research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 8| August 2014| Pages 101-103

Crystal structure of cis-bis­­[4-phenyl-2-(1,2,3,4-tetra­hydro­naphthalen-1-yl­­idene)hydrazinecarbo­thio­amidato-κ2N1,S]nickel(II) monohydrate tetra­hydro­furan disolvate

aDepartamento de Química, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, Campus, 49100-000 São Cristóvão–SE, Brazil, and bInstitut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth Strasse 2, D-24118 Kiel, Germany
*Correspondence e-mail: adriano@daad-alumni.de

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 27 June 2014; accepted 10 July 2014; online 19 July 2014)

The reaction of NiII acetate tetra­hydrate with the ligand 4-phenyl-2-(1,2,3,4-tetra­hydro­naphthalen-1-yl­idene)hydrazinecarbo­thio­amide in a 2:1 molar ratio yielded the title compound, [Ni(C16H16N3S)2]·2C4H8O·H2O. The deprotonated ligands act as N,S-donors, forming five-membered metallacycles with the metal ion exhibiting a cis coordination mode unusual for thio­semicarbazone complexes. The NiII ion is four-coordinated in a tetra­hedrally distorted square-planar geometry. Trans-arranged anagostic C—H⋯Ni inter­actions are observed. In the crystal, the complex mol­ecules are linked by water mol­ecules through N—H⋯O and O—H⋯S hydrogen-bonding inter­actions into centrosymmetric dimers stacked along the c axis, forming rings of graph-set R44(12). Classical O—H⋯O hydrogen bonds involving the water and tetra­hydro­furan solvent mol­ecules as well as weak C—H⋯π inter­actions are also present.

1. Chemical context

Thio­semicarbazone ligands are N,S-donors that show a wide range of coordination modes (Lobana et al., 2009[Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977-1055.]). As a part of our ongoing project on the synthesis and structures of thio­semicarbazone derivatives and their metal complexes, the crystal structure of an NiII complex of 2-(1,2,3,4-tetra­hydro­naphthalen-1-yl­idene)-4-phenyl-hydrazinecarbo­thio­amide is reported. The crystal structure of the free ligand was published recently by our group (de Oliveira et al., 2014[Oliveira, A. B. de, Feitosa, B. R. S., Näther, C. & Jess, I. (2014). Acta Cryst. E70, o205.]), but one of the first reports on the synthesis of thio­semicarbazone deriv­a­tives was done by Freund & Schander (1902[Freund, M. & Schander, A. (1902). Chem. Ber. 35, 2602-2606.]). The complex shows a cis coordination mode, which is unusual for this ligands, and two trans-arranged anagostic inter­actions between C—H groups and the metal ion are also observed. These inter­actions are typical for several complexes with catalytic applications (Brookhart et al., 2007[Brookhart, M., Green, M. L. H. & Parkin, G. (2007). Proc. Natl. Acad. Sci. 104, 6908-6914.]).

[Scheme 1]

2. Structural commentary

In the crystal structure of the title compound, the NiII cation is four-coordinated by two crystallographically independent deprotonated ligands into discrete complexes that are located in general positions (Fig. 1[link]). The metal displays a remarkable tetra­hedrally distorted square-planar coordination geometry (maximum displacement 0.5049 (13) Å for atom N2) with the ligands showing an uncommon cis N1,S-coordination mode. The values of the Ni—N and N—S bond lengths (Table 1[link]) and N2—Ni1—S21 and N22—Ni1—S1 bond angles [164.04 (5) and 162.63 (4)°, respectively] confirm the distortion from the ideal coordination geometry. In the complex mol­ecule significant structural changes of the N–N–C–S fragment are observed. For the non-coordinating2-(1,2,3,4-tetra­hydro­naphthalen-1-yl­idene)-4-phenyl-hydrazinecarbo­thio­amide ligand, the N—N, N—C and C—S bond lengths amount to 1.385 (2), 1.364 (2) and 1.677 (2) Å. These lengths indicate the double-bond character of the N=N and C=S bonds, and the single-bond character of the N–C bond (de Oliveira et al., 2014[Oliveira, A. B. de, Feitosa, B. R. S., Näther, C. & Jess, I. (2014). Acta Cryst. E70, o205.]). In contrast, in the title complex the acidic hydrogen of the hydrazine fragment is removed and the negative charge is delocalized over the N–N–C–S fragment. Therefore, the N—N, N—C and C—S bond lengths amount to 1.405 (2), 1.304 (2) and 1.757 (2) Å respectively in one ligand and 1.401 (2), 1.298 (3) and 1.761 (2) Å in the other. The N—C bond lengths indicate a considerable double-bond character, while the N—N and C—S bond distances are consistent with an increased single-bond character. It is worth noting that two trans-arranged anagostic inter­actions between aromatic C—H groups and the metal ion are observed (Fig. 2[link]). For a three-centre–two-electron M⋯H—C agostic inter­action, the M⋯H distance should range between 1.8 and 2.3 Å and the M⋯H—C angle should range between 90 and 140°. For an anagostic inter­action these values should range from 2.3 to 2.9 Å and from 110 to 170°, respectively (Brookhart et al., 2007[Brookhart, M., Green, M. L. H. & Parkin, G. (2007). Proc. Natl. Acad. Sci. 104, 6908-6914.]). The title complex shows Ni1⋯H30 and Ni1⋯H10 contacts of 2.61 and 2.45 Å [both values are shorter than the sum of the van der Waals radii for Ni (1.63 Å; Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-452.]) and H (1.10 Å; Rowland & Taylor, 1996[Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.])], and C30—H30—Ni1 and C10—H10—Ni1 angles of 118 and 121°, in agreement with the presence of anagostic inter­actions.

Table 1
Selected bond lengths (Å)

Ni1—N2 1.9313 (14) Ni1—S21 2.1524 (5)
Ni1—N22 1.9417 (14) Ni1—S1 2.1664 (5)
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 40% probability level.
[Figure 2]
Figure 2
Coordination environment of the metal ion showing the C—H⋯M anagostic inter­actions (dashed lines).

3. Supra­molecular features

The asymmetric unit of the title complex contains one water and two tetra­hydro­furane solvate mol­ecules. The water mol­ecules bridge the complex mol­ecules through N—H⋯O and O—H⋯S hydrogen bonds (Table 2[link]) into centrosymmetric dimers arranged along the c axis, forming rings of graph-set R44(12) (Fig. 3[link]). In addition, classical O—H⋯O hydrogen bonds between tetra­hydro­furane and water mol­ecules and weak C—H⋯π inter­actions are observed (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C32–C37 and C12–C17 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N⋯O1 0.88 2.06 2.934 (2) 172
N23—H2N⋯O51 0.88 2.02 2.895 (2) 171
O1—H1O1⋯S1i 0.84 2.63 3.4609 (16) 170
O1—H2O1⋯O41ii 0.84 2.00 2.836 (2) 173
C27—H27⋯Cg1iii 0.95 2.80 3.595 (2) 142
C54—H54BCg2iv 0.99 2.67 3.633 (2) 164
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Mol­ecules of the title compound connected through inversion centres via pairs of N—H⋯O and O—H⋯S inter­actions. Inter­molecular N—H⋯O and O—H⋯O hydrogen bonds are also shown. Hydrogen bonds are shown as dashed lines.

4. Synthesis and crystallization

Starting materials were commercially available and were used without further purification. The synthesis of the ligand was adapted from a procedure reported previously (Freund & Schander, 1902[Freund, M. & Schander, A. (1902). Chem. Ber. 35, 2602-2606.]) and its structure is already published (de Oliveira et al., 2014[Oliveira, A. B. de, Feitosa, B. R. S., Näther, C. & Jess, I. (2014). Acta Cryst. E70, o205.]). 2-(1,2,3,4-Tetra­hydro­naphthalen-1-ylidene)-4-phenyl-hydrazinecarbo­thio­amide was dissolved in THF (2 mmol/40 ml) with stirring maintained for 30 min until the solution turned yellow. At the same time, a solution of nickel acetate tetra­hydrate (1 mmol/40 ml) in THF was prepared under continuous stirring. A mixture of both solutions was maintained with stirring at room temperature for 6 h. Crystals suitable for X-ray diffraction were obtained by the slow evaporation of the solvent.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The imine and water H atoms were located in difference Fourier map, and were refined as riding with N—H = 0.88, O—H = 0.84 Å, and with Uiso(H) = 1.2 Ueq(N) or 1.5 Ueq(O). All other H atoms were positioned with idealized geometry and refined using a riding model approximation, with C—H = 0.95-0.99 Å and with Uiso(H) = 1.2 Ueq(C). An outlier (17 0 20) was omitted in the last cycles of refinement.

Table 3
Experimental details

Crystal data
Chemical formula [Ni(C16H16N3S)2]·2C4H8O·H2O
Mr 809.71
Crystal system, space group Monoclinic, P21/c
Temperature (K) 200
a, b, c (Å) 20.9248 (13), 8.7872 (5), 21.2833 (15)
β (°) 92.841 (8)
V3) 3908.6 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.65
Crystal size (mm) 0.19 × 0.15 × 0.10
 
Data collection
Diffractometer Stoe IPDS1
Absorption correction Numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.787, 0.941
No. of measured, independent and observed [I > 2σ(I)] reflections 40358, 8412, 7107
Rint 0.064
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.090, 1.04
No. of reflections 8412
No. of parameters 488
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.48
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

Thio­semicarbazone ligands are N,S-donors that show a wide range of coordination modes (Lobana et al., 2009). As a part of our ongoing project on the synthesis and structures of thio­semicarbazone derivatives and their metal complexes, the crystal structure of a new NiII complex of 2-(1,2,3,4-tetra­hydro­naphthalen-1-yl­idene)-4-phenyl-hydrazinecarbo­thio­amide is reported. The crystal structure of the free ligand was published by our group (de Oliveira et al., 2014), but one of the first reports on the synthesis of thio­semicarbazone derivatives was done by Freund & Schander (1902). The complex shows a cis coordination mode, which is unusual for this ligands, and two trans-arranged anagostic inter­actions between C—H groups and the metal ion are also observed. These inter­actions are typical for several complexes with catalytic applications (Brookhart et al., 2007)

Structural commentary top

In the crystal structure of the title compound, the NiII cation is four-coordinated by two crystallographically independent deprotonated ligands into discrete complexes that are located in general positions (Fig. 1). The metal displays a remarkable tetra­hedrally distorted square-planar coordination geometry (maximum displacement 0.5049 (13) Å for atom N2) with the ligands showing an uncommon cis N1,S-coordination mode. The values of the Ni—N and N—S bond lengths (Table 1) and N2—Ni1—S21 and N22—Ni1—S1 bond angles 164.04 (5) and 162.63 (4)°, respectively] confirm the distortion from the ideal coordination geometry. In the complex molecule significant structural changes of the N–N–C–S fragment are observed. For the uncoordinated 2-(1,2,3,4-tetra­hydro­naphthalen-1-yl­idene)-4-phenyl-hydrazinecarbo­thio­amide ligand, the N—N, N—C and C—S bond distances amount to 1.385 (2), 1.364 (2) and 1.677 (2) Å. These distances indicate the double-bond character of the NN and CS bonds, and the single-bond character of the N–C bond (de Oliveira et al., 2014). In contrast, in the title complex the acidic hydrogen of the hydrazine fragment is removed and the negative charge is delocalized over the N–N–C–S fragment. Therefore, the N—N, N—C and C—S bond lengths amount to 1.405 (2), 1.304 (2) and 1.757 (2) Å respectively in one ligand and 1.401 (2), 1.298 (3) and 1.761 (2) Å in the other. The N—C bond lengths indicate a considerable double-bond character, while the N—N and C—S bond distances are consistent with an increased single-bond character. It is worth noting that two trans-arranged anagostic inter­actions between aromatic C—H groups and the metal ion are observed (Fig. 2). For a three-centre–two-electron M···H–C agostic inter­action, the M···H distance should range between 1.8 and 2.3 Å and the M···H–C angle should range between 90 and 140°. For an anagostic inter­action these values should range from 2.3 to 2.9 Å and from 110 to 170°, respectively (Brookhart et al., 2007). The title complex shows Ni1···H30 and Ni1···H10 contacts of 2.61 and 2.45 Å [both values are shorter than the sum of the van der Waals radii for Ni (1.63 Å; Bondi, 1964) and H (1.10 Å; Rowland & Taylor, 1996)], and C30–H30–Ni1 and C10–H10–Ni1 angles of 118 and 121°, in agreement with the presence of anagostic inter­actions

Supra­molecular features top

The asymmetric unit of the title complex contains one water and two tetra­hydro­furane solvate molecules. The water molecules bridge the complex molecules through N—H···O and O—H···S hydrogen bonds (Table 2) into centrosymmetric dimers arranged along the c axis, forming rings of graph-set R44(12) (Fig. 3). In addition, classical O—H···O hydrogen bonds between tetra­hydro­furane and water molecules and weak C—H···π inter­actions are observed (Table 2).

Synthesis and crystallization top

Starting materials were commercially available and were used without further purification. The synthesis of the ligand was adapted from a procedure reported previously (Freund & Schander, 1902) and its structure is already published (de Oliveira et al., 2014). 2-(1,2,3,4-Tetra­hydro­naphthalen-1-yl­idene)-4-phenyl-hydrazinecarbo­thio­amide4-phenyl­thio­semicarbazone was dissolved in THF (2 mmol/40 ml) with stirring maintained for 30 min until the solution turned yellow. At the same time, a solution of nickel acetate tetra­hydrate (1 mmol/40 ml) in THF was prepared under continuous stirring. A mixture of both solutions was maintained with stirring at room temperature for 6 h. Crystals suitable for X-ray diffraction were obtained by the slow evaporation of the solvent.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 3. All non-hydrogen atoms were refined anisotropically. The imine and water H atoms were located in difference Fourier map, and were refined as riding with N—H = 0.88, O—H = 0.84 Å, and with Uiso(H) = 1.2 Ueq(N) or 1.5 Ueq(O). All other H atoms were positioned with idealized geometry and refined using a riding model approximation, with C—H = 0.95-0.99 Å and with Uiso(H) = 1.2 Ueq(C). An outlier (17 0 20) was omitted in the last cycles of refinement.

Related literature top

For related literature, see: Bondi (1964); Brookhart et al. (2007); Freund & Schander (1902); Lobana et al. (2009); Oliveira et al. (2014); Rowland & Taylor (1996).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-RED32 (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 40% probability level.
[Figure 2] Fig. 2. Coordination environment of the metal ion showing the C–H···M anagostic interactions (dashed lines).
[Figure 3] Fig. 3. Molecules of the title compound connected through inversion centres via pairs of N—H···O and O—H···S interactions. Intermolecular N—H···O and O—H···O hydrogen bonds are also shown. Hydrogen bonds are shown as dashed lines.
cis-Bis[4-phenyl-2-(1,2,3,4-tetrahydronaphthalen-1-ylidene)hydrazinecarbothioamidato-κ2N1,S]nickel(II) monohydrate tetrahydrofuran disolvate top
Crystal data top
[Ni(C16H16N3S)2]·2C4H8O·H2OF(000) = 1712
Mr = 809.71Dx = 1.376 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 40358 reflections
a = 20.9248 (13) Åθ = 2.5–27.0°
b = 8.7872 (5) ŵ = 0.65 mm1
c = 21.2833 (15) ÅT = 200 K
β = 92.841 (8)°Prism, red
V = 3908.6 (4) Å30.19 × 0.15 × 0.10 mm
Z = 4
Data collection top
Stoe IPDS-1
diffractometer
8412 independent reflections
Radiation source: fine-focus sealed tube, Stoe IPDS-17107 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ϕ scansθmax = 27.0°, θmin = 2.5°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
h = 2626
Tmin = 0.787, Tmax = 0.941k = 1111
40358 measured reflectionsl = 2727
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0495P)2 + 1.531P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
8412 reflectionsΔρmax = 0.32 e Å3
488 parametersΔρmin = 0.48 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0043 (6)
Crystal data top
[Ni(C16H16N3S)2]·2C4H8O·H2OV = 3908.6 (4) Å3
Mr = 809.71Z = 4
Monoclinic, P21/cMo Kα radiation
a = 20.9248 (13) ŵ = 0.65 mm1
b = 8.7872 (5) ÅT = 200 K
c = 21.2833 (15) Å0.19 × 0.15 × 0.10 mm
β = 92.841 (8)°
Data collection top
Stoe IPDS-1
diffractometer
8412 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
7107 reflections with I > 2σ(I)
Tmin = 0.787, Tmax = 0.941Rint = 0.064
40358 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.04Δρmax = 0.32 e Å3
8412 reflectionsΔρmin = 0.48 e Å3
488 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.763345 (10)0.57702 (2)0.542635 (10)0.01599 (8)
S10.85498 (2)0.51110 (5)0.50807 (2)0.02150 (10)
C10.84794 (8)0.63429 (18)0.44282 (8)0.0176 (3)
N10.80744 (7)0.74626 (15)0.43901 (6)0.0193 (3)
N20.77215 (7)0.75911 (15)0.49300 (6)0.0176 (3)
C20.74873 (8)0.89550 (17)0.50036 (8)0.0176 (3)
C30.75309 (9)1.01216 (19)0.44862 (8)0.0239 (4)
H3A0.72890.97470.41060.029*
H3B0.79841.02300.43810.029*
C40.72730 (9)1.16776 (19)0.46591 (9)0.0272 (4)
H4A0.72141.23080.42750.033*
H4B0.75851.21970.49500.033*
C50.66362 (10)1.1516 (2)0.49709 (10)0.0312 (4)
H5A0.64701.25360.50760.037*
H5B0.63201.10160.46770.037*
C60.67272 (9)1.05810 (19)0.55612 (9)0.0249 (4)
C70.64126 (10)1.0929 (2)0.61052 (11)0.0339 (5)
H70.61051.17240.60940.041*
C80.65380 (11)1.0144 (2)0.66589 (11)0.0380 (5)
H80.63061.03760.70190.046*
C90.70038 (11)0.9014 (2)0.66901 (10)0.0334 (4)
H90.71030.85020.70760.040*
C100.73221 (9)0.8639 (2)0.61548 (8)0.0249 (4)
H100.76460.78800.61770.030*
C110.71703 (8)0.93683 (18)0.55811 (8)0.0204 (3)
N30.88815 (7)0.60673 (16)0.39553 (7)0.0219 (3)
H1N0.91850.53840.40200.026*
C120.88886 (8)0.67796 (19)0.33607 (8)0.0208 (3)
C130.84043 (10)0.7741 (2)0.31185 (9)0.0281 (4)
H130.80490.79760.33620.034*
C140.84464 (12)0.8354 (2)0.25151 (9)0.0358 (5)
H140.81160.90040.23510.043*
C150.89587 (12)0.8032 (2)0.21546 (10)0.0384 (5)
H150.89850.84650.17480.046*
C160.94352 (10)0.7069 (3)0.23938 (9)0.0358 (5)
H160.97870.68320.21460.043*
C170.94061 (9)0.6444 (2)0.29920 (9)0.0273 (4)
H170.97380.57900.31500.033*
S210.77040 (2)0.40904 (5)0.61626 (2)0.02150 (10)
C210.69687 (8)0.45636 (18)0.64762 (8)0.0189 (3)
N210.65424 (7)0.54193 (16)0.61843 (7)0.0214 (3)
N220.67275 (7)0.58376 (15)0.55827 (6)0.0179 (3)
C220.62487 (8)0.63338 (18)0.52238 (8)0.0185 (3)
C230.56144 (8)0.6663 (2)0.55078 (9)0.0265 (4)
H23A0.56860.73980.58570.032*
H23B0.54510.57100.56890.032*
C240.51066 (9)0.7303 (2)0.50437 (10)0.0314 (4)
H24A0.49140.64660.47870.038*
H24B0.47630.77890.52760.038*
C250.54023 (9)0.8468 (2)0.46163 (10)0.0298 (4)
H25A0.50680.89080.43250.036*
H25B0.55990.93030.48710.036*
C260.59041 (9)0.7688 (2)0.42476 (9)0.0244 (4)
C270.59580 (11)0.7956 (2)0.36072 (9)0.0350 (4)
H270.56910.86970.34020.042*
C280.63934 (11)0.7161 (3)0.32660 (9)0.0376 (5)
H280.64290.73750.28320.045*
C290.67788 (10)0.6050 (2)0.35546 (9)0.0306 (4)
H290.70700.54870.33170.037*
C300.67348 (9)0.57702 (19)0.41940 (9)0.0233 (4)
H300.69940.50050.43920.028*
C310.63103 (8)0.66085 (18)0.45479 (8)0.0195 (3)
N230.68631 (7)0.39556 (17)0.70534 (7)0.0229 (3)
H2N0.71780.33840.72090.027*
C320.62840 (9)0.38489 (19)0.73636 (8)0.0221 (3)
C330.57121 (9)0.4550 (2)0.71649 (9)0.0285 (4)
H330.56970.51920.68060.034*
C340.51621 (10)0.4305 (2)0.74952 (10)0.0339 (4)
H340.47720.47760.73540.041*
C350.51734 (10)0.3391 (2)0.80225 (10)0.0356 (5)
H350.47950.32270.82420.043*
C360.57417 (11)0.2718 (2)0.82274 (10)0.0357 (5)
H360.57550.20980.85940.043*
C370.62939 (10)0.2937 (2)0.79037 (9)0.0298 (4)
H370.66820.24640.80500.036*
O10.99770 (7)0.40290 (16)0.41952 (8)0.0417 (4)
H1O11.03090.43090.44010.062*
H2O11.00300.30840.41690.062*
O410.97593 (8)0.58636 (16)0.08169 (9)0.0448 (4)
C410.90931 (12)0.5585 (3)0.07052 (16)0.0538 (7)
H41A0.89120.62910.03810.065*
H41B0.88640.57350.10970.065*
C420.90244 (13)0.3977 (3)0.04853 (15)0.0531 (7)
H42A0.89810.39300.00200.064*
H42B0.86450.34920.06610.064*
C430.96318 (13)0.3203 (3)0.07266 (12)0.0455 (6)
H43A0.98420.26830.03800.055*
H43B0.95400.24430.10530.055*
C441.00526 (12)0.4463 (2)0.10005 (13)0.0448 (6)
H44A1.00890.43820.14650.054*
H44B1.04870.43940.08380.054*
O510.78020 (7)0.19400 (17)0.76536 (7)0.0344 (3)
C510.81446 (12)0.2516 (3)0.82019 (11)0.0467 (6)
H51A0.81070.18020.85580.056*
H51B0.79670.35120.83230.056*
C520.88412 (11)0.2691 (3)0.80450 (11)0.0408 (5)
H52A0.91200.20210.83140.049*
H52B0.89850.37580.81030.049*
C530.88546 (10)0.2222 (2)0.73570 (10)0.0347 (4)
H53A0.88350.31220.70770.042*
H53B0.92450.16300.72780.042*
C540.82624 (9)0.1255 (2)0.72640 (10)0.0297 (4)
H54A0.81060.12590.68170.036*
H54B0.83510.01920.73950.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01618 (12)0.01577 (11)0.01627 (11)0.00208 (7)0.00338 (8)0.00228 (7)
S10.0184 (2)0.0223 (2)0.0243 (2)0.00532 (15)0.00491 (16)0.00550 (15)
C10.0171 (8)0.0168 (7)0.0191 (7)0.0003 (6)0.0028 (6)0.0024 (6)
N10.0229 (7)0.0191 (6)0.0164 (6)0.0042 (5)0.0067 (6)0.0001 (5)
N20.0176 (7)0.0197 (6)0.0157 (6)0.0022 (5)0.0035 (5)0.0018 (5)
C20.0175 (8)0.0163 (7)0.0189 (8)0.0006 (6)0.0019 (6)0.0006 (6)
C30.0301 (9)0.0188 (8)0.0234 (8)0.0055 (7)0.0056 (7)0.0026 (6)
C40.0326 (10)0.0158 (8)0.0335 (10)0.0048 (7)0.0065 (8)0.0019 (7)
C50.0275 (10)0.0212 (8)0.0451 (11)0.0079 (7)0.0031 (9)0.0016 (8)
C60.0211 (9)0.0185 (8)0.0358 (10)0.0011 (6)0.0064 (8)0.0077 (7)
C70.0285 (10)0.0273 (9)0.0473 (12)0.0029 (7)0.0167 (9)0.0147 (8)
C80.0411 (12)0.0367 (11)0.0384 (11)0.0119 (9)0.0229 (10)0.0165 (9)
C90.0423 (12)0.0348 (10)0.0242 (9)0.0111 (8)0.0117 (9)0.0071 (8)
C100.0308 (10)0.0237 (8)0.0204 (8)0.0057 (7)0.0049 (7)0.0052 (7)
C110.0209 (8)0.0191 (7)0.0217 (8)0.0034 (6)0.0062 (7)0.0051 (6)
N30.0213 (7)0.0228 (7)0.0220 (7)0.0063 (6)0.0054 (6)0.0005 (6)
C120.0224 (8)0.0216 (8)0.0187 (8)0.0039 (6)0.0055 (7)0.0036 (6)
C130.0348 (10)0.0295 (9)0.0205 (8)0.0045 (8)0.0073 (8)0.0007 (7)
C140.0518 (13)0.0330 (10)0.0229 (9)0.0043 (9)0.0053 (9)0.0045 (8)
C150.0557 (14)0.0387 (11)0.0217 (9)0.0103 (10)0.0102 (9)0.0022 (8)
C160.0345 (11)0.0485 (12)0.0258 (10)0.0151 (9)0.0146 (8)0.0088 (9)
C170.0224 (9)0.0340 (9)0.0261 (9)0.0048 (7)0.0068 (7)0.0081 (7)
S210.0219 (2)0.0233 (2)0.0197 (2)0.00565 (15)0.00496 (16)0.00627 (15)
C210.0214 (8)0.0183 (7)0.0171 (7)0.0010 (6)0.0026 (6)0.0006 (6)
N210.0214 (7)0.0243 (7)0.0189 (7)0.0009 (6)0.0060 (6)0.0042 (5)
N220.0197 (7)0.0178 (6)0.0164 (6)0.0016 (5)0.0029 (5)0.0011 (5)
C220.0192 (8)0.0160 (7)0.0204 (8)0.0006 (6)0.0022 (6)0.0015 (6)
C230.0189 (8)0.0323 (9)0.0288 (9)0.0031 (7)0.0042 (7)0.0005 (7)
C240.0186 (9)0.0361 (10)0.0394 (11)0.0043 (7)0.0004 (8)0.0007 (8)
C250.0258 (10)0.0294 (9)0.0338 (10)0.0105 (7)0.0030 (8)0.0006 (8)
C260.0239 (9)0.0239 (8)0.0250 (9)0.0041 (7)0.0035 (7)0.0011 (7)
C270.0404 (12)0.0388 (11)0.0251 (9)0.0109 (9)0.0056 (8)0.0050 (8)
C280.0486 (13)0.0465 (12)0.0175 (9)0.0073 (10)0.0003 (8)0.0013 (8)
C290.0337 (11)0.0358 (10)0.0225 (9)0.0028 (8)0.0034 (8)0.0079 (7)
C300.0245 (9)0.0214 (8)0.0238 (8)0.0026 (7)0.0004 (7)0.0041 (6)
C310.0196 (8)0.0192 (7)0.0194 (8)0.0008 (6)0.0015 (6)0.0029 (6)
N230.0228 (8)0.0277 (7)0.0185 (7)0.0042 (6)0.0039 (6)0.0058 (6)
C320.0261 (9)0.0223 (8)0.0183 (8)0.0021 (6)0.0064 (7)0.0010 (6)
C330.0273 (10)0.0348 (10)0.0238 (9)0.0009 (8)0.0056 (8)0.0047 (7)
C340.0248 (10)0.0429 (11)0.0343 (11)0.0005 (8)0.0068 (8)0.0019 (8)
C350.0335 (11)0.0394 (11)0.0355 (11)0.0082 (9)0.0170 (9)0.0019 (9)
C360.0443 (12)0.0347 (10)0.0294 (10)0.0021 (9)0.0153 (9)0.0080 (8)
C370.0347 (11)0.0301 (9)0.0252 (9)0.0038 (8)0.0077 (8)0.0063 (7)
O10.0317 (8)0.0309 (7)0.0613 (11)0.0075 (6)0.0092 (7)0.0028 (7)
O410.0357 (9)0.0262 (7)0.0711 (12)0.0026 (6)0.0108 (8)0.0095 (7)
C410.0352 (13)0.0342 (11)0.090 (2)0.0029 (9)0.0133 (13)0.0017 (12)
C420.0458 (14)0.0434 (13)0.0685 (18)0.0082 (11)0.0121 (13)0.0022 (12)
C430.0606 (16)0.0306 (10)0.0443 (13)0.0010 (10)0.0074 (11)0.0035 (9)
C440.0422 (13)0.0310 (10)0.0602 (15)0.0027 (9)0.0069 (11)0.0046 (10)
O510.0256 (7)0.0425 (8)0.0351 (8)0.0066 (6)0.0017 (6)0.0013 (6)
C510.0449 (14)0.0643 (15)0.0309 (11)0.0098 (12)0.0022 (10)0.0047 (11)
C520.0393 (12)0.0409 (11)0.0409 (12)0.0005 (9)0.0103 (10)0.0025 (9)
C530.0279 (10)0.0370 (11)0.0395 (11)0.0015 (8)0.0039 (9)0.0030 (9)
C540.0296 (10)0.0266 (9)0.0329 (10)0.0055 (7)0.0006 (8)0.0016 (7)
Geometric parameters (Å, º) top
Ni1—N21.9313 (14)C24—H24B0.9900
Ni1—N221.9417 (14)C25—C261.506 (3)
Ni1—S212.1524 (5)C25—H25A0.9900
Ni1—S12.1664 (5)C25—H25B0.9900
S1—C11.7612 (17)C26—C271.393 (3)
C1—N11.298 (2)C26—C311.406 (2)
C1—N31.365 (2)C27—C281.382 (3)
N1—N21.4008 (18)C27—H270.9500
N2—C21.307 (2)C28—C291.390 (3)
C2—C111.471 (2)C28—H280.9500
C2—C31.511 (2)C29—C301.390 (3)
C3—C41.522 (2)C29—H290.9500
C3—H3A0.9900C30—C311.402 (2)
C3—H3B0.9900C30—H300.9500
C4—C51.524 (3)N23—C321.412 (2)
C4—H4A0.9900N23—H2N0.8800
C4—H4B0.9900C32—C331.393 (3)
C5—C61.505 (3)C32—C371.401 (2)
C5—H5A0.9900C33—C341.395 (3)
C5—H5B0.9900C33—H330.9500
C6—C71.394 (3)C34—C351.379 (3)
C6—C111.412 (2)C34—H340.9500
C7—C81.379 (3)C35—C361.379 (3)
C7—H70.9500C35—H350.9500
C8—C91.390 (3)C36—C371.388 (3)
C8—H80.9500C36—H360.9500
C9—C101.388 (3)C37—H370.9500
C9—H90.9500O1—H1O10.8400
C10—C111.401 (3)O1—H2O10.8397
C10—H100.9500O41—C441.422 (3)
N3—C121.413 (2)O41—C411.424 (3)
N3—H1N0.8798C41—C421.493 (3)
C12—C131.398 (3)C41—H41A0.9900
C12—C171.400 (2)C41—H41B0.9900
C13—C141.400 (3)C42—C431.509 (4)
C13—H130.9500C42—H42A0.9900
C14—C151.378 (3)C42—H42B0.9900
C14—H140.9500C43—C441.513 (3)
C15—C161.386 (3)C43—H43A0.9900
C15—H150.9500C43—H43B0.9900
C16—C171.391 (3)C44—H44A0.9900
C16—H160.9500C44—H44B0.9900
C17—H170.9500O51—C511.431 (3)
S21—C211.7571 (17)O51—C541.434 (2)
C21—N211.301 (2)C51—C521.519 (3)
C21—N231.368 (2)C51—H51A0.9900
N21—N221.4050 (19)C51—H51B0.9900
N22—C221.304 (2)C52—C531.523 (3)
C22—C311.470 (2)C52—H52A0.9900
C22—C231.513 (2)C52—H52B0.9900
C23—C241.522 (3)C53—C541.508 (3)
C23—H23A0.9900C53—H53A0.9900
C23—H23B0.9900C53—H53B0.9900
C24—C251.521 (3)C54—H54A0.9900
C24—H24A0.9900C54—H54B0.9900
N2—Ni1—N22100.89 (6)C26—C25—C24108.67 (15)
N2—Ni1—S21164.04 (5)C26—C25—H25A110.0
N22—Ni1—S2185.90 (4)C24—C25—H25A110.0
N2—Ni1—S185.74 (4)C26—C25—H25B110.0
N22—Ni1—S1162.63 (4)C24—C25—H25B110.0
S21—Ni1—S191.944 (18)H25A—C25—H25B108.3
C1—S1—Ni193.59 (5)C27—C26—C31118.83 (17)
N1—C1—N3120.84 (15)C27—C26—C25121.67 (17)
N1—C1—S1122.94 (12)C31—C26—C25119.43 (16)
N3—C1—S1116.22 (12)C28—C27—C26121.06 (18)
C1—N1—N2112.26 (13)C28—C27—H27119.5
C2—N2—N1112.85 (13)C26—C27—H27119.5
C2—N2—Ni1130.35 (11)C27—C28—C29120.40 (18)
N1—N2—Ni1116.77 (10)C27—C28—H28119.8
N2—C2—C11120.93 (14)C29—C28—H28119.8
N2—C2—C3119.88 (14)C28—C29—C30119.46 (18)
C11—C2—C3119.19 (14)C28—C29—H29120.3
C2—C3—C4113.48 (14)C30—C29—H29120.3
C2—C3—H3A108.9C29—C30—C31120.48 (17)
C4—C3—H3A108.9C29—C30—H30119.8
C2—C3—H3B108.9C31—C30—H30119.8
C4—C3—H3B108.9C30—C31—C26119.68 (16)
H3A—C3—H3B107.7C30—C31—C22121.87 (15)
C3—C4—C5110.47 (15)C26—C31—C22118.36 (15)
C3—C4—H4A109.6C21—N23—C32128.82 (16)
C5—C4—H4A109.6C21—N23—H2N114.1
C3—C4—H4B109.6C32—N23—H2N115.6
C5—C4—H4B109.6C33—C32—C37118.67 (17)
H4A—C4—H4B108.1C33—C32—N23124.97 (16)
C6—C5—C4109.69 (16)C37—C32—N23116.34 (17)
C6—C5—H5A109.7C32—C33—C34119.79 (18)
C4—C5—H5A109.7C32—C33—H33120.1
C6—C5—H5B109.7C34—C33—H33120.1
C4—C5—H5B109.7C35—C34—C33121.2 (2)
H5A—C5—H5B108.2C35—C34—H34119.4
C7—C6—C11118.49 (18)C33—C34—H34119.4
C7—C6—C5121.87 (17)C34—C35—C36119.13 (18)
C11—C6—C5119.53 (16)C34—C35—H35120.4
C8—C7—C6121.49 (19)C36—C35—H35120.4
C8—C7—H7119.3C35—C36—C37120.63 (19)
C6—C7—H7119.3C35—C36—H36119.7
C7—C8—C9120.08 (18)C37—C36—H36119.7
C7—C8—H8120.0C36—C37—C32120.52 (19)
C9—C8—H8120.0C36—C37—H37119.7
C10—C9—C8119.6 (2)C32—C37—H37119.7
C10—C9—H9120.2H1O1—O1—H2O1102.5
C8—C9—H9120.2C44—O41—C41107.61 (17)
C9—C10—C11120.61 (18)O41—C41—C42107.1 (2)
C9—C10—H10119.7O41—C41—H41A110.3
C11—C10—H10119.7C42—C41—H41A110.3
C10—C11—C6119.45 (16)O41—C41—H41B110.3
C10—C11—C2121.53 (15)C42—C41—H41B110.3
C6—C11—C2118.94 (16)H41A—C41—H41B108.6
C1—N3—C12128.03 (15)C41—C42—C43104.7 (2)
C1—N3—H1N118.2C41—C42—H42A110.8
C12—N3—H1N113.8C43—C42—H42A110.8
C13—C12—C17119.16 (17)C41—C42—H42B110.8
C13—C12—N3123.95 (15)C43—C42—H42B110.8
C17—C12—N3116.85 (16)H42A—C42—H42B108.9
C12—C13—C14119.57 (18)C42—C43—C44105.43 (19)
C12—C13—H13120.2C42—C43—H43A110.7
C14—C13—H13120.2C44—C43—H43A110.7
C15—C14—C13121.2 (2)C42—C43—H43B110.7
C15—C14—H14119.4C44—C43—H43B110.7
C13—C14—H14119.4H43A—C43—H43B108.8
C14—C15—C16119.09 (19)O41—C44—C43107.00 (19)
C14—C15—H15120.5O41—C44—H44A110.3
C16—C15—H15120.5C43—C44—H44A110.3
C15—C16—C17120.95 (18)O41—C44—H44B110.3
C15—C16—H16119.5C43—C44—H44B110.3
C17—C16—H16119.5H44A—C44—H44B108.6
C16—C17—C12120.02 (19)C51—O51—C54107.23 (16)
C16—C17—H17120.0O51—C51—C52107.68 (18)
C12—C17—H17120.0O51—C51—H51A110.2
C21—S21—Ni194.84 (6)C52—C51—H51A110.2
N21—C21—N23121.14 (15)O51—C51—H51B110.2
N21—C21—S21123.24 (13)C52—C51—H51B110.2
N23—C21—S21115.61 (13)H51A—C51—H51B108.5
C21—N21—N22111.90 (14)C51—C52—C53104.34 (18)
C22—N22—N21112.50 (14)C51—C52—H52A110.9
C22—N22—Ni1129.64 (12)C53—C52—H52A110.9
N21—N22—Ni1117.63 (11)C51—C52—H52B110.9
N22—C22—C31121.71 (15)C53—C52—H52B110.9
N22—C22—C23119.56 (15)H52A—C52—H52B108.9
C31—C22—C23118.72 (15)C54—C53—C52102.98 (17)
C22—C23—C24114.16 (15)C54—C53—H53A111.2
C22—C23—H23A108.7C52—C53—H53A111.2
C24—C23—H23A108.7C54—C53—H53B111.2
C22—C23—H23B108.7C52—C53—H53B111.2
C24—C23—H23B108.7H53A—C53—H53B109.1
H23A—C23—H23B107.6O51—C54—C53105.00 (16)
C25—C24—C23110.19 (16)O51—C54—H54A110.7
C25—C24—H24A109.6C53—C54—H54A110.7
C23—C24—H24A109.6O51—C54—H54B110.7
C25—C24—H24B109.6C53—C54—H54B110.7
C23—C24—H24B109.6H54A—C54—H54B108.8
H24A—C24—H24B108.1
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C32–C37 and C12–C17 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N3—H1N···O10.882.062.934 (2)172
N23—H2N···O510.882.022.895 (2)171
O1—H1O1···S1i0.842.633.4609 (16)170
O1—H2O1···O41ii0.842.002.836 (2)173
C27—H27···Cg1iii0.952.803.595 (2)142
C54—H54B···Cg2iv0.992.673.633 (2)164
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y1/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x, y+1/2, z+1/2.
Selected bond lengths (Å) top
Ni1—N21.9313 (14)Ni1—S212.1524 (5)
Ni1—N221.9417 (14)Ni1—S12.1664 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C32–C37 and C12–C17 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N3—H1N···O10.882.062.934 (2)172
N23—H2N···O510.882.022.895 (2)171
O1—H1O1···S1i0.842.633.4609 (16)170
O1—H2O1···O41ii0.8402.002.836 (2)173
C27—H27···Cg1iii0.952.803.595 (2)142
C54—H54B···Cg2iv0.992.673.633 (2)164
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y1/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C16H16N3S)2]·2C4H8O·H2O
Mr809.71
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)20.9248 (13), 8.7872 (5), 21.2833 (15)
β (°) 92.841 (8)
V3)3908.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.65
Crystal size (mm)0.19 × 0.15 × 0.10
Data collection
DiffractometerStoe IPDS1
diffractometer
Absorption correctionNumerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
Tmin, Tmax0.787, 0.941
No. of measured, independent and
observed [I > 2σ(I)] reflections
40358, 8412, 7107
Rint0.064
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.090, 1.04
No. of reflections8412
No. of parameters488
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.48

Computer programs: X-AREA (Stoe & Cie, 2008), X-RED32 (Stoe & Cie, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

 

Acknowledgements

We gratefully acknowledge the financial support by the State of Schleswig–Holstein, Germany. We thank Professor Dr Wolfgang Bensch for access to his experimental facilities. BRSF thanks the CNPq/UFS for the award of a PIBIC scholarship and ABO acknowledges financial support through the FAPITEC/SE/FUNTEC/CNPq PPP 04/2011 program.

References

First citationBondi, A. (1964). J. Phys. Chem. 68, 441–452.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrookhart, M., Green, M. L. H. & Parkin, G. (2007). Proc. Natl. Acad. Sci. 104, 6908–6914.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFreund, M. & Schander, A. (1902). Chem. Ber. 35, 2602–2606.  CrossRef CAS Google Scholar
First citationLobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.  Web of Science CrossRef CAS Google Scholar
First citationOliveira, A. B. de, Feitosa, B. R. S., Näther, C. & Jess, I. (2014). Acta Cryst. E70, o205.  CSD CrossRef IUCr Journals Google Scholar
First citationRowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 8| August 2014| Pages 101-103
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds