3) Å30.46 × 0.28 × 0.21 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1982 reflections with I > 2σ(I)
Detector resolution: 0.83 pixels mm-1Rint = 0.026
ω scansθmax = 25.4°, θmin = 2.4°
Absorption correction: analytical
(SADABS; Bruker, 2012)
h = 88
Tmin = 0.658, Tmax = 0.842k = 1010
4857 measured reflectionsl = 1111
2060 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.020 w = 1/[σ2(Fo2) + (0.027P)2 + 0.0969P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.051(Δ/σ)max < 0.001
S = 1.11Δρmax = 0.26 e Å3
2060 reflectionsΔρmin = 0.30 e Å3
143 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
3 restraintsExtinction coefficient: 0.015 (2)
Crystal data top
(C9H9N2S)2[PdCl4]γ = 84.468 (1)°
Mr = 602.68V = 561.04 (3) Å3
Triclinic, P1Z = 1
a = 7.2880 (2) ÅMo Kα radiation
b = 8.9214 (3) ŵ = 1.50 mm1
c = 9.8192 (3) ÅT = 298 K
α = 66.258 (1)°0.46 × 0.28 × 0.21 mm
β = 73.778 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2060 independent reflections
Absorption correction: analytical
(SADABS; Bruker, 2012)
1982 reflections with I > 2σ(I)
Tmin = 0.658, Tmax = 0.842Rint = 0.026
4857 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0203 restraints
wR(F2) = 0.051H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.26 e Å3
2060 reflectionsΔρmin = 0.30 e Å3
143 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd0.50000.00001.00000.03103 (10)
Cl10.54163 (7)0.23160 (6)0.77534 (6)0.04971 (15)
Cl20.78000 (7)0.10267 (6)0.89335 (6)0.04577 (14)
N10.9774 (2)0.2276 (2)0.56952 (19)0.0382 (4)
H10.8651 (19)0.185 (3)0.628 (2)0.046*
C21.1103 (3)0.2483 (2)0.6301 (2)0.0380 (4)
N21.0983 (3)0.1821 (2)0.7791 (2)0.0527 (5)
H2A1.203 (2)0.195 (3)0.804 (3)0.063*
H2B1.001 (3)0.112 (3)0.837 (3)0.063*
S31.29130 (7)0.37696 (7)0.49056 (6)0.04726 (15)
C41.1739 (3)0.4022 (3)0.3520 (2)0.0459 (5)
H41.21960.46900.24810.055*
C51.0096 (3)0.3149 (2)0.4107 (2)0.0365 (4)
C60.8732 (3)0.3009 (2)0.3309 (2)0.0374 (4)
C70.8497 (3)0.4318 (3)0.2005 (2)0.0484 (5)
H70.91750.52910.16600.058*
C80.7259 (4)0.4194 (3)0.1206 (3)0.0572 (6)
H80.70960.50870.03400.069*
C90.6278 (4)0.2758 (3)0.1694 (3)0.0585 (6)
H90.54740.26660.11430.070*
C100.6482 (3)0.1453 (3)0.2995 (3)0.0576 (6)
H100.58000.04840.33280.069*
C110.7696 (3)0.1563 (3)0.3820 (3)0.0475 (5)
H110.78150.06780.47070.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd0.02640 (13)0.03439 (14)0.03019 (13)0.00791 (8)0.00582 (8)0.00981 (9)
Cl10.0358 (3)0.0484 (3)0.0431 (3)0.0070 (2)0.0057 (2)0.0025 (2)
Cl20.0345 (3)0.0472 (3)0.0495 (3)0.0033 (2)0.0015 (2)0.0183 (2)
N10.0298 (8)0.0420 (9)0.0380 (9)0.0078 (7)0.0058 (7)0.0112 (7)
C20.0326 (9)0.0374 (10)0.0416 (11)0.0027 (8)0.0092 (8)0.0129 (8)
N20.0494 (11)0.0594 (12)0.0434 (10)0.0154 (9)0.0169 (9)0.0074 (9)
S30.0326 (3)0.0601 (3)0.0447 (3)0.0143 (2)0.0069 (2)0.0151 (2)
C40.0387 (11)0.0584 (13)0.0365 (10)0.0118 (9)0.0051 (9)0.0147 (9)
C50.0321 (9)0.0394 (10)0.0376 (10)0.0008 (8)0.0062 (8)0.0164 (8)
C60.0329 (9)0.0436 (10)0.0393 (10)0.0001 (8)0.0064 (8)0.0217 (9)
C70.0532 (13)0.0504 (12)0.0449 (12)0.0054 (10)0.0144 (10)0.0197 (10)
C80.0645 (15)0.0669 (15)0.0498 (13)0.0047 (12)0.0254 (12)0.0265 (12)
C90.0519 (14)0.0780 (17)0.0680 (16)0.0034 (12)0.0260 (12)0.0449 (14)
C100.0501 (13)0.0593 (14)0.0773 (17)0.0071 (11)0.0169 (12)0.0389 (13)
C110.0427 (11)0.0453 (11)0.0573 (13)0.0019 (9)0.0134 (10)0.0223 (10)
Geometric parameters (Å, º) top
Pd—Cl12.3031 (5)C4—H40.9300
Pd—Cl1i2.3031 (5)C5—C61.468 (3)
Pd—Cl2i2.3061 (5)C6—C71.383 (3)
Pd—Cl22.3061 (5)C6—C111.393 (3)
N1—C21.331 (2)C7—C81.388 (3)
N1—C51.395 (3)C7—H70.9300
N1—H10.876 (10)C8—C91.369 (4)
C2—N21.319 (3)C8—H80.9300
C2—S31.7179 (19)C9—C101.373 (4)
N2—H2A0.894 (10)C9—H90.9300
N2—H2B0.887 (10)C10—C111.389 (3)
S3—C41.733 (2)C10—H100.9300
C4—C51.343 (3)C11—H110.9300
Cl1—Pd—Cl1i180.0C4—C5—C6129.09 (18)
Cl1—Pd—Cl2i90.134 (19)N1—C5—C6120.10 (17)
Cl1i—Pd—Cl2i89.866 (19)C7—C6—C11119.06 (19)
Cl1—Pd—Cl289.866 (19)C7—C6—C5119.70 (18)
Cl1i—Pd—Cl290.134 (19)C11—C6—C5121.22 (19)
Cl2i—Pd—Cl2180.00 (2)C6—C7—C8120.7 (2)
C2—N1—C5115.25 (16)C6—C7—H7119.7
C2—N1—H1120.8 (15)C8—C7—H7119.7
C5—N1—H1121.9 (15)C9—C8—C7120.0 (2)
N2—C2—N1123.49 (18)C9—C8—H8120.0
N2—C2—S3125.28 (16)C7—C8—H8120.0
N1—C2—S3111.19 (14)C8—C9—C10120.0 (2)
C2—N2—H2A114.7 (17)C8—C9—H9120.0
C2—N2—H2B115.3 (18)C10—C9—H9120.0
H2A—N2—H2B128 (2)C9—C10—C11120.7 (2)
C2—S3—C490.03 (10)C9—C10—H10119.6
C5—C4—S3112.71 (16)C11—C10—H10119.6
C5—C4—H4123.6C10—C11—C6119.5 (2)
S3—C4—H4123.6C10—C11—H11120.2
C4—C5—N1110.80 (17)C6—C11—H11120.2
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···Cl20.89 (1)2.41 (2)3.237 (2)155 (2)
N2—H2A···Cl2ii0.89 (1)2.78 (2)3.3572 (19)123 (2)
N2—H2A···Cl1iii0.89 (1)2.44 (1)3.291 (2)159 (2)
N1—H1···Cl20.88 (1)2.79 (2)3.4028 (17)129 (2)
N1—H1···Cl10.88 (1)2.49 (2)3.2593 (17)147 (2)
Symmetry codes: (ii) x+2, y, z+2; (iii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···Cl20.887 (10)2.412 (15)3.237 (2)155 (2)
N2—H2A···Cl2i0.894 (10)2.78 (2)3.3572 (19)123 (2)
N2—H2A···Cl1ii0.894 (10)2.442 (14)3.291 (2)159 (2)
N1—H1···Cl20.876 (10)2.786 (19)3.4028 (17)128.6 (18)
N1—H1···Cl10.876 (10)2.492 (15)3.2593 (17)146.5 (19)
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y, z.
 

Acknowledgements

The authors from the Universidad Autónoma de Yucatán are grateful to Dr Leovigildo Quijano for assistance with the X-ray analysis.

References

First citationAlam, M. S., Liu, L., Lee, Y.-E. & Lee, D.-U. (2011). Chem. Pharm. Bull. 5, 568–573.  CrossRef Google Scholar
First citationAnnadurai, S., Martinez, R., Canney, D. J., Eidem, T., Dunman, P. M. & Abou-Gharbia, M. (2012). Bioorg. Med. Chem. Lett. 22, 7719–7725.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAu-Alvarez, O., Peterson, R. C., Acosta Crespo, A., Rodríguez Esteva, Y., Marquez Alvarez, H., Plutín Stiven, A. M. & Pomés Hernández, R. (1999). Acta Cryst. C55, 821–823.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCáceres-Castillo, D., Carballo, R. M., Tzec-Interián, J. A. & Mena-Rejón, G. J. (2012). Tetrahedron Lett. 53, 3934–3936.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationForm, G. R., Raper, E. S. & Downie, T. C. (1974). Acta Cryst. B30, 342–348.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationJin, S., Wang, D. & Xu, Y. (2011). J. Chem. Crystallogr. 41, 1876–1883.  Web of Science CSD CrossRef CAS Google Scholar
First citationJin, S., Zhu, Q., Wei, S. & Wang, D. (2013). J. Mol. Struct. 1049, 132–148.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds