organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Fluoro-N-(4-hy­dr­oxy­benzyl­­idene)aniline

aDepartment of Physics, NKR Government Arts College for Women, Namakkal -1, India, bDepartment of Physics, Kunthavai Naachiar Government Arts College (W) (Autonomous), Thanjavur-7, India, cCrystal Growth and Thin Film Laboratory, School of Physics, Bharathidasan University, Tiruchirappalli 24, India, and dDepartment of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM University, Kattankulathur, Kanchipuram 603 203, India
*Correspondence e-mail: sai.anuradha@yahoo.com, vasuki.arasi@yahoo.com

(Received 12 June 2014; accepted 27 June 2014; online 11 July 2014)

In the title compound, C13H10FNO, the benzene ring planes are inclined at an angle of 50.52 (8)°. A characteristic of aromatic Schiff bases with N-aryl substituents is that the terminal phenyl rings are twisted relative to the plane of the HC=N link between them. In this case, the HC=N unit makes dihedral angles of 10.6 (2) and 40.5 (2)° with the hy­droxy­benzene and fluro­benzene rings, respectively. In the crystal, O—H⋯N and C—H⋯F hydrogen bonds lead to the formation of chains along the c- and b-axis directions, respectively. C—H⋯π contacts link mol­ecules along a and these contacts combine to generate a three-dimensional network with mol­ecules stacked along the b-axis direction.

Keywords: crystal structure.

Related literature

For manufacturing and pharmaceutical applications of Schiff base compounds, see: Akkurt et al. (2013[Akkurt, M., Jarrahpour, A., Chermahini, M. M., Shiri, P. & Tahir, M. N. (2013). Acta Cryst. E69, o247.]). For related structures, see: Li et al. (2008[Li, J., Liang, Z.-P. & Tai, X.-S. (2008). Acta Cryst. E64, o2319.]); Zhang (2010[Zhang, F.-G. (2010). Acta Cryst. E66, o382.]); Jothi et al., (2012a[Jothi, L., Vasuki, G., Babu, R. R. & Ramamurthi, K. (2012a). Acta Cryst. E68, o772.],b[Jothi, L., Vasuki, G., Babu, R. R. & Ramamurthi, K. (2012b). Acta Cryst. E68, o897.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammeer, L. & Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]) and for hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10FNO

  • Mr = 215.22

  • Orthorhombic, P c a 21

  • a = 11.0153 (8) Å

  • b = 9.8596 (7) Å

  • c = 9.5476 (6) Å

  • V = 1036.93 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker KappaCCD APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.980

  • 6612 measured reflections

  • 1430 independent reflections

  • 1282 reflections with I > 2σ(I)

  • Rint = 0.033

  • θmax = 23.4°

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.078

  • S = 1.11

  • 1430 reflections

  • 146 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 1.94 2.756 (2) 176
C9—H9⋯F1ii 0.93 2.61 3.263 (3) 127
C13—H13⋯Cgiii 0.93 2.83 3.710 (3) 157
Symmetry codes: (i) [-x+1, -y+1, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+2, z]; (iii) [x-{\script{1\over 2}}, -y+1, z].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff base compounds have been used as fine chemicals and pharmaceutical substrates (Akkurt et al., 2013). They are important ligands in coordination chemistry due to their ease of preparation and ability to be modified both electronically and sterically (Li et al., 2008 and Zhang, 2010). As a part of our study into the co-ordination behaviour of ligands having a 4-hydroxy substituent on the benzylidene fragment, X-ray structural analysis of the title compound was carried out, and the results are reported herein.

The title compound, (I), contains two benzene rings bridged by an HC N imine unit, with the planes of the rings inclined at an angle of 50.52 (8)°, showing significant deviation of the molecule from planarity as observed in the related structures 4-bromo-N-(4-hydroxybenzylidene)aniline and 4-[(E)-(4-methylphenyl)iminomethyl]phenol (Jothi et al., 2012a,b). The molecule exists in the solid state in an E-configuration with respect to the C7 N1 double bond as indicated by the torsion angle C4–C7–N1–C8= -171.2 (2)°. The C4–C7 [1.456 (3) Å] and N1–C8 [1.430 (3) Å] distances confirm a degree of electron delocalization between the benzene rings, and the molecule can be regarded as a partially delocalized π-electron system. All other bond lengths are within the expected ranges (Allen et al., 1987).

In the crystal, the molecules are linked by O1—H1···N1 hydrogen bonds to form infinite one-dimensional zigzag chains with graph set notation C(8) (Bernstein et al.,, 1995) along the c axis, Fig 2. Weaker C9—H9···F1 contacts also propagate C(5) zigzag chains along b, Fig 3, with molecules in this chain forming a V-shaped stacking motif when viewed along a, Fig 4. Finally C13—H13···π contacts also form chains along a, Fig 5. These contacts combine to stack the molecules in a head to tail zigzag fashion along the b axis direction, Fig 6.

Related literature top

For manufacturing and pharmaceutical applications of Schiff base compounds, see: Akkurt et al. (2013). For their use as ligands in transition-metal chemistry, see: Li et al. (2008); Zhang (2010). For related structures, see: Li et al. (2008); Zhang (2010); Jothi et al., (2012a,b). For standard bond lengths, see: Allen et al. (1987) and for hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

4-Fluoro-4-hydroxybenzylideneaniline was prepared by mixing equimolar amounts of 4-hydroxy benzaldehyde and 4-fluoro aniline in ethanol (40 ml). The reaction mixture was refluxed for about 6 h and the resulting solution was slowly evaporated at room temperature. After three days single crystals of the title compound, suitable for X-ray structure analysis were obtained.

Refinement top

All the H atoms were positioned geometrically and treated as riding atoms: E—H = 0.93, 0.96, 0.97 and 0.82 Å for CH, CH3, CH2 and OH H atoms, respectively, with Uiso(H) = k × Ueq(C,O), where k = 1.5 for CH3 and OH H atoms and = 1.2 for other H atoms. The best crystal investigated was still of poor quality and very weakly diffracting, with no usable data obtained above θ = 23.5 °. Nonetheless the structure solved readily and refined to give acceptable uncertainties on the metrical data. Because of the very weak data, the final data/parameter ratio is considerably less than an ideal value.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. : The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. : Chains formed along the c axis by O—H···N hydrogen bonds.
[Figure 3] Fig. 3. Chains formed along the b axis by C—H···F hydrogen bonds.
[Figure 4] Fig. 4. : C—H···F chains viewed along the a axis, showing V shaped stacks.
[Figure 5] Fig. 5. Chains formed along the a axis by C—H···π contacts.
[Figure 6] Fig. 6. : Overall packing for the compound (I).
4-Fluoro-N-(4-hydroxybenzylidene)aniline top
Crystal data top
C13H10FNOF(000) = 448
Mr = 215.22Dx = 1.379 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 7057 reflections
a = 11.0153 (8) Åθ = 1.9–23.4°
b = 9.8596 (7) ŵ = 0.10 mm1
c = 9.5476 (6) ÅT = 296 K
V = 1036.93 (12) Å3Block, colourless
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Bruker KappaCCD APEXII
diffractometer
1430 independent reflections
Radiation source: fine-focus sealed tube1282 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω and ϕ scanθmax = 23.4°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1212
Tmin = 0.971, Tmax = 0.980k = 1010
6612 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0435P)2 + 0.103P]
where P = (Fo2 + 2Fc2)/3
1430 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.13 e Å3
1 restraintΔρmin = 0.12 e Å3
Crystal data top
C13H10FNOV = 1036.93 (12) Å3
Mr = 215.22Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 11.0153 (8) ŵ = 0.10 mm1
b = 9.8596 (7) ÅT = 296 K
c = 9.5476 (6) Å0.30 × 0.20 × 0.20 mm
Data collection top
Bruker KappaCCD APEXII
diffractometer
1430 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1282 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.980Rint = 0.033
6612 measured reflectionsθmax = 23.4°
Refinement top
R[F2 > 2σ(F2)] = 0.0291 restraint
wR(F2) = 0.078H-atom parameters constrained
S = 1.11Δρmax = 0.13 e Å3
1430 reflectionsΔρmin = 0.12 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.43955 (18)0.3194 (2)0.3175 (2)0.0396 (6)
C20.48448 (17)0.44366 (19)0.2735 (3)0.0385 (5)
H20.55780.47540.30910.046*
C30.42173 (17)0.5198 (2)0.1781 (3)0.0385 (5)
H30.45260.60340.15020.046*
C40.31198 (18)0.4740 (2)0.1219 (2)0.0366 (5)
C50.26905 (18)0.3484 (2)0.1656 (3)0.0448 (6)
H50.19630.31590.12950.054*
C60.33162 (18)0.2716 (2)0.2608 (3)0.0467 (6)
H60.30180.18730.28750.056*
C70.23844 (18)0.5576 (2)0.0292 (3)0.0393 (5)
H70.15980.52870.01000.047*
C80.18716 (17)0.7493 (2)0.1001 (3)0.0371 (5)
C90.2246 (2)0.8203 (2)0.2169 (3)0.0462 (6)
H90.30510.81480.24570.055*
C100.1439 (2)0.8992 (2)0.2914 (3)0.0546 (6)
H100.16870.94550.37130.066*
C110.0271 (2)0.9080 (2)0.2453 (3)0.0561 (7)
C120.0118 (2)0.8445 (3)0.1267 (3)0.0554 (7)
H120.09130.85540.09570.067*
C130.06838 (18)0.7641 (2)0.0534 (3)0.0470 (6)
H130.04300.71960.02740.056*
N10.27379 (14)0.66729 (17)0.02753 (19)0.0379 (4)
O10.49408 (13)0.24314 (15)0.41734 (19)0.0509 (4)
H10.56370.27010.42940.076*
F10.05262 (16)0.98467 (18)0.3178 (2)0.0888 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0291 (11)0.0482 (13)0.0415 (15)0.0067 (10)0.0037 (9)0.0017 (10)
C20.0253 (10)0.0462 (12)0.0441 (14)0.0021 (9)0.0006 (10)0.0035 (11)
C30.0299 (11)0.0417 (11)0.0438 (14)0.0023 (9)0.0012 (11)0.0019 (10)
C40.0284 (11)0.0433 (12)0.0380 (14)0.0013 (9)0.0023 (9)0.0036 (10)
C50.0280 (11)0.0515 (12)0.0547 (16)0.0028 (9)0.0059 (10)0.0035 (12)
C60.0328 (12)0.0468 (12)0.0606 (17)0.0038 (9)0.0004 (11)0.0034 (12)
C70.0273 (10)0.0473 (12)0.0432 (14)0.0004 (10)0.0030 (9)0.0087 (12)
C80.0312 (10)0.0407 (11)0.0395 (13)0.0008 (9)0.0042 (10)0.0055 (10)
C90.0421 (12)0.0463 (12)0.0503 (16)0.0015 (10)0.0065 (11)0.0027 (12)
C100.0680 (17)0.0474 (13)0.0483 (17)0.0061 (11)0.0002 (13)0.0047 (12)
C110.0619 (16)0.0514 (14)0.0549 (18)0.0215 (12)0.0119 (13)0.0033 (13)
C120.0403 (12)0.0686 (16)0.0574 (18)0.0146 (12)0.0034 (12)0.0081 (14)
C130.0367 (12)0.0595 (14)0.0447 (16)0.0075 (11)0.0020 (10)0.0027 (11)
N10.0297 (8)0.0458 (9)0.0383 (11)0.0018 (8)0.0003 (8)0.0037 (9)
O10.0353 (7)0.0614 (9)0.0561 (11)0.0015 (8)0.0049 (7)0.0140 (9)
F10.0971 (12)0.0911 (11)0.0781 (12)0.0487 (10)0.0175 (10)0.0104 (10)
Geometric parameters (Å, º) top
C1—O11.355 (3)C8—C91.379 (3)
C1—C21.386 (3)C8—C131.390 (3)
C1—C61.389 (3)C8—N11.430 (3)
C2—C31.368 (3)C9—C101.379 (3)
C2—H20.9300C9—H90.9300
C3—C41.398 (3)C10—C111.362 (3)
C3—H30.9300C10—H100.9300
C4—C51.389 (3)C11—F11.350 (3)
C4—C71.456 (3)C11—C121.363 (4)
C5—C61.369 (3)C12—C131.378 (3)
C5—H50.9300C12—H120.9300
C6—H60.9300C13—H130.9300
C7—N11.270 (3)O1—H10.8200
C7—H70.9300
O1—C1—C2123.07 (19)C9—C8—C13119.2 (2)
O1—C1—C6117.74 (19)C9—C8—N1118.62 (18)
C2—C1—C6119.2 (2)C13—C8—N1122.1 (2)
C3—C2—C1120.44 (19)C10—C9—C8120.7 (2)
C3—C2—H2119.8C10—C9—H9119.7
C1—C2—H2119.8C8—C9—H9119.7
C2—C3—C4121.00 (19)C11—C10—C9118.6 (2)
C2—C3—H3119.5C11—C10—H10120.7
C4—C3—H3119.5C9—C10—H10120.7
C5—C4—C3117.9 (2)F1—C11—C10119.0 (3)
C5—C4—C7119.87 (18)F1—C11—C12118.6 (2)
C3—C4—C7122.09 (18)C10—C11—C12122.4 (2)
C6—C5—C4121.40 (19)C11—C12—C13119.0 (2)
C6—C5—H5119.3C11—C12—H12120.5
C4—C5—H5119.3C13—C12—H12120.5
C5—C6—C1120.1 (2)C12—C13—C8120.1 (2)
C5—C6—H6119.9C12—C13—H13120.0
C1—C6—H6119.9C8—C13—H13120.0
N1—C7—C4124.80 (18)C7—N1—C8118.89 (16)
N1—C7—H7117.6C1—O1—H1109.5
C4—C7—H7117.6
O1—C1—C2—C3176.2 (2)N1—C8—C9—C10179.1 (2)
C6—C1—C2—C31.7 (3)C8—C9—C10—C111.5 (3)
C1—C2—C3—C40.7 (3)C9—C10—C11—F1179.8 (2)
C2—C3—C4—C50.3 (3)C9—C10—C11—C121.7 (4)
C2—C3—C4—C7174.8 (2)F1—C11—C12—C13178.8 (2)
C3—C4—C5—C60.1 (3)C10—C11—C12—C132.6 (4)
C7—C4—C5—C6175.1 (2)C11—C12—C13—C80.4 (4)
C4—C5—C6—C11.0 (4)C9—C8—C13—C122.6 (3)
O1—C1—C6—C5176.2 (2)N1—C8—C13—C12179.8 (2)
C2—C1—C6—C51.9 (3)C4—C7—N1—C8171.2 (2)
C5—C4—C7—N1172.8 (2)C9—C8—N1—C7145.9 (2)
C3—C4—C7—N112.2 (3)C13—C8—N1—C736.9 (3)
C13—C8—C9—C103.6 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.821.942.756 (2)176
C9—H9···F1ii0.932.613.263 (3)127
C13—H13···Cgiii0.932.833.710 (3)157
Symmetry codes: (i) x+1, y+1, z+1/2; (ii) x+1/2, y+2, z; (iii) x1/2, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.821.942.756 (2)175.8
C9—H9···F1ii0.932.6143.263 (3)127.3
C13—H13···Cgiii0.932.833.710 (3)157
Symmetry codes: (i) x+1, y+1, z+1/2; (ii) x+1/2, y+2, z; (iii) x1/2, y+1, z.
 

Acknowledgements

The authors thank the Sophisticated Analytical Instrument Facility, IIT-Madras, Chennai-36, for the data collection.

References

First citationAkkurt, M., Jarrahpour, A., Chermahini, M. M., Shiri, P. & Tahir, M. N. (2013). Acta Cryst. E69, o247.  CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammeer, L. & Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJothi, L., Vasuki, G., Babu, R. R. & Ramamurthi, K. (2012a). Acta Cryst. E68, o772.  CSD CrossRef IUCr Journals Google Scholar
First citationJothi, L., Vasuki, G., Babu, R. R. & Ramamurthi, K. (2012b). Acta Cryst. E68, o897.  CSD CrossRef IUCr Journals Google Scholar
First citationLi, J., Liang, Z.-P. & Tai, X.-S. (2008). Acta Cryst. E64, o2319.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, F.-G. (2010). Acta Cryst. E66, o382.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds