metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 8| August 2014| Pages m289-m290

Bis{2-meth­­oxy-6-[(E)-(4-methyl­benz­yl)imino­meth­yl]phenolato}palladium(II) chloro­form monosolvate

aFaculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia, bDDH CoRe, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia, cDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and eDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
*Correspondence e-mail: hkfun@usm.my

(Received 20 June 2014; accepted 25 June 2014; online 2 July 2014)

In the title complex, [Pd(C16H16NO2)2]·CHCl3, the PdII cation lies on an inversion center. One Cl atom of the CHCl3 solvent mol­ecule lies on a twofold axis and the C—H group is disordered with equal occupancies about this axis with the other Cl atom in a general position with full occupancy. The PdII cation is four-coordinate and adopts a square-planar geometry via coordination of the imine N and phenolic O atoms of the two bidentate Schiff base anions. The N and O atoms of these ligands are mutually trans. The plane of the benzene ring makes a dihedral angle of 73.52 (10)° with that of the meth­oxy­phenolate ring. In the crystal, mol­ecules of the PdII complex are arranged into sheets parallel to the ac plane, and the chloro­form solvent mol­ecules are located in the inter­stitial areas between the complex mol­ecules. Weak inter­molecular C—H⋯O and C—H⋯π inter­actions stabilize the packing.

Keywords: crystal structure.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Bahron et al. (2011a[Bahron, H., Mohd Tajuddin, A., Ibrahim, W. N. W., Hemamalini, M. & Fun, H.-K. (2011a). Acta Cryst. E67, m759-m760.],b[Bahron, H., Tajuddin, A. M., Ibrahim, W. N. W., Hemamalini, M. & Fun, H.-K. (2011b). Acta Cryst. E67, m1010-m1011.]); Halder et al. (2008[Halder, S., Drew, M. G. B. & Bhattacharya, S. (2008). J. Chem. Sci. 120, 441-446.]). For background to and applications of PdII complexes, see: Bowes et al. (2011[Bowes, E. G., Lee, G. M., Vogels, C. M., Decken, A. & Westcott, S. A. (2011). Inorg. Chim. Acta, 377, 84-90.]); Geeta et al. (2010[Geeta, B., Shravankumar, K., Reddy, P. M., Ravikrishna, E., Sarangapani, M., Reddy, K. K. & Ravinder, V. (2010). Spectrochim. Acta Part A, 77, 911-915.]); Gupta & Sutar (2008[Gupta, K. C. & Sutar, A. K. (2008). Chem. Rev. 252, 1420-1450.]); Kalita et al. (2014[Kalita, M., Gogoi, P., Barman, P., Sarma, B., Buragohain, A. K. & Kalita, R. D. (2014). Polyhedron, 74, 93-98.]); Mohd Tajuddin et al. (2012[Mohd Tajuddin, A., Bahron, H., Kassim, K., Wan Ibrahim, W. N. & Fun, H.-K. (2012). Adv. Mater. Res. 554-556, 736-740.]); Tamizh & Karvembu (2012[Tamizh, M. M. & Karvembu, R. (2012). Inorg. Chem. Commun. 25, 30-34.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd(C16H16NO2)2]·CHCl3

  • Mr = 734.36

  • Monoclinic, C 2/c

  • a = 31.9861 (8) Å

  • b = 5.9668 (2) Å

  • c = 22.6135 (5) Å

  • β = 134.885 (1)°

  • V = 3057.92 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.91 mm−1

  • T = 100 K

  • 0.48 × 0.25 × 0.18 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.669, Tmax = 0.853

  • 43800 measured reflections

  • 5542 independent reflections

  • 5006 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.073

  • S = 1.05

  • 5542 reflections

  • 204 parameters

  • H-atom parameters constrained

  • Δρmax = 1.24 e Å−3

  • Δρmin = −1.90 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O1i 0.97 2.19 2.806 (2) 120
C14—H14A⋯O1i 0.93 2.57 3.284 (2) 134
C17—H17ACg1i 0.96 2.83 3.648 (5) 144
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Complexes of palladium(II) and nickel(II) have broad and diversified applications involving numerous fields of catalysis such as the Heck reaction, Suzuki-Miyaura coupling reactions and including also the polymerization of ethylene, epoxidation and allylic alkylation (Bowes et al., 2011; Gupta & Sutar, 2008; Mohd Tajuddin et al., 2012; Tamizh & Karvembu, 2012). They are also important in various aspects of bioinorganic chemistry (Geeta et al., 2010; Kalita et al., 2014;). The properties of such complexes depend on the coordination environment around the metal center. Schiff bases containing iminoalkylphenolato groups commonly adopt a bidentate coordination mode with metal centres as for example in bis{2-[(E)-(4-fluorobenzyl)iminomethyl]- 6-methoxy-phenolato-K2N,O1}nickel(II) (Bahron et al., 2011b). In the title complex (I), [Pd(C32H32N2O4)]·(CHCl3), the Schiff base ligand is bis-bidentate (see Fig. 1) and is related to the previously reported bis(2-(1-benzyliminoethyl)phenolato)palladium(II) (Bahron et al., 2011a) but with different substituents on the iminoalkylphenolato and benzyl ring systems. Herein the crystal structure of (I) is reported.

The asymmetric unit of (I) consists of one half each of the complex molecule and the chloroform solvate molecule. The PdII atom lies on an inversion center while the Cl1 atom of the CHCl3 solvate lies on a two-fold axis. The C17–H17A group is disordered with equal occupancies about this axis with Cl2 in a general position with full occupancy. These two symmetry elements generate the other halves of the Schiff base ligand and the chloroform molecule. The PdII ion is four-coordinate and adopts a square planar geometry via cordination to the two imine N (N1 and N1i symmetry code; i = 1/2 - x, 3/2 - y, 1 - z) and two phenolic O (O1 and O1i symmetry code; i = 1/2 - x, 3/2 - y, 1 - z) atoms of the two bidentate Schiff base anions. The imine N atoms and phenolic O atoms are in mutually trans positions. The Pd—N and Pd—O distances in the N2O2 coordination [1.9741 (10) Å and 2.0204 (12) Å, respectively] are in the same ranges as those observed in the other closely related PdII complexes of N2O2 Schiff base ligands (Bahron et al., 2011a and Halder et al., 2008). Other bond lengths and angles observed in the structure are also normal (Allen et al., 1987). The bond angles O–Pd–N [O1–Pd1–N1 = 92.17 (5)° and O1—Pd1–N1i = 87.83 (5)° symmetry code; i = 1/2 - x, 3/2 - y, 1 - z] are close to 90°. Moreover the coordination of the two NO bidentate chelate ligands to the PdII ion results in the formation of two six-membered rings (Pd1/N1/C7/C8/C1/O1 and Pd1/N1i/C7i/C8i/C1i/O1i). The methoxy substituent deviates only slightly from the plane of the ring to which it is bound with the torsion angle C15–O2–C2–C3 = 7.9 (2)°. The benzene ring (C9–C14) makes a dihedral angle of 73.52 (10)° with the methoxyphenolate ring.

In the crystal packing (Fig. 2), molecules of the PdII complex are arranged into sheets parallel to the ac plane, and the chloroform solvent molecules are located in the interstitial areas between the complex molecules. Weak intermolecular C—H···O interactions stabilise the packing. A C—H···π interaction involving the centroid of the (C9–C14) benzene ring, Cg1, is also observed, (Table 1).

Related literature top

For bond-length data, see: Allen et al. (1987). For related structures, see: Bahron et al. (2011a,b); Halder et al. (2008). For background to and applications of PdII complexes, see: Bowes et al. (2011); Geeta et al. (2010); Gupta & Sutar (2008); Kalita et al. (2014); Mohd Tajuddin et al. (2012); Tamizh & Karvembu (2012).

Experimental top

The ligand, (E)-2-methoxy-6-((4-methylbenzylimino)methyl)-phenol (5 mmol, 1.2765 g) was dissolved in CH3CN (10 ml) in a round-bottomed flask. Palladium(II) acetate (2.5 mmol, 0.5612 g) was dissolved separately in CH3CN (10 ml) and added to the flask containing the ligand solution. The mixture was refluxed with stirring for 4 h upon which a dark yellow solid was formed. The solid was filtered off, washed with ice-cold CH3CN and air dried at room temperature. The solid product was recrystallized from CHCl3 yielding orange crystals. Yield 94.4%. Melting point 236–238 °C. 1H NMR (300 MHz, CDCl3, p.p.m.): δ = 2.30 (s, 3H, CH3), 5.07 (s, 2H, CH2), 3.75 (s, 3H, Ar-OCH3), 6.76–7.34 (m, 7H, ArH), 7.69 (s, 1H, =CH). 13C NMR (300 MHz, CDCl3): 21.1 (CH3), 55.9 (Ar-OCH3), 62.25 (CH2), 114.0, 120.4, 125.4, 128.4, 129.1, 136.1 (ArC), 162.6 (N=CH). Analytical calculation for C32H32N2O4Pd: C, 62.49; H, 5.24; N, 4.55; Found: C, 62.47; H, 5.29; N, 4.55. IR (KBr, cm-1): ν(C=N) 1623 (s), ν(C—N) 1316 (s), ν(C—O) 1239 (s), ν(OCH3) 1092 (w), ν(Pd—O) 660 (w), ν(Pd—N) 416 (w).

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å for aromatic, 0.97 Å for CH and CH2 and 0.96 for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.18 Å from Cl2 and the deepest hole is located at 0.71 Å from Cl2.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 40% probability displacement ellipsoids and the atom-numbering scheme. Atoms with suffix A of the Schiff base ligand were generated by symmetry code: 1/2 - x, 3/2 - y, 1 - z. Only one disorder component of the disordered C–H group of the chloroform solvate is shown for clarity, and Cl2A atom was generated by symmetry code: -x, y, 1/2-z.
[Figure 2] Fig. 2. The crystal packing of (I) viewed along the b axis showing the stacking of molecules of the PdII complex. H atoms were omitted and only one disorder component of the disordered C–H group of the chloroform solvate is shown for clarity.
Bis{2-methoxy-6-[(E)-(4-methylbenzyl)iminomethyl]phenolato}palladium(II) chloroform monosolvate top
Crystal data top
[Pd(C16H16NO)2]·CHCl3F(000) = 1496
Mr = 734.36Dx = 1.595 Mg m3
Monoclinic, C2/cMelting point = 509–511 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 31.9861 (8) ÅCell parameters from 5542 reflections
b = 5.9668 (2) Åθ = 1.8–32.5°
c = 22.6135 (5) ŵ = 0.91 mm1
β = 134.885 (1)°T = 100 K
V = 3057.92 (15) Å3Block, orange
Z = 40.48 × 0.25 × 0.18 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5542 independent reflections
Radiation source: sealed tube5006 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 32.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 4848
Tmin = 0.669, Tmax = 0.853k = 98
43800 measured reflectionsl = 3334
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.029P)2 + 8.064P]
where P = (Fo2 + 2Fc2)/3
5542 reflections(Δ/σ)max = 0.001
204 parametersΔρmax = 1.24 e Å3
0 restraintsΔρmin = 1.90 e Å3
Crystal data top
[Pd(C16H16NO)2]·CHCl3V = 3057.92 (15) Å3
Mr = 734.36Z = 4
Monoclinic, C2/cMo Kα radiation
a = 31.9861 (8) ŵ = 0.91 mm1
b = 5.9668 (2) ÅT = 100 K
c = 22.6135 (5) Å0.48 × 0.25 × 0.18 mm
β = 134.885 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5542 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5006 reflections with I > 2σ(I)
Tmin = 0.669, Tmax = 0.853Rint = 0.021
43800 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.05Δρmax = 1.24 e Å3
5542 reflectionsΔρmin = 1.90 e Å3
204 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd10.25000.75000.50000.01355 (4)
O10.27424 (5)0.77360 (19)0.44058 (7)0.0199 (2)
O20.29036 (5)0.7333 (2)0.34385 (7)0.0216 (2)
N10.29650 (5)1.0260 (2)0.56892 (7)0.0161 (2)
C10.30562 (6)0.9327 (2)0.44764 (8)0.0163 (2)
C20.31517 (6)0.9175 (3)0.39460 (9)0.0182 (2)
C30.34628 (7)1.0811 (3)0.39600 (9)0.0230 (3)
H3A0.35171.06930.36070.028*
C40.36987 (8)1.2650 (3)0.44999 (10)0.0256 (3)
H4A0.39091.37430.45050.031*
C50.36196 (7)1.2838 (3)0.50202 (10)0.0229 (3)
H5A0.37771.40610.53780.028*
C60.32999 (6)1.1187 (2)0.50177 (8)0.0172 (2)
C70.32398 (6)1.1514 (2)0.55844 (9)0.0176 (2)
H7A0.34211.27860.59180.021*
C80.30159 (6)1.0981 (3)0.63693 (9)0.0180 (2)
H8A0.26761.04510.62490.022*
H8B0.30201.26050.63930.022*
C90.35728 (6)1.0068 (2)0.72040 (9)0.0169 (2)
C100.40868 (7)1.1352 (3)0.77237 (9)0.0215 (3)
H10A0.40831.27780.75550.026*
C110.46054 (7)1.0533 (3)0.84920 (10)0.0245 (3)
H11A0.49431.14180.88290.029*
C120.46238 (7)0.8403 (3)0.87610 (9)0.0220 (3)
C130.41100 (7)0.7121 (3)0.82397 (10)0.0213 (3)
H13A0.41140.56950.84090.026*
C140.35894 (7)0.7929 (3)0.74686 (9)0.0197 (3)
H14A0.32530.70380.71300.024*
C150.30447 (7)0.6982 (3)0.29710 (10)0.0257 (3)
H15A0.29030.55380.27080.039*
H15B0.34650.70470.33390.039*
H15C0.28610.81250.25520.039*
C160.51830 (8)0.7502 (3)0.95912 (11)0.0325 (4)
H16A0.55140.79140.96800.049*
H16B0.51600.58990.95930.049*
H16C0.52320.81191.00290.049*
C170.00983 (14)0.8371 (6)0.2433 (2)0.0230 (6)0.50
H17A0.02590.83620.22000.028*0.50
Cl10.00001.12294 (11)0.25000.04186 (16)
Cl20.05936 (2)0.70272 (10)0.33308 (4)0.04878 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01277 (6)0.01580 (7)0.01323 (7)0.00043 (4)0.00959 (6)0.00051 (4)
O10.0230 (5)0.0231 (5)0.0223 (5)0.0064 (4)0.0191 (5)0.0050 (4)
O20.0230 (5)0.0280 (6)0.0217 (5)0.0055 (4)0.0185 (5)0.0047 (4)
N10.0145 (5)0.0181 (5)0.0143 (5)0.0009 (4)0.0097 (4)0.0003 (4)
C10.0133 (5)0.0203 (6)0.0138 (5)0.0002 (4)0.0090 (5)0.0020 (4)
C20.0144 (5)0.0243 (7)0.0141 (5)0.0012 (5)0.0095 (5)0.0014 (5)
C30.0205 (6)0.0314 (8)0.0182 (6)0.0042 (6)0.0141 (6)0.0022 (6)
C40.0247 (7)0.0297 (8)0.0210 (7)0.0081 (6)0.0156 (6)0.0016 (6)
C50.0213 (7)0.0251 (7)0.0179 (6)0.0064 (5)0.0122 (6)0.0005 (5)
C60.0144 (5)0.0200 (6)0.0132 (5)0.0006 (5)0.0083 (5)0.0019 (5)
C70.0152 (5)0.0179 (6)0.0147 (5)0.0001 (5)0.0088 (5)0.0001 (4)
C80.0182 (6)0.0192 (6)0.0181 (6)0.0007 (5)0.0134 (5)0.0023 (5)
C90.0177 (6)0.0191 (6)0.0159 (5)0.0001 (5)0.0126 (5)0.0029 (5)
C100.0219 (6)0.0203 (6)0.0191 (6)0.0032 (5)0.0134 (6)0.0033 (5)
C110.0206 (6)0.0264 (7)0.0186 (6)0.0046 (6)0.0111 (6)0.0043 (5)
C120.0207 (6)0.0271 (7)0.0173 (6)0.0025 (5)0.0131 (6)0.0005 (5)
C130.0235 (7)0.0220 (6)0.0213 (6)0.0017 (5)0.0168 (6)0.0008 (5)
C140.0197 (6)0.0223 (6)0.0192 (6)0.0014 (5)0.0145 (6)0.0016 (5)
C150.0249 (7)0.0374 (9)0.0234 (7)0.0029 (6)0.0202 (6)0.0036 (6)
C160.0251 (8)0.0385 (10)0.0215 (7)0.0054 (7)0.0120 (7)0.0050 (7)
C170.0241 (14)0.0232 (14)0.0245 (14)0.0037 (11)0.0181 (12)0.0041 (11)
Cl10.0565 (4)0.0199 (3)0.0593 (5)0.0000.0445 (4)0.000
Cl20.0256 (2)0.0353 (2)0.0438 (3)0.00892 (18)0.0097 (2)0.0081 (2)
Geometric parameters (Å, º) top
Pd1—O1i1.9741 (10)C9—C141.395 (2)
Pd1—O11.9741 (10)C10—C111.393 (2)
Pd1—N12.0204 (12)C10—H10A0.9300
Pd1—N1i2.0204 (12)C11—C121.392 (2)
O1—C11.3069 (17)C11—H11A0.9300
O2—C21.3672 (19)C12—C131.393 (2)
O2—C151.4279 (18)C12—C161.508 (2)
N1—C71.2971 (19)C13—C141.396 (2)
N1—C81.4911 (18)C13—H13A0.9300
C1—C61.411 (2)C14—H14A0.9300
C1—C21.4344 (19)C15—H15A0.9600
C2—C31.378 (2)C15—H15B0.9600
C3—C41.401 (2)C15—H15C0.9600
C3—H3A0.9300C16—H16A0.9600
C4—C51.372 (2)C16—H16B0.9600
C4—H4A0.9300C16—H16C0.9600
C5—C61.417 (2)C17—C17ii0.871 (6)
C5—H5A0.9300C17—Cl21.654 (3)
C6—C71.437 (2)C17—Cl11.760 (3)
C7—H7A0.9300C17—Cl2ii1.769 (3)
C8—C91.512 (2)C17—H17A0.9604
C8—H8A0.9700Cl1—C17ii1.760 (3)
C8—H8B0.9700Cl2—C17ii1.769 (3)
C9—C101.394 (2)
O1i—Pd1—O1180.000 (1)C10—C9—C8120.25 (14)
O1i—Pd1—N187.83 (5)C14—C9—C8121.32 (13)
O1—Pd1—N192.17 (5)C11—C10—C9121.09 (15)
O1i—Pd1—N1i92.17 (5)C11—C10—H10A119.5
O1—Pd1—N1i87.83 (5)C9—C10—H10A119.5
N1—Pd1—N1i180.0C12—C11—C10120.73 (15)
C1—O1—Pd1127.25 (9)C12—C11—H11A119.6
C2—O2—C15116.10 (12)C10—C11—H11A119.6
C7—N1—C8115.30 (12)C11—C12—C13118.08 (14)
C7—N1—Pd1123.66 (10)C11—C12—C16121.11 (16)
C8—N1—Pd1121.04 (9)C13—C12—C16120.82 (16)
O1—C1—C6125.72 (13)C12—C13—C14121.50 (15)
O1—C1—C2116.75 (13)C12—C13—H13A119.2
C6—C1—C2117.52 (13)C14—C13—H13A119.2
O2—C2—C3124.80 (13)C9—C14—C13120.18 (14)
O2—C2—C1114.39 (12)C9—C14—H14A119.9
C3—C2—C1120.81 (14)C13—C14—H14A119.9
C2—C3—C4120.72 (14)O2—C15—H15A109.5
C2—C3—H3A119.6O2—C15—H15B109.5
C4—C3—H3A119.6H15A—C15—H15B109.5
C5—C4—C3119.97 (15)O2—C15—H15C109.5
C5—C4—H4A120.0H15A—C15—H15C109.5
C3—C4—H4A120.0H15B—C15—H15C109.5
C4—C5—C6120.60 (15)C12—C16—H16A109.5
C4—C5—H5A119.7C12—C16—H16B109.5
C6—C5—H5A119.7H16A—C16—H16B109.5
C1—C6—C5120.37 (13)C12—C16—H16C109.5
C1—C6—C7122.75 (13)H16A—C16—H16C109.5
C5—C6—C7116.89 (14)H16B—C16—H16C109.5
N1—C7—C6128.23 (14)C17ii—C17—Cl282.7 (4)
N1—C7—H7A115.9C17ii—C17—Cl175.67 (10)
C6—C7—H7A115.9Cl2—C17—Cl1115.99 (18)
N1—C8—C9111.02 (11)C17ii—C17—Cl2ii68.1 (4)
N1—C8—H8A109.4Cl2—C17—Cl2ii115.65 (19)
C9—C8—H8A109.4Cl1—C17—Cl2ii110.29 (18)
N1—C8—H8B109.4C17ii—C17—H17A171.5
C9—C8—H8B109.4Cl2—C17—H17A104.5
H8A—C8—H8B108.0Cl1—C17—H17A104.5
C10—C9—C14118.42 (14)Cl2ii—C17—H17A104.4
N1—Pd1—O1—C14.24 (13)C4—C5—C6—C7179.83 (15)
N1i—Pd1—O1—C1175.76 (13)C8—N1—C7—C6176.22 (13)
O1i—Pd1—N1—C7175.14 (12)Pd1—N1—C7—C63.4 (2)
O1—Pd1—N1—C74.86 (12)C1—C6—C7—N10.7 (2)
O1i—Pd1—N1—C85.26 (10)C5—C6—C7—N1179.23 (15)
O1—Pd1—N1—C8174.74 (10)C7—N1—C8—C985.20 (15)
Pd1—O1—C1—C61.8 (2)Pd1—N1—C8—C994.43 (13)
Pd1—O1—C1—C2177.17 (10)N1—C8—C9—C1093.72 (16)
C15—O2—C2—C37.9 (2)N1—C8—C9—C1485.35 (16)
C15—O2—C2—C1173.07 (13)C14—C9—C10—C110.4 (2)
O1—C1—C2—O20.92 (19)C8—C9—C10—C11179.47 (14)
C6—C1—C2—O2180.00 (12)C9—C10—C11—C120.1 (2)
O1—C1—C2—C3178.12 (14)C10—C11—C12—C130.1 (2)
C6—C1—C2—C31.0 (2)C10—C11—C12—C16179.97 (16)
O2—C2—C3—C4179.63 (15)C11—C12—C13—C140.0 (2)
C1—C2—C3—C40.7 (2)C16—C12—C13—C14179.83 (15)
C2—C3—C4—C50.2 (3)C10—C9—C14—C130.5 (2)
C3—C4—C5—C60.1 (3)C8—C9—C14—C13179.60 (13)
O1—C1—C6—C5178.26 (14)C12—C13—C14—C90.3 (2)
C2—C1—C6—C50.7 (2)Cl2—C17—Cl1—C17ii74.3 (4)
O1—C1—C6—C71.7 (2)Cl2ii—C17—Cl1—C17ii59.6 (4)
C2—C1—C6—C7179.34 (13)Cl1—C17—Cl2—C17ii70.1 (2)
C4—C5—C6—C10.2 (2)Cl2ii—C17—Cl2—C17ii61.4 (3)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8A···O1i0.972.192.806 (2)120
C14—H14A···O1i0.932.573.284 (2)134
C17—H17A···Cg1i0.962.833.648 (5)144
Symmetry code: (i) x+1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8A···O1i0.972.192.806 (2)120
C14—H14A···O1i0.932.573.284 (2)134
C17—H17A···Cg1i0.962.833.648 (5)144
Symmetry code: (i) x+1/2, y+3/2, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors would like to thank the Ministry of Education of Malaysia for research grants Nos. 600-RMI/FRGS 5/3 (51/2013) and (52/2013), Universiti Teknologi MARA for research grant No. 600-RMI/DANA 5/3/CG (15/2012) and Universiti Sains Malaysia for the use of the X-ray diffraction facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBahron, H., Mohd Tajuddin, A., Ibrahim, W. N. W., Hemamalini, M. & Fun, H.-K. (2011a). Acta Cryst. E67, m759–m760.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBahron, H., Tajuddin, A. M., Ibrahim, W. N. W., Hemamalini, M. & Fun, H.-K. (2011b). Acta Cryst. E67, m1010–m1011.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBowes, E. G., Lee, G. M., Vogels, C. M., Decken, A. & Westcott, S. A. (2011). Inorg. Chim. Acta, 377, 84–90.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGeeta, B., Shravankumar, K., Reddy, P. M., Ravikrishna, E., Sarangapani, M., Reddy, K. K. & Ravinder, V. (2010). Spectrochim. Acta Part A, 77, 911–915.  Web of Science CrossRef CAS Google Scholar
First citationGupta, K. C. & Sutar, A. K. (2008). Chem. Rev. 252, 1420–1450.  CAS Google Scholar
First citationHalder, S., Drew, M. G. B. & Bhattacharya, S. (2008). J. Chem. Sci. 120, 441–446.  Web of Science CSD CrossRef CAS Google Scholar
First citationKalita, M., Gogoi, P., Barman, P., Sarma, B., Buragohain, A. K. & Kalita, R. D. (2014). Polyhedron, 74, 93–98.  Web of Science CrossRef CAS Google Scholar
First citationMohd Tajuddin, A., Bahron, H., Kassim, K., Wan Ibrahim, W. N. & Fun, H.-K. (2012). Adv. Mater. Res. 554–556, 736–740.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTamizh, M. M. & Karvembu, R. (2012). Inorg. Chem. Commun. 25, 30–34.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 8| August 2014| Pages m289-m290
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds