research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 8| August 2014| Pages 104-106

Crystal structure of bis­­{2-[(E)-(4-meth­­oxy­lbenz­yl)imino­meth­yl]phenolato-κ2N,O1}nickel(II)

aFaculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia, bDDH CoRe, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia, cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, dDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, and eDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

Edited by J. Simpson, University of Otago, New Zealand (Received 26 June 2014; accepted 16 July 2014; online 23 July 2014)

The asymmetric unit of the title compound, [Ni(C15H14NO2)2], comprises an NiII cation, lying on an inversion centre, and a Schiff base anion that acts as a bidentate ligand. The NiII cation is in a square-planar coordination environment binding to the imine N and phenolate O atoms of the two Schiff base ligands. The N- and O-donor atoms of the two ligands are mutually trans, with Ni—N and Ni—O bond lengths of 1.9191 (11) and 1.8407 (9) Å, respectively. The plane of the meth­oxy­benzene ring makes a dihedral angle of 84.92 (6)° with that of the phenolate ring. In the crystal, mol­ecules are linked into screw chains by weak C—H⋯O hydrogen bonds. Additional C—H⋯O hydrogen bonds, together with C—H⋯π contacts, arrange the mol­ecules into sheets parallel to the ac plane.

1. Chemical context

Schiff bases have often been used as chelating ligands in coordination chemistry as they readily form stable complexes with most transition metal ions (Kalita et al., 2014[Kalita, M., Gogoi, P., Barman, P., Sarma, B., Buragohain, A. K. & Kalita, R. D. (2014). Polyhedron, 74, 93-98.]; Mohamed et al., 2010[Mohamed, G. G., Zayed, M. A. & Abdallah, S. M. (2010). J. Mol. Struct. 979, 62-71.]). Metal complexes of Schiff bases containing nitro­gen and other donor atoms have received attention because of their stability, biological activity (Islam et al., 2014[Islam, M. A. A. A., Sheikh, M. C., Alam, M. S., Zangrando, E., Alam, M. A., Tarafder, M. T. H. & Miyatake, R. (2014). Transition Met. Chem. 39, 141-149.]) and potential applications in other fields, such as catalysis (Mohd Tajuddin et al., 2012[Mohd Tajuddin, A., Bahron, H., Kassim, K., Wan Ibrahim, W. N. & Fun, H.-K. (2012). Adv. Mater. Res. 554-556, 736-740.]).

[Scheme 1]

The title compound, bis­{2-[(E)-(4-meth­oxy­lbenz­yl)imino­meth­yl]phenolato-κ2N,O1}nickel(II), (I)[link], is related to bis­{2-[1-(benzyl­imino)­eth­yl]phenolato}palladium(II) (Mohd Tajuddin et al., 2010[Mohd Tajuddin, A., Bahron, H., Wan Ibrahim, W. N. & Yamin, B. M. (2010). Acta Cryst. E66, m1100.]) in terms of the geometry around the metal centre. However, we have extended our investigation to include a nickel compound with a Schiff base ligand that has a 4-meth­oxy substituent on the phenyl ring of the benzyl unit bound to the imine N atom (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing 50% probability displacement ellipsoids and the atom-numbering scheme. The symmetry-related Schiff base ligand is generated by the symmetry code (−x + 1, −y, −z + 1).

2. Structural commentary

The asymmetric unit of (I)[link] consists of an NiII cation that lies on an inversion centre and a Schiff base anion that functions as a bidentate ligand (Fig. 1[link]). The N2O2 donor set of the chelating Schiff base ligands has the N1 and O1 donor atoms mutually trans, in a distorted square-planar coordination geometry, with O1—Ni1—N1 = 92.30 (4)° and O1—Ni1—N1i = 87.70 (4)° [symmetry code: (i) −x + 1, −y, −z + 1] and a maximum deviation from the NiN2O2 least-squares plane of 0.731 (1) Å for the N1 atom. The Ni1—N1 and Ni1—O1 bond lengths in the N2O2 coordination plane are 1.9191 (11) and 1.8407 (9) Å, respectively. These are similar to those observed in the other closely related NiII complexes with N2O2-coord­inating Schiff base ligands (Bahron et al., 2011[Bahron, H., Tajuddin, A. M., Ibrahim, W. N. W., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, m1010-m1011.]; Mohd Tajuddin et al., 2010[Mohd Tajuddin, A., Bahron, H., Wan Ibrahim, W. N. & Yamin, B. M. (2010). Acta Cryst. E66, m1100.]). Other bond lengths and angles observed in the structure are also normal. The meth­oxy substituent is coplanar with the ring to which it is bound, the C15—O2—C12—C13 torsion angle being 3.93 (2)°. The plane of the meth­oxy­benzene ring (C9–C14) makes a dihedral angle of 84.92 (6)° with that of the phenolate benzene ring (C1–C6). A weak intra­molecular C14—H14⋯O1 contact is also observed that affects the overall mol­ecular conformation.

3. Supra­molecular features

In the crystal (Fig. 2[link]), mol­ecules are linked into screw chains by weak C11—H11A⋯O2 inter­actions (Fig. 2[link] and Table 1[link]). Additional C5—H5A···Cg1 contacts link mol­ecules into chains along the c-axis direction (Fig. 3[link] and Table 1[link]) resulting in sheets parallel to the ac plane and stacked along the b axis (Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O2i 0.95 2.47 3.3709 (17) 158
C14—H14A⋯O1ii 0.95 2.57 3.2281 (17) 126
C5—H5ACg1iii 0.95 2.68 3.3918 (13) 132
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+1; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Screw chains of mol­ecules of (I)[link] linked by C—H⋯O contacts (shown as dashed lines).
[Figure 3]
Figure 3
C—H⋯π contacts for (I)[link], shown as dotted lines, with ring centroids shown as coloured spheres. Cg1 is the centroid of the C1–C6 ring.
[Figure 4]
Figure 4
The packing of (I)[link], viewed along the b axis, showing the stacking of sheets of NiII complex mol­ecules. Only H atoms involved in weak C—H⋯O inter­actions are shown for clarity.

4. Database survey

A search of the Cambridge Structural Database (Version 5.35, November 2013 with 3 updates; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) reveals a total of 1191 NiII complexes with an NiN2O2 coordination sphere. No fewer than 333 of these had the NiII atom chelated by two 3-(imino­meth­yl)phenolate residues. No corresponding structures with a benzyl or substituted benzyl unit bound to the imino N atom were found. However, extending the search to allow additional substitution on the phenolate ring resulted in seven discrete structures including the closely related bis­(2-[(E)-(4-fluoro­benz­yl)imino­meth­yl]-6-meth­oxy­phenolato-κ2N,O1)nickel(II) (Bahron et al., 2011[Bahron, H., Tajuddin, A. M., Ibrahim, W. N. W., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, m1010-m1011.]) and bis­{2-[(benzyl­imino)­meth­yl]-5-meth­oxy­phenolato}nickel(II) (Gou et al., 2013[Gou, Y., Liu, Y., Zhao, X. H., Li, Y. G. & Chen, W. (2013). Koord. Khim. 39, 134-140.])

5. Synthesis and crystallization

N-4-Meth­oxy­benzyl­salicyl­idene­imine (5 mmol, 0.6041 g) was dissolved in ethanol (15 ml). An ethano­lic solution of nickel(II) acetate tetra­hydrate (2.5 mmol, 0.6216 g) was added dropwise to the former solution and the mixture heated under reflux for 4 h, producing a green solid. The solid was filtered off, washed with ice-cold ethanol and air-dried at room temperature. The solid product was recrystallized from chloro­form, yielding green crystals (yield 43.3%; m.p. 469–472 K). Analytical data for [Ni(C28H30N2O4)]: C 66.82, H 5.23, N 5.19%; found: C 67.03, H 5.28, N 5.15%. IR (KBr, cm−1): ν(C=N) 1605 (s), ν(C—N) 1391 (s), ν(C—O) 1325 (s), ν(Ni—O) 598 (w), ν(Ni—N) 437 (w).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95 for aromatic, 0.99 for CH2 and 0.98 Å for CH3 hydrogens. The Uiso(H) values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating-group model was used for the methyl groups.

Table 2
Experimental details

Crystal data
Chemical formula [Ni(C15H14NO2)2]
Mr 539.23
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 12.1847 (2), 5.6738 (1), 17.7620 (3)
β (°) 95.682 (1)
V3) 1221.92 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.84
Crystal size (mm) 0.52 × 0.30 × 0.16
 
Data collection
Diffractometer Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.670, 0.876
No. of measured, independent and observed [I > 2σ(I)] reflections 14541, 3542, 3092
Rint 0.019
(sin θ/λ)max−1) 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.074, 1.05
No. of reflections 3542
No. of parameters 170
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.42, −0.32
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

Schiff bases have often been used as chelating ligands in coordination chemistry as they readily form stable complexes with most transition metal ions (Kalita et al., 2014; Mohamed et al., 2010). Metal complexes of Schiff bases containing nitro­gen and other donor atoms have received attention because of their stability, biological activity (Islam et al., 2014) and potential applications in other fields, such as catalysis (Mohd Tajuddin et al., 2012). The title compound, bis­{2-[(E)-(4-methoxyl­benzyl)­imino­methyl]­phenolato-κ2N,O1}nickel(II), (I), is related to bis­{2-[1-(benzyl­imino)­ethyl]­phenolato}palladium(II) (Mohd Tajuddin et al., 2010) in terms of the geometry around the metal centre. However, we have extended our investigation to include a nickel compound with a Schiff base ligand that has a 4-meth­oxy substituent on the phenyl ring of the benzyl unit bound to the imine N atom (Fig. 1).

Structural commentary top

The asymmetric unit of (I) consists of an NiII cation that lies on an inversion centre and a Schiff base anion that functions as a bidentate ligand (Fig. 1). The N2O2 donor set of the chelating Schiff base ligands has the N1 and O1 donor atoms mutually trans, in a distorted square-planar coordination geometry, with O1—Ni1—N1 = 92.30 (4)° and O1—Ni1—N1i = 87.70 (4)°[symmetry code: (i) -x+1, -y, -z+1] and a maximum deviation from the NiO2N2 least-squares plane of 0.731 (1) Å for the N1 atom. The Ni1—N1 and Ni1—O1 distances in the N2O2 coordination plane are 1.9191 (11) and 1.8407 (9) Å, respectively. These are similar to those observed in the other closely related NiII complexes with N2O2-coordinating Schiff base ligands (Bahron et al., 2011; Mohd Tajuddin et al., 2010). Other bond lengths and angles observed in the structure are also normal. The meth­oxy substituent is coplanar with the ring to which it is bound, the C15—O2—C12—C13 torsion angle being 3.93 (2)°. The plane of the meth­oxy­benzene ring (C1–C6) makes a dihedral angle of 84.92 (6)° with that of the phenolate benzene ring (C9–C14). A weak intra­molecular C14—H14···O1 contact is also observed that affects the overall molecular conformation.

Supra­molecular features top

In the crystal (Fig. 2), molecules are linked into screw chains by weak C11—H11A···O1 inter­actions (Fig. 2 and Table 1). C5—H5A···Cg1 contacts link molecules into chains along the c-axis direction (Fig. 3 and Table 1) resulting in sheets parallel to the ac plane and stacked along the b axis (Fig. 4).

Database survey top

A search of the Cambridge Structural Database (Version 5.35, November 2013 with 3 updates; Allen, 2002) reveals a total of 1191 NiII complexes with an NiN2O2 coordination sphere. No fewer than 333 of these had the Ni atom chelated by two 3-(imino­methyl)­phenolate residues. No corresponding structures with a benzyl or substituted benzyl unit bound to the imino N atom were found. However, extending the search to allow additional substitution on the phenolate ring resulted in seven discrete structures including the closely related bis­(2-[(E)-(4-fluoro­benzyl)­imino­methyl]-6-meth­oxy­phenolato-κ2N,O1)nickel(II) (Bahron et al., 2011) and bis­{2-[(benzyl­imino)­methyl]-5-meth­oxy­phenolato}nickel(II) (Gou et al., 2013)

Synthesis and crystallization top

N-4-Meth­oxy­benzyl­salicyl­idene­imine (5 mmol, 0.6041 g) was dissolved in ethanol (15 ml). An ethano­lic solution of nickel(II) acetate tetra­hydrate (2.5 mmol, 0.6216 g) was added dropwise to the former solution and the mixture heated under reflux for 4 h, producing a green solid. The solid was filtered off, washed with ice-cold ethanol and air-dried at room temperature. The solid product was recrystallized from chloro­form, yielding green crystals (yield 43.3%; m.p. 469–472 K). Analytical data for [Ni(C28H30N2O4)]: C 66.82, H 5.23, N 5.19%; found: C 67.03, H 5.28, N 5.15%. IR (KBr, cm-1): ν(CN) 1605 (s), ν(C—N) 1391 (s), ν(C—O) 1325 (s), ν(Ni—O) 598 (w), ν(Ni—N) 437 (w).

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95 for aromatic, 0.99 for CH2 and 0.98 Å for CH3 hydrogens. The Uiso(H) values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating-group model was used for the methyl groups.

Related literature top

For related literature, see: Bahron et al. (2011); Gou et al. (2013); Islam et al. (2014); Kalita et al. (2014); Mohamed et al. (2010); Mohd Tajuddin, Bahron, Kassim, Wan Ibrahim & Fun (2012); Mohd Tajuddin, Bahron, Wan Ibrahim & Yamin (2010).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009), Mercury (Macrae et al., 2006) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. The other Schiff base ligand is generated by the symmetry code (-x+1, -y, -z+1).
[Figure 2] Fig. 2. Screw chains of molecules of (I) linked by C—H···O contacts (shown as dashed lines).
[Figure 3] Fig. 3. C—H···π contacts for (I), shown as dotted lines, with ring centroids shown as coloured spheres. Cg1 is the centroid of the C1–C6 ring.
[Figure 4] Fig. 4. The packing of (I), viewed along the b axis, showing the stacking of sheets of NiII complex molecules. Only H atoms involved in weak C—H···O interactions are shown for clarity.
Bis{2-[(E)-(4-methoxylbenzyl)iminomethyl]phenolato-κ2N,O1}nickel(II) top
Crystal data top
[Ni(C15H14NO2)2]F(000) = 564
Mr = 539.23Dx = 1.466 Mg m3
Monoclinic, P21/cMelting point = 469–472 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.1847 (2) ÅCell parameters from 3542 reflections
b = 5.6738 (1) Åθ = 1.7–30.0°
c = 17.7620 (3) ŵ = 0.84 mm1
β = 95.682 (1)°T = 100 K
V = 1221.92 (4) Å3Needle, green
Z = 20.52 × 0.30 × 0.16 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3542 independent reflections
Radiation source: sealed tube3092 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 30.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1717
Tmin = 0.670, Tmax = 0.876k = 77
14541 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0313P)2 + 0.7976P]
where P = (Fo2 + 2Fc2)/3
3542 reflections(Δ/σ)max < 0.001
170 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Ni(C15H14NO2)2]V = 1221.92 (4) Å3
Mr = 539.23Z = 2
Monoclinic, P21/cMo Kα radiation
a = 12.1847 (2) ŵ = 0.84 mm1
b = 5.6738 (1) ÅT = 100 K
c = 17.7620 (3) Å0.52 × 0.30 × 0.16 mm
β = 95.682 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3542 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3092 reflections with I > 2σ(I)
Tmin = 0.670, Tmax = 0.876Rint = 0.019
14541 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.05Δρmax = 0.42 e Å3
3542 reflectionsΔρmin = 0.32 e Å3
170 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.00000.50000.01253 (7)
O10.58126 (8)0.03642 (16)0.41876 (5)0.01676 (19)
O20.03916 (8)0.2287 (2)0.34237 (6)0.0272 (2)
N10.42000 (8)0.2622 (2)0.45360 (6)0.0142 (2)
C10.60209 (10)0.1191 (2)0.36758 (6)0.0141 (2)
C20.68624 (10)0.0696 (3)0.31981 (7)0.0164 (2)
H2A0.72600.07440.32550.020*
C30.71053 (10)0.2297 (3)0.26525 (7)0.0176 (2)
H3A0.76760.19450.23430.021*
C40.65287 (11)0.4428 (3)0.25451 (7)0.0182 (3)
H4A0.66980.55010.21630.022*
C50.57101 (10)0.4940 (2)0.30048 (7)0.0157 (2)
H5A0.53150.63800.29380.019*
C60.54531 (10)0.3354 (2)0.35715 (6)0.0138 (2)
C70.45329 (10)0.3875 (2)0.39913 (7)0.0146 (2)
H7A0.41300.52710.38570.018*
C80.31199 (10)0.3363 (2)0.47834 (7)0.0163 (2)
H8A0.29660.50150.46290.020*
H8B0.31510.32790.53420.020*
C90.22048 (10)0.1787 (2)0.44360 (7)0.0159 (2)
C100.16960 (11)0.2254 (3)0.37107 (7)0.0209 (3)
H10A0.19390.35590.34360.025*
C110.08462 (11)0.0860 (3)0.33834 (7)0.0235 (3)
H11A0.05170.12040.28880.028*
C120.04753 (10)0.1046 (3)0.37812 (7)0.0194 (3)
C130.09757 (11)0.1573 (3)0.44988 (8)0.0216 (3)
H13A0.07350.28870.47700.026*
C140.18353 (11)0.0150 (3)0.48172 (8)0.0203 (3)
H14A0.21760.05180.53070.024*
C150.08444 (12)0.4144 (3)0.38380 (9)0.0274 (3)
H15A0.14880.48120.35370.041*
H15B0.10690.35210.43140.041*
H15C0.02870.53760.39470.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01363 (11)0.01119 (12)0.01281 (10)0.00205 (8)0.00150 (7)0.00034 (8)
O10.0207 (4)0.0148 (5)0.0153 (4)0.0041 (4)0.0044 (3)0.0021 (3)
O20.0239 (5)0.0353 (6)0.0210 (5)0.0062 (5)0.0041 (4)0.0053 (4)
N10.0138 (4)0.0131 (5)0.0157 (4)0.0010 (4)0.0010 (3)0.0012 (4)
C10.0146 (5)0.0148 (6)0.0126 (5)0.0009 (5)0.0009 (4)0.0015 (4)
C20.0158 (5)0.0168 (6)0.0165 (5)0.0003 (5)0.0013 (4)0.0021 (5)
C30.0159 (5)0.0198 (7)0.0174 (5)0.0029 (5)0.0025 (4)0.0026 (5)
C40.0187 (5)0.0181 (6)0.0179 (5)0.0039 (5)0.0016 (4)0.0015 (5)
C50.0156 (5)0.0133 (6)0.0176 (5)0.0021 (5)0.0007 (4)0.0011 (5)
C60.0144 (5)0.0134 (6)0.0133 (5)0.0008 (4)0.0009 (4)0.0009 (4)
C70.0149 (5)0.0123 (6)0.0160 (5)0.0010 (5)0.0012 (4)0.0009 (5)
C80.0159 (5)0.0149 (6)0.0183 (5)0.0039 (5)0.0029 (4)0.0004 (5)
C90.0140 (5)0.0171 (6)0.0167 (5)0.0049 (5)0.0026 (4)0.0008 (5)
C100.0201 (6)0.0250 (7)0.0178 (5)0.0023 (5)0.0027 (4)0.0036 (5)
C110.0221 (6)0.0340 (8)0.0141 (5)0.0021 (6)0.0000 (4)0.0007 (6)
C120.0163 (5)0.0243 (7)0.0174 (5)0.0023 (5)0.0006 (4)0.0057 (5)
C130.0212 (6)0.0214 (7)0.0216 (6)0.0012 (5)0.0007 (5)0.0019 (5)
C140.0187 (6)0.0227 (7)0.0185 (6)0.0009 (5)0.0030 (4)0.0029 (5)
C150.0219 (6)0.0282 (8)0.0317 (7)0.0039 (6)0.0007 (5)0.0100 (7)
Geometric parameters (Å, º) top
Ni1—O11.8407 (9)C6—C71.4374 (16)
Ni1—O1i1.8407 (9)C7—H7A0.9500
Ni1—N11.9191 (11)C8—C91.5123 (18)
Ni1—N1i1.9191 (11)C8—H8A0.9900
O1—C11.3095 (15)C8—H8B0.9900
O2—C121.3717 (16)C9—C141.3892 (19)
O2—C151.427 (2)C9—C101.3986 (17)
N1—C71.2977 (16)C10—C111.384 (2)
N1—C81.4887 (15)C10—H10A0.9500
C1—C61.4123 (18)C11—C121.392 (2)
C1—C21.4221 (16)C11—H11A0.9500
C2—C31.3813 (18)C12—C131.3898 (18)
C2—H2A0.9500C13—C141.3967 (19)
C3—C41.402 (2)C13—H13A0.9500
C3—H3A0.9500C14—H14A0.9500
C4—C51.3810 (17)C15—H15A0.9800
C4—H4A0.9500C15—H15B0.9800
C5—C61.4080 (17)C15—H15C0.9800
C5—H5A0.9500
O1—Ni1—O1i180.000 (1)C6—C7—H7A116.9
O1—Ni1—N192.30 (4)N1—C8—C9110.50 (10)
O1i—Ni1—N187.70 (4)N1—C8—H8A109.5
O1—Ni1—N1i87.70 (4)C9—C8—H8A109.5
O1i—Ni1—N1i92.30 (4)N1—C8—H8B109.5
N1—Ni1—N1i180.00 (6)C9—C8—H8B109.5
C1—O1—Ni1128.67 (8)H8A—C8—H8B108.1
C12—O2—C15117.36 (11)C14—C9—C10117.60 (12)
C7—N1—C8114.59 (11)C14—C9—C8122.03 (11)
C7—N1—Ni1124.19 (9)C10—C9—C8120.37 (12)
C8—N1—Ni1121.22 (8)C11—C10—C9121.56 (13)
O1—C1—C6123.41 (11)C11—C10—H10A119.2
O1—C1—C2118.82 (12)C9—C10—H10A119.2
C6—C1—C2117.77 (11)C10—C11—C12119.86 (12)
C3—C2—C1120.40 (12)C10—C11—H11A120.1
C3—C2—H2A119.8C12—C11—H11A120.1
C1—C2—H2A119.8O2—C12—C13124.20 (13)
C2—C3—C4121.55 (12)O2—C12—C11115.95 (12)
C2—C3—H3A119.2C13—C12—C11119.84 (13)
C4—C3—H3A119.2C12—C13—C14119.37 (13)
C5—C4—C3118.84 (12)C12—C13—H13A120.3
C5—C4—H4A120.6C14—C13—H13A120.3
C3—C4—H4A120.6C9—C14—C13121.74 (12)
C4—C5—C6120.87 (12)C9—C14—H14A119.1
C4—C5—H5A119.6C13—C14—H14A119.1
C6—C5—H5A119.6O2—C15—H15A109.5
C5—C6—C1120.55 (11)O2—C15—H15B109.5
C5—C6—C7118.67 (12)H15A—C15—H15B109.5
C1—C6—C7120.51 (11)O2—C15—H15C109.5
N1—C7—C6126.28 (12)H15A—C15—H15C109.5
N1—C7—H7A116.9H15B—C15—H15C109.5
N1—Ni1—O1—C122.59 (11)Ni1—N1—C7—C69.30 (18)
N1i—Ni1—O1—C1157.41 (11)C5—C6—C7—N1178.90 (12)
O1—Ni1—N1—C719.81 (11)C1—C6—C7—N17.05 (19)
O1—Ni1—N1—C8159.85 (9)C7—N1—C8—C999.88 (13)
O1i—Ni1—N1—C820.15 (9)Ni1—N1—C8—C979.80 (11)
Ni1—O1—C1—C613.67 (17)N1—C8—C9—C1495.30 (14)
Ni1—O1—C1—C2166.19 (9)N1—C8—C9—C1084.93 (14)
O1—C1—C2—C3179.94 (11)C14—C9—C10—C110.7 (2)
C6—C1—C2—C30.06 (18)C8—C9—C10—C11179.09 (12)
C1—C2—C3—C40.79 (19)C9—C10—C11—C120.5 (2)
C2—C3—C4—C50.89 (19)C15—O2—C12—C133.9 (2)
C3—C4—C5—C60.13 (19)C15—O2—C12—C11175.51 (13)
C4—C5—C6—C10.71 (18)C10—C11—C12—O2178.05 (12)
C4—C5—C6—C7174.76 (11)C10—C11—C12—C131.4 (2)
O1—C1—C6—C5179.33 (11)O2—C12—C13—C14178.31 (13)
C2—C1—C6—C50.80 (17)C11—C12—C13—C141.1 (2)
O1—C1—C6—C75.40 (18)C10—C9—C14—C131.0 (2)
C2—C1—C6—C7174.74 (11)C8—C9—C14—C13178.78 (12)
C8—N1—C7—C6170.38 (11)C12—C13—C14—C90.1 (2)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C11—H11A···O2ii0.952.473.3709 (17)158
C14—H14A···O1i0.952.573.2281 (17)126
C5—H5A···Cg1iii0.952.683.3918 (13)132
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C11—H11A···O2i0.952.473.3709 (17)158
C14—H14A···O1ii0.952.573.2281 (17)126
C5—H5A···Cg1iii0.952.683.3918 (13)132
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z+1; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C15H14NO2)2]
Mr539.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.1847 (2), 5.6738 (1), 17.7620 (3)
β (°) 95.682 (1)
V3)1221.92 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.84
Crystal size (mm)0.52 × 0.30 × 0.16
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.670, 0.876
No. of measured, independent and
observed [I > 2σ(I)] reflections
14541, 3542, 3092
Rint0.019
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.074, 1.05
No. of reflections3542
No. of parameters170
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.32

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009), Mercury (Macrae et al., 2006) and publCIF (Westrip, 2010).

 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

The authors would like to acknowledge the Ministry of Education of Malaysia for research grants Nos. 600-RMI/FRGS 5/3 (51/2013) and (52/2013), Universiti Teknologi MARA for research grant No. 600-RMI/DANA 5/3/CG (15/2012), and Universiti Sains Malaysia for the use of the X-ray diffraction facilities.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBahron, H., Tajuddin, A. M., Ibrahim, W. N. W., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, m1010–m1011.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGou, Y., Liu, Y., Zhao, X. H., Li, Y. G. & Chen, W. (2013). Koord. Khim. 39, 134–140.  Web of Science CrossRef CAS Google Scholar
First citationIslam, M. A. A. A., Sheikh, M. C., Alam, M. S., Zangrando, E., Alam, M. A., Tarafder, M. T. H. & Miyatake, R. (2014). Transition Met. Chem. 39, 141–149.  Web of Science CSD CrossRef CAS Google Scholar
First citationKalita, M., Gogoi, P., Barman, P., Sarma, B., Buragohain, A. K. & Kalita, R. D. (2014). Polyhedron, 74, 93–98.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMohamed, G. G., Zayed, M. A. & Abdallah, S. M. (2010). J. Mol. Struct. 979, 62–71.  Web of Science CrossRef CAS Google Scholar
First citationMohd Tajuddin, A., Bahron, H., Kassim, K., Wan Ibrahim, W. N. & Fun, H.-K. (2012). Adv. Mater. Res. 554–556, 736–740.  CrossRef Google Scholar
First citationMohd Tajuddin, A., Bahron, H., Wan Ibrahim, W. N. & Yamin, B. M. (2010). Acta Cryst. E66, m1100.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 8| August 2014| Pages 104-106
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds