metal-organic compounds
Bis{2-methoxy-6-[(E)-(4-methylbenzyl)iminomethyl]phenolato}palladium(II) chloroform monosolvate
aFaculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia, bDDH CoRe, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia, cDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and eDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
*Correspondence e-mail: hkfun@usm.my
In the title complex, [Pd(C16H16NO2)2]·CHCl3, the PdII cation lies on an inversion center. One Cl atom of the CHCl3 solvent molecule lies on a twofold axis and the C—H group is disordered with equal occupancies about this axis with the other Cl atom in a general position with full occupancy. The PdII cation is four-coordinate and adopts a square-planar geometry via coordination of the imine N and phenolic O atoms of the two bidentate Schiff base anions. The N and O atoms of these ligands are mutually trans. The plane of the benzene ring makes a dihedral angle of 73.52 (10)° with that of the methoxyphenolate ring. In the crystal, molecules of the PdII complex are arranged into sheets parallel to the ac plane, and the chloroform solvent molecules are located in the interstitial areas between the complex molecules. Weak intermolecular C—H⋯O and C—H⋯π interactions stabilize the packing.
Keywords: crystal structure.
CCDC reference: 1010352
Related literature
For bond-length data, see: Allen et al. (1987). For related structures, see: Bahron et al. (2011a,b); Halder et al. (2008). For background to and applications of PdII complexes, see: Bowes et al. (2011); Geeta et al. (2010); Gupta & Sutar (2008); Kalita et al. (2014); Mohd Tajuddin et al. (2012); Tamizh & Karvembu (2012).
Experimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009) and publCIF (Westrip, 2010).
Supporting information
CCDC reference: 1010352
10.1107/S1600536814015025/sj5416sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814015025/sj5416Isup2.hkl
The ligand, (E)-2-methoxy-6-((4-methylbenzylimino)methyl)-phenol (5 mmol, 1.2765 g) was dissolved in CH3CN (10 ml) in a round-bottomed flask. Palladium(II) acetate (2.5 mmol, 0.5612 g) was dissolved separately in CH3CN (10 ml) and added to the flask containing the ligand solution. The mixture was refluxed with stirring for 4 h upon which a dark yellow solid was formed. The solid was filtered off, washed with ice-cold CH3CN and air dried at room temperature. The solid product was recrystallized from CHCl3 yielding orange crystals. Yield 94.4%. Melting point 236–238 °C. 1H NMR (300 MHz, CDCl3, p.p.m.): δ = 2.30 (s, 3H, CH3), 5.07 (s, 2H, CH2), 3.75 (s, 3H, Ar-OCH3), 6.76–7.34 (m, 7H, ArH), 7.69 (s, 1H, =CH). 13C NMR (300 MHz, CDCl3): 21.1 (CH3), 55.9 (Ar-OCH3), 62.25 (CH2), 114.0, 120.4, 125.4, 128.4, 129.1, 136.1 (ArC), 162.6 (N=CH). Analytical calculation for C32H32N2O4Pd: C, 62.49; H, 5.24; N, 4.55; Found: C, 62.47; H, 5.29; N, 4.55. IR (KBr, cm-1): ν(C=N) 1623 (s), ν(C—N) 1316 (s), ν(C—O) 1239 (s), ν(OCH3) 1092 (w), ν(Pd—O) 660 (w), ν(Pd—N) 416 (w).
All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å for aromatic, 0.97 Å for CH and CH2 and 0.96 for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the
for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.18 Å from Cl2 and the deepest hole is located at 0.71 Å from Cl2.Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).[Pd(C16H16NO)2]·CHCl3 | F(000) = 1496 |
Mr = 734.36 | Dx = 1.595 Mg m−3 |
Monoclinic, C2/c | Melting point = 509–511 K |
Hall symbol: -C 2yc | Mo Kα radiation, λ = 0.71073 Å |
a = 31.9861 (8) Å | Cell parameters from 5542 reflections |
b = 5.9668 (2) Å | θ = 1.8–32.5° |
c = 22.6135 (5) Å | µ = 0.91 mm−1 |
β = 134.885 (1)° | T = 100 K |
V = 3057.92 (15) Å3 | Block, orange |
Z = 4 | 0.48 × 0.25 × 0.18 mm |
Bruker APEXII CCD area-detector diffractometer | 5542 independent reflections |
Radiation source: sealed tube | 5006 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
ϕ and ω scans | θmax = 32.5°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −48→48 |
Tmin = 0.669, Tmax = 0.853 | k = −9→8 |
43800 measured reflections | l = −33→34 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.073 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.029P)2 + 8.064P] where P = (Fo2 + 2Fc2)/3 |
5542 reflections | (Δ/σ)max = 0.001 |
204 parameters | Δρmax = 1.24 e Å−3 |
0 restraints | Δρmin = −1.90 e Å−3 |
[Pd(C16H16NO)2]·CHCl3 | V = 3057.92 (15) Å3 |
Mr = 734.36 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 31.9861 (8) Å | µ = 0.91 mm−1 |
b = 5.9668 (2) Å | T = 100 K |
c = 22.6135 (5) Å | 0.48 × 0.25 × 0.18 mm |
β = 134.885 (1)° |
Bruker APEXII CCD area-detector diffractometer | 5542 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 5006 reflections with I > 2σ(I) |
Tmin = 0.669, Tmax = 0.853 | Rint = 0.021 |
43800 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.073 | H-atom parameters constrained |
S = 1.05 | Δρmax = 1.24 e Å−3 |
5542 reflections | Δρmin = −1.90 e Å−3 |
204 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Pd1 | 0.2500 | 0.7500 | 0.5000 | 0.01355 (4) | |
O1 | 0.27424 (5) | 0.77360 (19) | 0.44058 (7) | 0.0199 (2) | |
O2 | 0.29036 (5) | 0.7333 (2) | 0.34385 (7) | 0.0216 (2) | |
N1 | 0.29650 (5) | 1.0260 (2) | 0.56892 (7) | 0.0161 (2) | |
C1 | 0.30562 (6) | 0.9327 (2) | 0.44764 (8) | 0.0163 (2) | |
C2 | 0.31517 (6) | 0.9175 (3) | 0.39460 (9) | 0.0182 (2) | |
C3 | 0.34628 (7) | 1.0811 (3) | 0.39600 (9) | 0.0230 (3) | |
H3A | 0.3517 | 1.0693 | 0.3607 | 0.028* | |
C4 | 0.36987 (8) | 1.2650 (3) | 0.44999 (10) | 0.0256 (3) | |
H4A | 0.3909 | 1.3743 | 0.4505 | 0.031* | |
C5 | 0.36196 (7) | 1.2838 (3) | 0.50202 (10) | 0.0229 (3) | |
H5A | 0.3777 | 1.4061 | 0.5378 | 0.028* | |
C6 | 0.32999 (6) | 1.1187 (2) | 0.50177 (8) | 0.0172 (2) | |
C7 | 0.32398 (6) | 1.1514 (2) | 0.55844 (9) | 0.0176 (2) | |
H7A | 0.3421 | 1.2786 | 0.5918 | 0.021* | |
C8 | 0.30159 (6) | 1.0981 (3) | 0.63693 (9) | 0.0180 (2) | |
H8A | 0.2676 | 1.0451 | 0.6249 | 0.022* | |
H8B | 0.3020 | 1.2605 | 0.6393 | 0.022* | |
C9 | 0.35728 (6) | 1.0068 (2) | 0.72040 (9) | 0.0169 (2) | |
C10 | 0.40868 (7) | 1.1352 (3) | 0.77237 (9) | 0.0215 (3) | |
H10A | 0.4083 | 1.2778 | 0.7555 | 0.026* | |
C11 | 0.46054 (7) | 1.0533 (3) | 0.84920 (10) | 0.0245 (3) | |
H11A | 0.4943 | 1.1418 | 0.8829 | 0.029* | |
C12 | 0.46238 (7) | 0.8403 (3) | 0.87610 (9) | 0.0220 (3) | |
C13 | 0.41100 (7) | 0.7121 (3) | 0.82397 (10) | 0.0213 (3) | |
H13A | 0.4114 | 0.5695 | 0.8409 | 0.026* | |
C14 | 0.35894 (7) | 0.7929 (3) | 0.74686 (9) | 0.0197 (3) | |
H14A | 0.3253 | 0.7038 | 0.7130 | 0.024* | |
C15 | 0.30447 (7) | 0.6982 (3) | 0.29710 (10) | 0.0257 (3) | |
H15A | 0.2903 | 0.5538 | 0.2708 | 0.039* | |
H15B | 0.3465 | 0.7047 | 0.3339 | 0.039* | |
H15C | 0.2861 | 0.8125 | 0.2552 | 0.039* | |
C16 | 0.51830 (8) | 0.7502 (3) | 0.95912 (11) | 0.0325 (4) | |
H16A | 0.5514 | 0.7914 | 0.9680 | 0.049* | |
H16B | 0.5160 | 0.5899 | 0.9593 | 0.049* | |
H16C | 0.5232 | 0.8119 | 1.0029 | 0.049* | |
C17 | 0.00983 (14) | 0.8371 (6) | 0.2433 (2) | 0.0230 (6) | 0.50 |
H17A | 0.0259 | 0.8362 | 0.2200 | 0.028* | 0.50 |
Cl1 | 0.0000 | 1.12294 (11) | 0.2500 | 0.04186 (16) | |
Cl2 | 0.05936 (2) | 0.70272 (10) | 0.33308 (4) | 0.04878 (16) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pd1 | 0.01277 (6) | 0.01580 (7) | 0.01323 (7) | −0.00043 (4) | 0.00959 (6) | −0.00051 (4) |
O1 | 0.0230 (5) | 0.0231 (5) | 0.0223 (5) | −0.0064 (4) | 0.0191 (5) | −0.0050 (4) |
O2 | 0.0230 (5) | 0.0280 (6) | 0.0217 (5) | −0.0055 (4) | 0.0185 (5) | −0.0047 (4) |
N1 | 0.0145 (5) | 0.0181 (5) | 0.0143 (5) | 0.0009 (4) | 0.0097 (4) | −0.0003 (4) |
C1 | 0.0133 (5) | 0.0203 (6) | 0.0138 (5) | 0.0002 (4) | 0.0090 (5) | 0.0020 (4) |
C2 | 0.0144 (5) | 0.0243 (7) | 0.0141 (5) | −0.0012 (5) | 0.0095 (5) | 0.0014 (5) |
C3 | 0.0205 (6) | 0.0314 (8) | 0.0182 (6) | −0.0042 (6) | 0.0141 (6) | 0.0022 (6) |
C4 | 0.0247 (7) | 0.0297 (8) | 0.0210 (7) | −0.0081 (6) | 0.0156 (6) | 0.0016 (6) |
C5 | 0.0213 (7) | 0.0251 (7) | 0.0179 (6) | −0.0064 (5) | 0.0122 (6) | −0.0005 (5) |
C6 | 0.0144 (5) | 0.0200 (6) | 0.0132 (5) | −0.0006 (5) | 0.0083 (5) | 0.0019 (5) |
C7 | 0.0152 (5) | 0.0179 (6) | 0.0147 (5) | −0.0001 (5) | 0.0088 (5) | 0.0001 (4) |
C8 | 0.0182 (6) | 0.0192 (6) | 0.0181 (6) | 0.0007 (5) | 0.0134 (5) | −0.0023 (5) |
C9 | 0.0177 (6) | 0.0191 (6) | 0.0159 (5) | −0.0001 (5) | 0.0126 (5) | −0.0029 (5) |
C10 | 0.0219 (6) | 0.0203 (6) | 0.0191 (6) | −0.0032 (5) | 0.0134 (6) | −0.0033 (5) |
C11 | 0.0206 (6) | 0.0264 (7) | 0.0186 (6) | −0.0046 (6) | 0.0111 (6) | −0.0043 (5) |
C12 | 0.0207 (6) | 0.0271 (7) | 0.0173 (6) | 0.0025 (5) | 0.0131 (6) | −0.0005 (5) |
C13 | 0.0235 (7) | 0.0220 (6) | 0.0213 (6) | 0.0017 (5) | 0.0168 (6) | 0.0008 (5) |
C14 | 0.0197 (6) | 0.0223 (6) | 0.0192 (6) | −0.0014 (5) | 0.0145 (6) | −0.0016 (5) |
C15 | 0.0249 (7) | 0.0374 (9) | 0.0234 (7) | −0.0029 (6) | 0.0202 (6) | −0.0036 (6) |
C16 | 0.0251 (8) | 0.0385 (10) | 0.0215 (7) | 0.0054 (7) | 0.0120 (7) | 0.0050 (7) |
C17 | 0.0241 (14) | 0.0232 (14) | 0.0245 (14) | −0.0037 (11) | 0.0181 (12) | −0.0041 (11) |
Cl1 | 0.0565 (4) | 0.0199 (3) | 0.0593 (5) | 0.000 | 0.0445 (4) | 0.000 |
Cl2 | 0.0256 (2) | 0.0353 (2) | 0.0438 (3) | 0.00892 (18) | 0.0097 (2) | −0.0081 (2) |
Pd1—O1i | 1.9741 (10) | C9—C14 | 1.395 (2) |
Pd1—O1 | 1.9741 (10) | C10—C11 | 1.393 (2) |
Pd1—N1 | 2.0204 (12) | C10—H10A | 0.9300 |
Pd1—N1i | 2.0204 (12) | C11—C12 | 1.392 (2) |
O1—C1 | 1.3069 (17) | C11—H11A | 0.9300 |
O2—C2 | 1.3672 (19) | C12—C13 | 1.393 (2) |
O2—C15 | 1.4279 (18) | C12—C16 | 1.508 (2) |
N1—C7 | 1.2971 (19) | C13—C14 | 1.396 (2) |
N1—C8 | 1.4911 (18) | C13—H13A | 0.9300 |
C1—C6 | 1.411 (2) | C14—H14A | 0.9300 |
C1—C2 | 1.4344 (19) | C15—H15A | 0.9600 |
C2—C3 | 1.378 (2) | C15—H15B | 0.9600 |
C3—C4 | 1.401 (2) | C15—H15C | 0.9600 |
C3—H3A | 0.9300 | C16—H16A | 0.9600 |
C4—C5 | 1.372 (2) | C16—H16B | 0.9600 |
C4—H4A | 0.9300 | C16—H16C | 0.9600 |
C5—C6 | 1.417 (2) | C17—C17ii | 0.871 (6) |
C5—H5A | 0.9300 | C17—Cl2 | 1.654 (3) |
C6—C7 | 1.437 (2) | C17—Cl1 | 1.760 (3) |
C7—H7A | 0.9300 | C17—Cl2ii | 1.769 (3) |
C8—C9 | 1.512 (2) | C17—H17A | 0.9604 |
C8—H8A | 0.9700 | Cl1—C17ii | 1.760 (3) |
C8—H8B | 0.9700 | Cl2—C17ii | 1.769 (3) |
C9—C10 | 1.394 (2) | ||
O1i—Pd1—O1 | 180.000 (1) | C10—C9—C8 | 120.25 (14) |
O1i—Pd1—N1 | 87.83 (5) | C14—C9—C8 | 121.32 (13) |
O1—Pd1—N1 | 92.17 (5) | C11—C10—C9 | 121.09 (15) |
O1i—Pd1—N1i | 92.17 (5) | C11—C10—H10A | 119.5 |
O1—Pd1—N1i | 87.83 (5) | C9—C10—H10A | 119.5 |
N1—Pd1—N1i | 180.0 | C12—C11—C10 | 120.73 (15) |
C1—O1—Pd1 | 127.25 (9) | C12—C11—H11A | 119.6 |
C2—O2—C15 | 116.10 (12) | C10—C11—H11A | 119.6 |
C7—N1—C8 | 115.30 (12) | C11—C12—C13 | 118.08 (14) |
C7—N1—Pd1 | 123.66 (10) | C11—C12—C16 | 121.11 (16) |
C8—N1—Pd1 | 121.04 (9) | C13—C12—C16 | 120.82 (16) |
O1—C1—C6 | 125.72 (13) | C12—C13—C14 | 121.50 (15) |
O1—C1—C2 | 116.75 (13) | C12—C13—H13A | 119.2 |
C6—C1—C2 | 117.52 (13) | C14—C13—H13A | 119.2 |
O2—C2—C3 | 124.80 (13) | C9—C14—C13 | 120.18 (14) |
O2—C2—C1 | 114.39 (12) | C9—C14—H14A | 119.9 |
C3—C2—C1 | 120.81 (14) | C13—C14—H14A | 119.9 |
C2—C3—C4 | 120.72 (14) | O2—C15—H15A | 109.5 |
C2—C3—H3A | 119.6 | O2—C15—H15B | 109.5 |
C4—C3—H3A | 119.6 | H15A—C15—H15B | 109.5 |
C5—C4—C3 | 119.97 (15) | O2—C15—H15C | 109.5 |
C5—C4—H4A | 120.0 | H15A—C15—H15C | 109.5 |
C3—C4—H4A | 120.0 | H15B—C15—H15C | 109.5 |
C4—C5—C6 | 120.60 (15) | C12—C16—H16A | 109.5 |
C4—C5—H5A | 119.7 | C12—C16—H16B | 109.5 |
C6—C5—H5A | 119.7 | H16A—C16—H16B | 109.5 |
C1—C6—C5 | 120.37 (13) | C12—C16—H16C | 109.5 |
C1—C6—C7 | 122.75 (13) | H16A—C16—H16C | 109.5 |
C5—C6—C7 | 116.89 (14) | H16B—C16—H16C | 109.5 |
N1—C7—C6 | 128.23 (14) | C17ii—C17—Cl2 | 82.7 (4) |
N1—C7—H7A | 115.9 | C17ii—C17—Cl1 | 75.67 (10) |
C6—C7—H7A | 115.9 | Cl2—C17—Cl1 | 115.99 (18) |
N1—C8—C9 | 111.02 (11) | C17ii—C17—Cl2ii | 68.1 (4) |
N1—C8—H8A | 109.4 | Cl2—C17—Cl2ii | 115.65 (19) |
C9—C8—H8A | 109.4 | Cl1—C17—Cl2ii | 110.29 (18) |
N1—C8—H8B | 109.4 | C17ii—C17—H17A | 171.5 |
C9—C8—H8B | 109.4 | Cl2—C17—H17A | 104.5 |
H8A—C8—H8B | 108.0 | Cl1—C17—H17A | 104.5 |
C10—C9—C14 | 118.42 (14) | Cl2ii—C17—H17A | 104.4 |
N1—Pd1—O1—C1 | −4.24 (13) | C4—C5—C6—C7 | 179.83 (15) |
N1i—Pd1—O1—C1 | 175.76 (13) | C8—N1—C7—C6 | 176.22 (13) |
O1i—Pd1—N1—C7 | −175.14 (12) | Pd1—N1—C7—C6 | −3.4 (2) |
O1—Pd1—N1—C7 | 4.86 (12) | C1—C6—C7—N1 | −0.7 (2) |
O1i—Pd1—N1—C8 | 5.26 (10) | C5—C6—C7—N1 | 179.23 (15) |
O1—Pd1—N1—C8 | −174.74 (10) | C7—N1—C8—C9 | −85.20 (15) |
Pd1—O1—C1—C6 | 1.8 (2) | Pd1—N1—C8—C9 | 94.43 (13) |
Pd1—O1—C1—C2 | −177.17 (10) | N1—C8—C9—C10 | 93.72 (16) |
C15—O2—C2—C3 | 7.9 (2) | N1—C8—C9—C14 | −85.35 (16) |
C15—O2—C2—C1 | −173.07 (13) | C14—C9—C10—C11 | −0.4 (2) |
O1—C1—C2—O2 | −0.92 (19) | C8—C9—C10—C11 | −179.47 (14) |
C6—C1—C2—O2 | 180.00 (12) | C9—C10—C11—C12 | 0.1 (2) |
O1—C1—C2—C3 | 178.12 (14) | C10—C11—C12—C13 | 0.1 (2) |
C6—C1—C2—C3 | −1.0 (2) | C10—C11—C12—C16 | 179.97 (16) |
O2—C2—C3—C4 | 179.63 (15) | C11—C12—C13—C14 | 0.0 (2) |
C1—C2—C3—C4 | 0.7 (2) | C16—C12—C13—C14 | −179.83 (15) |
C2—C3—C4—C5 | −0.2 (3) | C10—C9—C14—C13 | 0.5 (2) |
C3—C4—C5—C6 | −0.1 (3) | C8—C9—C14—C13 | 179.60 (13) |
O1—C1—C6—C5 | −178.26 (14) | C12—C13—C14—C9 | −0.3 (2) |
C2—C1—C6—C5 | 0.7 (2) | Cl2—C17—Cl1—C17ii | −74.3 (4) |
O1—C1—C6—C7 | 1.7 (2) | Cl2ii—C17—Cl1—C17ii | 59.6 (4) |
C2—C1—C6—C7 | −179.34 (13) | Cl1—C17—Cl2—C17ii | 70.1 (2) |
C4—C5—C6—C1 | −0.2 (2) | Cl2ii—C17—Cl2—C17ii | −61.4 (3) |
Symmetry codes: (i) −x+1/2, −y+3/2, −z+1; (ii) −x, y, −z+1/2. |
Cg1 is the centroid of the C9–C14 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8A···O1i | 0.97 | 2.19 | 2.806 (2) | 120 |
C14—H14A···O1i | 0.93 | 2.57 | 3.284 (2) | 134 |
C17—H17A···Cg1i | 0.96 | 2.83 | 3.648 (5) | 144 |
Symmetry code: (i) −x+1/2, −y+3/2, −z+1. |
Cg1 is the centroid of the C9–C14 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8A···O1i | 0.97 | 2.19 | 2.806 (2) | 120 |
C14—H14A···O1i | 0.93 | 2.57 | 3.284 (2) | 134 |
C17—H17A···Cg1i | 0.96 | 2.83 | 3.648 (5) | 144 |
Symmetry code: (i) −x+1/2, −y+3/2, −z+1. |
Acknowledgements
The authors would like to thank the Ministry of Education of Malaysia for research grants Nos. 600-RMI/FRGS 5/3 (51/2013) and (52/2013), Universiti Teknologi MARA for research grant No. 600-RMI/DANA 5/3/CG (15/2012) and Universiti Sains Malaysia for the use of the X-ray diffraction facilities.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bahron, H., Mohd Tajuddin, A., Ibrahim, W. N. W., Hemamalini, M. & Fun, H.-K. (2011a). Acta Cryst. E67, m759–m760. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bahron, H., Tajuddin, A. M., Ibrahim, W. N. W., Hemamalini, M. & Fun, H.-K. (2011b). Acta Cryst. E67, m1010–m1011. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bowes, E. G., Lee, G. M., Vogels, C. M., Decken, A. & Westcott, S. A. (2011). Inorg. Chim. Acta, 377, 84–90. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Geeta, B., Shravankumar, K., Reddy, P. M., Ravikrishna, E., Sarangapani, M., Reddy, K. K. & Ravinder, V. (2010). Spectrochim. Acta Part A, 77, 911–915. Web of Science CrossRef CAS Google Scholar
Gupta, K. C. & Sutar, A. K. (2008). Chem. Rev. 252, 1420–1450. CAS Google Scholar
Halder, S., Drew, M. G. B. & Bhattacharya, S. (2008). J. Chem. Sci. 120, 441–446. Web of Science CSD CrossRef CAS Google Scholar
Kalita, M., Gogoi, P., Barman, P., Sarma, B., Buragohain, A. K. & Kalita, R. D. (2014). Polyhedron, 74, 93–98. Web of Science CrossRef CAS Google Scholar
Mohd Tajuddin, A., Bahron, H., Kassim, K., Wan Ibrahim, W. N. & Fun, H.-K. (2012). Adv. Mater. Res. 554–556, 736–740. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tamizh, M. M. & Karvembu, R. (2012). Inorg. Chem. Commun. 25, 30–34. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Complexes of palladium(II) and nickel(II) have broad and diversified applications involving numerous fields of catalysis such as the Heck reaction, Suzuki-Miyaura coupling reactions and including also the polymerization of ethylene, epoxidation and allylic alkylation (Bowes et al., 2011; Gupta & Sutar, 2008; Mohd Tajuddin et al., 2012; Tamizh & Karvembu, 2012). They are also important in various aspects of bioinorganic chemistry (Geeta et al., 2010; Kalita et al., 2014;). The properties of such complexes depend on the coordination environment around the metal center. Schiff bases containing iminoalkylphenolato groups commonly adopt a bidentate coordination mode with metal centres as for example in bis{2-[(E)-(4-fluorobenzyl)iminomethyl]- 6-methoxy-phenolato-K2N,O1}nickel(II) (Bahron et al., 2011b). In the title complex (I), [Pd(C32H32N2O4)]·(CHCl3), the Schiff base ligand is bis-bidentate (see Fig. 1) and is related to the previously reported bis(2-(1-benzyliminoethyl)phenolato)palladium(II) (Bahron et al., 2011a) but with different substituents on the iminoalkylphenolato and benzyl ring systems. Herein the crystal structure of (I) is reported.
The asymmetric unit of (I) consists of one half each of the complex molecule and the chloroform solvate molecule. The PdII atom lies on an inversion center while the Cl1 atom of the CHCl3 solvate lies on a two-fold axis. The C17–H17A group is disordered with equal occupancies about this axis with Cl2 in a general position with full occupancy. These two symmetry elements generate the other halves of the Schiff base ligand and the chloroform molecule. The PdII ion is four-coordinate and adopts a square planar geometry via cordination to the two imine N (N1 and N1i symmetry code; i = 1/2 - x, 3/2 - y, 1 - z) and two phenolic O (O1 and O1i symmetry code; i = 1/2 - x, 3/2 - y, 1 - z) atoms of the two bidentate Schiff base anions. The imine N atoms and phenolic O atoms are in mutually trans positions. The Pd—N and Pd—O distances in the N2O2 coordination [1.9741 (10) Å and 2.0204 (12) Å, respectively] are in the same ranges as those observed in the other closely related PdII complexes of N2O2 Schiff base ligands (Bahron et al., 2011a and Halder et al., 2008). Other bond lengths and angles observed in the structure are also normal (Allen et al., 1987). The bond angles O–Pd–N [O1–Pd1–N1 = 92.17 (5)° and O1—Pd1–N1i = 87.83 (5)° symmetry code; i = 1/2 - x, 3/2 - y, 1 - z] are close to 90°. Moreover the coordination of the two NO bidentate chelate ligands to the PdII ion results in the formation of two six-membered rings (Pd1/N1/C7/C8/C1/O1 and Pd1/N1i/C7i/C8i/C1i/O1i). The methoxy substituent deviates only slightly from the plane of the ring to which it is bound with the torsion angle C15–O2–C2–C3 = 7.9 (2)°. The benzene ring (C9–C14) makes a dihedral angle of 73.52 (10)° with the methoxyphenolate ring.
In the crystal packing (Fig. 2), molecules of the PdII complex are arranged into sheets parallel to the ac plane, and the chloroform solvent molecules are located in the interstitial areas between the complex molecules. Weak intermolecular C—H···O interactions stabilise the packing. A C—H···π interaction involving the centroid of the (C9–C14) benzene ring, Cg1, is also observed, (Table 1).