organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 8| August 2014| Pages o844-o845

The 1:1 charge-transfer complex dibenzo­tetra­thia­fulvalene–pyromellitic dianhydride (DBTTF–PMDA)

aDepartment of Physics, Wake Forest University, Winston-Salem, NC 27109, USA, and bDepartment of Chemistry, Wake Forest University, Winston-Salem, NC 27109, USA
*Correspondence e-mail: daycs@wfu.edu, jurchescu@wfu.edu

(Received 21 May 2014; accepted 7 June 2014; online 2 July 2014)

The title charge-transfer (CT) complex, C10H2O6·C14H8S4, composed of donor dibenzo­tetra­thia­fulvalene (DBTTF) and acceptor pyromellitic dianhydride (PMDA), forms a mixed stacking pattern along the [-110] direction. The constituent mol­ecules occupy crystallographic inversion centers. They are nearly parallel and lie ca.3.41 Å from each other. The crystals exhibit a high degree of donor/acceptor overlap [88.20 (4)%] in the long direction of the DBTTF and PMDA mol­ecules as compared with 51.27 (5)% in the shortest direction of the mol­ecules.

Related literature

General properties and potential applications of charge-transfer complexes in electronic devices are outlined by Goetz et al. (2014[Goetz, K. P., Vermeulen, D., Payne, M. E., Kloc, C., McNeil, L. E. & Jurchescu, O. D. (2014). J. Mater. Chem. C, 2, 3065-3076.]); Horiuchi et al. (2006[Horiuchi, S., Hasegawa, T. & Tokura, Y. (2006). J. Phys. Soc. Jpn, 75, 051016.]); Tsutsumi et al. (2012[Tsutsumi, J., Matsui, H., Yamada, T., Kumai, R. & Hasegawa, T. (2012). J. Phys. Chem. C116, 23957-23964.]); Kobayashi et al. (2012[Kobayashi, K., Horiuchi, S., Kumai, R., Kagawa, F., Murakami, Y. & Tokura, Y. (2012). Phys. Rev. Lett. 108, 237601.]); Kagawa et al. (2010[Kagawa, F., Horiuchi, S., Tokunaga, M., Fujioka, J. & Tokura, Y. (2010). Nat. Phys. 6, 169-172.]); Herbstein (2005[Herbstein, F. H. (2005). Crystalline Molecular Complexes and Compounds: Structures and Principles. New York: Oxford University Press Inc.]); Ferraris et al. (1973[Ferraris, J., Cowan, D. O., Walatka, V. & Perlstein, J. H. (1973). JACS, 95, 948-949.]); Kistenmacher et al. (1981[Kistenmacher, T. J., Emge, T. J., Wiygul, F. M., Bryden, W. A., Chappell, J. S., Stokes, J. P., Chiang, L. Y., Cowan, D. O. & Bloch, A. N. (1981). Solid State Commun. 39, 415-417.]); Takahashi et al. (2006[Takahashi, Y., Hasegawa, T., Abe, Y., Tokura, Y. & Saito, G. (2006). Appl. Phys. Lett. 88, 073504.]); Wu et al. (2013[Wu, H., Wang, F., Xiao, Y. & Pan, G. (2013). J. Mater. Chem. C1, 2286-2289.]). Related CT structures, containing the acceptor pyromellitic dianhydride (PMDA) include anthracene–PMDA (Robertson & Stezowski, 1978[Robertson, B. E. & Stezowski, J. J. (1978). Acta Cryst. B34, 3005-3011.]), phenanthrene–PMDA (Evans & Robinson, 1977[Evans, D. L. & Robinson, W. T. (1977). Acta Cryst. B33, 2891-2893.]), pyrene–PMDA (Herbstein & Snyman, 1969[Herbstein, F. H. & Snyman, J. A. (1969). Phil. Trans. Roy. Soc. (London) A, 264, 635-662.]) and two polymorphs of bi­phenyl­ene–PMDA (Stezowski et al., 1986[Stezowski, J. J., Stigler, R. D. & Karl, N. (1986). J. Chem. Phys. 84, 5162-5170.]). Structure–property relationships in mol­ecular crystals have been described theoretically by Coropceanu et al. (2007[Coropceanu, V., Cornil, J., da Silva Filho, D. A., Olivier, Y., Silbey, R. & Bredas, J.-L. (2007). Chem. Rev. 107, 926-952.]) and experimentally by Mei et al. (2013[Mei, Y., Loth, M. A., Payne, M., Zhang, W., Smith, J., Day, C. S., Parkin, S. R., Heeney, M., McCulloch, I., Anthopoulos, T. D., Anthony, J. E. & Jurchescu, O. D. (2013). Adv. Mater. 25, 4352-4357.]), among others.

[Scheme 1]

Experimental

Crystal data
  • C10H2O6·C14H8S4

  • Mr = 522.56

  • Triclinic, [P \overline 1]

  • a = 7.2292 (4) Å

  • b = 8.9572 (5) Å

  • c = 9.5224 (5) Å

  • α = 70.051 (1)°

  • β = 68.712 (1)°

  • γ = 70.136 (1)°

  • V = 523.39 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 213 K

  • 0.20 × 0.20 × 0.02 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2012[Sheldrick, G. M. (2012). SADABS. University of Göttingen, Germany.]) Tmin = 0.703, Tmax = 0.746

  • 10004 measured reflections

  • 3023 independent reflections

  • 2668 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.091

  • S = 1.07

  • 3023 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2011[Bruker (2011). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXLS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Organic charge-transfer (CT) complexes are combinations of electron donor (D) and electron acceptor (A) materials. They have been studied for decades, but have attracted significant inter­est recently due to their intriguing properties such as photoconductivity, tunable semiconductivity, metallicity, ferroelectricity, etc., which make them viable candidates for versatile electronic devices (Goetz et al., 2014; Horiuchi et al., 2006; Tsutsumi et al., 2012; Kobayashi et al., 2012; Kagawa et al., 2010). In the 1:1 D:A stoichiometry, they can exhibit either mixed stacking, where the repeating motif in the π-stacking direction is ···D—A—D—A···, or segregated stacking, where the donor and acceptor π-stack separately, as ···A—A—A—A··· and ···D—D—D—D··· (Herbstein, 2005). CT complexes of the acceptor 7,7,8,8-tetra­cyano­quinodi­methane (TCNQ) have been widely explored. Examples include the organic metal with donor tetra­thia­fulvalene (TTF) (Ferraris et al., 1973) or the ambipolar semiconductor with dibenzo­tetra­thia­fulvalene (DBTTF) (Kistenmacher et al., 1981; Takahashi et al., 2006; Wu et al., 2013). With the exception of a few reports, CT complexes containing pyromellitic dianhydride (PMDA) as an acceptor have received little attention. Examples of CT complexes of PMDA include anthracene-PMDA (Robertson & Stezowski, 1978), phenanthrene-PMDA (Evans & Robinson, 1977), pyrene-PMDA (Herbstein & Snyman, 1969), and two polymorphs of bi­phenyl­ene-PMDA (Stezowski et al., 1986). Here we report for the first time on the growth and crystal structure of the 1:1 CT complex containing the donor DBTTF and acceptor PMDA.

Single crystals of DBTTF-PMDA are triclinic, space group P1, with Z=1, where the DBTTF and PMDA molecules occupy crystallographic inversion centers at (0,0,0) and (1/2,1/2,0), respectively. The crystals are platelets, with their largest face corresponding to the (001) plane. The molecular structure is shown with thermal ellipsoids in Figure 1, where only the contents of the asymmetric unit are labeled. The DBTTF and PMDA molecules pack in a mixed-stack pattern, previously observed in other PMDA-based CT complexes. As shown in Figure 2, the DBTTF molecules lie on the corners of the unit cell, while the PMDA molecules lie in the center of the ab crystal faces. The mixed DA stacks build along the [-1 1 0] direction and are tilted by 45.43 (6)° (DBTTF) and 46.40 (6)° (PMDA) with respect to ab face. This tilt leads to a molecular overlap between the donor and acceptor wherein the fused 5-and 6-membered rings of each half DBTTF overlap ("straddle") the 3 fused rings of the PMDA molecules in the stack (Figure 3). The centroid of the central PMDA 6-membered ring to centroid of the 5- and 6-membered rings of the adjacent DBTTF molecules in the stack are 3.648 (1)Å and 3.585 (1)Å, respectively. The shortest centroid-centroid contact involving 5-membered rings of the DBTTF and PMDA molecules is 3.611 (1)Å while the shortest contacts involving the DBTTF 6-membered ring centroid are 3.527 (1)Å and 3.538 (1)Å to the centroids of the 5-membered PMDA and 6-membered DBTTF rings, respectively. The planes of the D/A molecules are nearly parallel with an inter­planar angle of 1.31 (5)° and the long axes of the DBTTF and PMDA are also nearly parallel [1.8 (1)°]. The PMDA and DBTTF are symmetrically-spaced within each stack with an inter­molecular separation of 3.408 (1)Å. This differs from anthracene-PMDA, where the DA spacing alternates between 3.32Å and 3.4Å (Robertson & Stezowski, 1978). There is a high degree of overlap between donor and acceptor molecules: the DBTTF molecule overlaps with 88.20 (4)% of the PMDA molecule in the longest direction of the molecule, and with 51.27 (5)% of the PMDA molecule in the shortest direction of the molecule. Measurements are in progress to evaluate the degree of charge transfer between the two moieties; however, this high degree of overlap suggests that a high value is to be expected. The large molecular overlap is a signature of good electrical properties, as suggested by theoretical (Coropceanu et al., 2007) and experimental studies (Mei et al., 2013).

Related literature top

General properties and potential applications of charge-transfer complexes in electronic devices are outlined by Goetz et al. (2014); Horiuchi et al. (2006); Tsutsumi et al. (2012); Kobayashi et al. (2012); Kagawa et al. (2010); Herbstein (2005); Ferraris et al. (1973); Kistenmacher et al. (1981); Takahashi et al. (2006); Wu et al. (2013). Related CT structures, containing the acceptor pyromellitic dianhydride (PMDA) include anthracene–PMDA (Robertson & Stezowski, 1978), phenanthrene–PMDA (Evans & Robinson, 1977), pyrene–PMDA (Herbstein & Snyman, 1969) and two polymorphs of biphenylene–PMDA (Stezowski et al., 1986). Structure–property relationships in molecular crystals have been described theoretically by Coropceanu et al. (2007) and experimentally by Mei et al. (2013), among others.

Experimental top

Dibenzotetrathiafulvalene (DBTTF) and pyromellitic dianhydride (PMDA), both obtained from Sigma Aldrich, were separately dissolved in xylenes and acetonitrile, respectively. The solid weights of the compounds were measured in the molar ratio 1:1. The solution concentrations were saturated, such that all of parent compound dissolved in as little solvent as possible. The solutions were mixed, and the complex was then crystallized by slow evaporation under ambient conditions. After about two days of evaporation, crystals were obtained as green-gold plates with approximate dimensions of 0.20 mm x 0.20 mm x 0.02 mm.

Refinement top

The hydrogen atoms were included in the structural model as fixed atoms (using idealized sp2-hybridized geometry and C—H bond lengths of 0.94 Å) "riding" on their respective carbon atoms. The isotropic thermal parameter of each hydrogen atom was fixed at a value 1.2 times the equivalent isotropic thermal parameter of the carbon atom to which it is covalently bonded.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SHELXLS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The atom numbering scheme for DBTTF-PMDA with non-hydrogen atoms represented by 50% probability ellipsoids. Each molecule occupies an inversion center in the unit cell and only contents of the asymmetric unit are labeled.
[Figure 2] Fig. 2. Molecular packing viewed down the a axis (a) and the view across a stack of donor and acceptor molecules (b) with the six-membered rings vertically aligned.
[Figure 3] Fig. 3. Projection perpendicular to plane of DBTTF with PMDA (above - open bonds) (below - dashed open bonds) showing overlap of rings.
Dibenzotetrathiafulvalene–pyromellitic dianhydride (1/1) top
Crystal data top
C10H2O6·C14H8S4Z = 1
Mr = 522.56F(000) = 266
Triclinic, P1Dx = 1.658 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2292 (4) ÅCell parameters from 5268 reflections
b = 8.9572 (5) Åθ = 3.5–31.3°
c = 9.5224 (5) ŵ = 0.50 mm1
α = 70.051 (1)°T = 213 K
β = 68.712 (1)°Plate, green-gold
γ = 70.136 (1)°0.20 × 0.20 × 0.02 mm
V = 523.39 (5) Å3
Data collection top
Bruker APEX CCD
diffractometer
3023 independent reflections
Radiation source: sealed x-ray tube2668 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 30.0°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2012)
h = 1010
Tmin = 0.703, Tmax = 0.746k = 1212
10004 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0529P)2 + 0.115P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3023 reflectionsΔρmax = 0.30 e Å3
154 parametersΔρmin = 0.33 e Å3
0 restraints
Crystal data top
C10H2O6·C14H8S4γ = 70.136 (1)°
Mr = 522.56V = 523.39 (5) Å3
Triclinic, P1Z = 1
a = 7.2292 (4) ÅMo Kα radiation
b = 8.9572 (5) ŵ = 0.50 mm1
c = 9.5224 (5) ÅT = 213 K
α = 70.051 (1)°0.20 × 0.20 × 0.02 mm
β = 68.712 (1)°
Data collection top
Bruker APEX CCD
diffractometer
3023 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2012)
2668 reflections with I > 2σ(I)
Tmin = 0.703, Tmax = 0.746Rint = 0.021
10004 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.07Δρmax = 0.30 e Å3
3023 reflectionsΔρmin = 0.33 e Å3
154 parameters
Special details top

Experimental. Absorption correction: data were corrected for scaling and absorption effects using the multi-scan technique [SADABS (Sheldrick, 2012)]. The ratio of minimum to maximum apparent transmission was 0.942.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.06704 (4)0.15387 (4)0.15691 (4)0.02936 (10)
S20.31329 (5)0.02880 (4)0.11851 (4)0.03025 (10)
C10.08003 (17)0.02644 (15)0.05769 (14)0.0250 (2)
C20.32321 (18)0.17849 (14)0.27098 (14)0.0245 (2)
C30.43823 (18)0.09185 (14)0.25298 (14)0.0246 (2)
C40.64247 (19)0.10259 (16)0.34069 (16)0.0291 (3)
H40.72000.04430.32900.035*
C50.7294 (2)0.20070 (17)0.44543 (16)0.0333 (3)
H50.86720.20960.50420.040*
C60.6146 (2)0.28587 (17)0.46427 (15)0.0332 (3)
H60.67540.35110.53620.040*
C70.4108 (2)0.27550 (16)0.37773 (15)0.0292 (3)
H70.33340.33290.39090.035*
O10.08852 (14)0.63648 (12)0.27821 (12)0.0338 (2)
O20.30802 (18)0.75698 (14)0.29107 (13)0.0441 (3)
O30.05194 (14)0.48790 (13)0.21480 (13)0.0395 (2)
C80.2784 (2)0.67350 (16)0.23163 (15)0.0301 (3)
C90.41355 (18)0.59058 (14)0.10654 (14)0.0237 (2)
C100.30252 (17)0.50435 (14)0.08434 (14)0.0237 (2)
C110.09415 (18)0.53456 (16)0.19353 (15)0.0282 (2)
C120.61565 (17)0.58997 (14)0.02281 (14)0.0252 (2)
H120.69050.64840.03750.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02281 (15)0.03348 (17)0.03676 (18)0.00701 (12)0.00525 (12)0.01796 (14)
S20.02316 (15)0.03528 (18)0.03745 (19)0.00885 (12)0.00331 (12)0.01913 (14)
C10.0214 (5)0.0260 (5)0.0281 (6)0.0048 (4)0.0051 (4)0.0102 (5)
C20.0249 (5)0.0227 (5)0.0237 (5)0.0048 (4)0.0055 (4)0.0057 (4)
C30.0234 (5)0.0239 (5)0.0246 (5)0.0043 (4)0.0059 (4)0.0062 (4)
C40.0249 (5)0.0291 (6)0.0303 (6)0.0072 (5)0.0050 (5)0.0060 (5)
C50.0282 (6)0.0341 (7)0.0274 (6)0.0061 (5)0.0008 (5)0.0063 (5)
C60.0378 (7)0.0298 (6)0.0255 (6)0.0067 (5)0.0007 (5)0.0094 (5)
C70.0347 (6)0.0266 (6)0.0261 (6)0.0084 (5)0.0059 (5)0.0083 (5)
O10.0265 (4)0.0378 (5)0.0343 (5)0.0065 (4)0.0015 (4)0.0179 (4)
O20.0466 (6)0.0508 (6)0.0436 (6)0.0154 (5)0.0036 (5)0.0288 (5)
O30.0246 (5)0.0465 (6)0.0462 (6)0.0133 (4)0.0009 (4)0.0153 (5)
C80.0295 (6)0.0318 (6)0.0280 (6)0.0075 (5)0.0028 (5)0.0119 (5)
C90.0242 (5)0.0249 (5)0.0228 (5)0.0061 (4)0.0051 (4)0.0082 (4)
C100.0204 (5)0.0253 (5)0.0239 (5)0.0065 (4)0.0048 (4)0.0050 (4)
C110.0234 (5)0.0288 (6)0.0287 (6)0.0054 (4)0.0031 (4)0.0084 (5)
C120.0239 (5)0.0270 (6)0.0274 (6)0.0082 (4)0.0065 (4)0.0086 (5)
Geometric parameters (Å, º) top
S1—C11.7543 (13)C6—H60.9400
S1—C21.7560 (12)C7—H70.9400
S2—C31.7505 (13)O1—C111.3923 (16)
S2—C11.7567 (12)O1—C81.3993 (16)
C1—C1i1.353 (2)O2—C81.1878 (17)
C2—C71.3967 (17)O3—C111.1907 (16)
C2—C31.3985 (17)C8—C91.4800 (17)
C3—C41.3963 (16)C9—C121.3864 (16)
C4—C51.3892 (19)C9—C101.3933 (16)
C4—H40.9400C10—C12ii1.3839 (16)
C5—C61.391 (2)C10—C111.4836 (16)
C5—H50.9400C12—C10ii1.3838 (16)
C6—C71.3913 (19)C12—H120.9400
C1—S1—C295.38 (6)C6—C7—C2118.93 (13)
C3—S2—C195.34 (6)C6—C7—H7120.5
C1i—C1—S1122.00 (13)C2—C7—H7120.5
C1i—C1—S2122.26 (13)C11—O1—C8110.17 (10)
S1—C1—S2115.74 (6)O2—C8—O1121.25 (13)
C7—C2—C3120.37 (11)O2—C8—C9131.52 (13)
C7—C2—S1123.12 (10)O1—C8—C9107.23 (11)
C3—C2—S1116.50 (9)C12—C9—C10122.97 (11)
C4—C3—C2120.30 (12)C12—C9—C8129.32 (11)
C4—C3—S2122.83 (10)C10—C9—C8107.70 (10)
C2—C3—S2116.88 (9)C12ii—C10—C9123.01 (10)
C5—C4—C3119.04 (12)C12ii—C10—C11129.51 (11)
C5—C4—H4120.5C9—C10—C11107.48 (11)
C3—C4—H4120.5O3—C11—O1121.29 (12)
C4—C5—C6120.69 (12)O3—C11—C10131.31 (13)
C4—C5—H5119.7O1—C11—C10107.40 (10)
C6—C5—H5119.7C10ii—C12—C9114.03 (10)
C5—C6—C7120.66 (13)C10ii—C12—H12123.0
C5—C6—H6119.7C9—C12—H12123.0
C7—C6—H6119.7
C2—S1—C1—C1i176.20 (15)C11—O1—C8—O2178.78 (13)
C2—S1—C1—S24.14 (8)C11—O1—C8—C90.82 (14)
C3—S2—C1—C1i176.37 (15)O2—C8—C9—C120.6 (2)
C3—S2—C1—S13.97 (8)O1—C8—C9—C12179.86 (12)
C1—S1—C2—C7178.74 (11)O2—C8—C9—C10178.37 (15)
C1—S1—C2—C32.71 (10)O1—C8—C9—C101.17 (14)
C7—C2—C3—C40.54 (18)C12—C9—C10—C12ii0.2 (2)
S1—C2—C3—C4179.13 (9)C8—C9—C10—C12ii178.82 (11)
C7—C2—C3—S2179.00 (9)C12—C9—C10—C11179.90 (11)
S1—C2—C3—S20.41 (13)C8—C9—C10—C111.05 (13)
C1—S2—C3—C4178.35 (11)C8—O1—C11—O3179.96 (12)
C1—S2—C3—C22.12 (10)C8—O1—C11—C100.18 (14)
C2—C3—C4—C50.16 (18)C12ii—C10—C11—O30.9 (2)
S2—C3—C4—C5179.68 (10)C9—C10—C11—O3179.27 (14)
C3—C4—C5—C60.7 (2)C12ii—C10—C11—O1179.29 (12)
C4—C5—C6—C70.5 (2)C9—C10—C11—O10.57 (13)
C5—C6—C7—C20.2 (2)C10—C9—C12—C10ii0.21 (19)
C3—C2—C7—C60.73 (18)C8—C9—C12—C10ii178.62 (12)
S1—C2—C7—C6179.23 (10)
Symmetry codes: (i) x, y, z; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H2O6·C14H8S4
Mr522.56
Crystal system, space groupTriclinic, P1
Temperature (K)213
a, b, c (Å)7.2292 (4), 8.9572 (5), 9.5224 (5)
α, β, γ (°)70.051 (1), 68.712 (1), 70.136 (1)
V3)523.39 (5)
Z1
F(000)266
Radiation typeMo Kα
No. of reflections for cell measurement5268
θ range (°) for cell measurement3.5–31.3
µ (mm1)0.50
Crystal size (mm)0.20 × 0.20 × 0.02
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2012)
Tmin, Tmax0.703, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
10004, 3023, 2668
Rint0.021
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.091, 1.07
No. of reflections3023
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.33

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2011), SHELXLS2013 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The WFU X-ray Facility thanks the National Science Foundation (grant CHE-0234489) for funds to purchase the X-ray instrument and computers. This work has been partly supported by the National Science Foundation grant DMR-1105147. KPG acknowledges the NSF Graduate Research Fellowship Program under grant DGE-0907738.

References

First citationBruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2011). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoropceanu, V., Cornil, J., da Silva Filho, D. A., Olivier, Y., Silbey, R. & Bredas, J.-L. (2007). Chem. Rev. 107, 926–952.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEvans, D. L. & Robinson, W. T. (1977). Acta Cryst. B33, 2891–2893.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFerraris, J., Cowan, D. O., Walatka, V. & Perlstein, J. H. (1973). JACS, 95, 948–949.  CrossRef CAS Web of Science Google Scholar
First citationGoetz, K. P., Vermeulen, D., Payne, M. E., Kloc, C., McNeil, L. E. & Jurchescu, O. D. (2014). J. Mater. Chem. C, 2, 3065–3076.  Web of Science CrossRef CAS Google Scholar
First citationHerbstein, F. H. (2005). Crystalline Molecular Complexes and Compounds: Structures and Principles. New York: Oxford University Press Inc.  Google Scholar
First citationHerbstein, F. H. & Snyman, J. A. (1969). Phil. Trans. Roy. Soc. (London) A, 264, 635–662.  CrossRef CAS Web of Science Google Scholar
First citationHoriuchi, S., Hasegawa, T. & Tokura, Y. (2006). J. Phys. Soc. Jpn, 75, 051016.  Web of Science CrossRef Google Scholar
First citationKagawa, F., Horiuchi, S., Tokunaga, M., Fujioka, J. & Tokura, Y. (2010). Nat. Phys. 6, 169–172.  Web of Science CrossRef CAS Google Scholar
First citationKistenmacher, T. J., Emge, T. J., Wiygul, F. M., Bryden, W. A., Chappell, J. S., Stokes, J. P., Chiang, L. Y., Cowan, D. O. & Bloch, A. N. (1981). Solid State Commun. 39, 415–417.  CSD CrossRef CAS Web of Science Google Scholar
First citationKobayashi, K., Horiuchi, S., Kumai, R., Kagawa, F., Murakami, Y. & Tokura, Y. (2012). Phys. Rev. Lett. 108, 237601.  Web of Science CrossRef PubMed Google Scholar
First citationMei, Y., Loth, M. A., Payne, M., Zhang, W., Smith, J., Day, C. S., Parkin, S. R., Heeney, M., McCulloch, I., Anthopoulos, T. D., Anthony, J. E. & Jurchescu, O. D. (2013). Adv. Mater. 25, 4352–4357.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRobertson, B. E. & Stezowski, J. J. (1978). Acta Cryst. B34, 3005–3011.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2012). SADABS. University of Göttingen, Germany.  Google Scholar
First citationStezowski, J. J., Stigler, R. D. & Karl, N. (1986). J. Chem. Phys. 84, 5162–5170.  CSD CrossRef CAS Web of Science Google Scholar
First citationTakahashi, Y., Hasegawa, T., Abe, Y., Tokura, Y. & Saito, G. (2006). Appl. Phys. Lett. 88, 073504.  Web of Science CrossRef Google Scholar
First citationTsutsumi, J., Matsui, H., Yamada, T., Kumai, R. & Hasegawa, T. (2012). J. Phys. Chem. C116, 23957–23964.  Google Scholar
First citationWu, H., Wang, F., Xiao, Y. & Pan, G. (2013). J. Mater. Chem. C1, 2286–2289.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 8| August 2014| Pages o844-o845
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds