research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of [3-(4,5-di­hydro-1,3-thia­zolin-2-yl-κN)-1,3-thia­zolidine-2-thione-κS2](1,3-thia­zol­idine-2-thione-κS2)copper(I) nitrate

aDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
*Correspondence e-mail: saowanit.sa@psu.ac.th

Edited by J. Simpson, University of Otago, New Zealand (Received 27 June 2014; accepted 2 July 2014; online 19 July 2014)

The mononuclear complex salt, [Cu(C3H5NS2)(C6H8N2S3)]NO3, contains a [C9H13CuN3S5]+ cation and an NO3 anion. All of the non-H atoms of the cation lie on a mirror plane, as do the N and one O atom of the nitrate anion, such that the planes of the cation and anion are mutually orthogonal. The cationic complex adopts a slightly distorted trigonal–planar geometry about the CuI cation. In the crystal, layers parallel to (010) are generated by N—H⋯O hydrogen bonds, supported by short S⋯O [3.196 (4) and 3.038 (3) Å] and S⋯S contacts [3.4392 (13) Å]. Adjacent layers are linked by C—H⋯O hydrogen bonds and weak ππ stacking inter­actions [centroid–centroid distance = 4.0045 (10) Å] between the thia­zoline rings, forming a three-dimensional network. This stacking also imposes a close contact, of approximately 3.678 Å, between the CuI cations and the centroids of the six-membered chelate rings of mol­ecules in adjacent layers.

1. Chemical context

1,3-Thia­zolidine-2-thione (tzdSH: C3H5NS2), is a well known heterocyclic thione/thiol ligand. Crystallographic studies and investigations of its modes of coordination have been reported (Raper et al., 1998[Raper, E. S., Creighton, J. R., Clegg, W., Cucurull-Sanchez, L., Hill, M. N. S. & Akrivos, P. D. (1998). Inorg. Chim. Acta, 271, 57-64.]; Ainscough et al., 1985[Ainscough, E. W., Anderson, B. F., Baker, E. N., Bingham, A. G., Brader, M. L. & Brodie, A. M. (1985). Inorg. Chim. Acta, 105, L5-L7.]; Kubiak & Głowiak, 1987[Kubiak, M. & Głowiak, T. (1987). Acta Cryst. C43, 641-643.]; Cowie & Sielisch, 1988[Cowie, M. & Sielisch, T. (1988). J. Organomet. Chem. 34, 241-254.]; Ballester et al., 1992[Ballester, L., Coronado, E., Gutierrez, A., Mange, A., Perpifitin, M. F., Pinilla, E. & Ricot, T. (1992). Inorg. Chem. 31, 2053-2056.]; Fackler et al., 1992[Fackler, J. P., Lopez, C. A., Staples, R. J., Wang, S., Winpenny, R. E. P. & Lattimer, R. P. (1992). J. Chem. Soc. Chem. Commun. pp. 146-148.]; Saithong et al., 2007[Saithong, S., Pakawatchai, C. & Charmant, J. P. H. (2007). Acta Cryst. E63, m857-m858.]). We are inter­ested in the coordination behaviour and structure of tzdSH complexes with CuII cations. We have normally used Cu(NO3)2·3H2O as the starting material with the possibility that the NO3 anions could function as simple counter-ions to balance the charge on the metal or alternatively act as a ligand to the metal ion (Ferrer et al., 2000[Ferrer, S., Haasnoot, J. G., Reedijk, J., Müller, E., Cingi, M. B., Lanfranchi, M., Lanfredi, A. M. M. & Ribas, J. (2000). Inorg. Chem. 39, 1859-1867.]; Pal et al., 2005[Pal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S.-M., Lee, G.-H., Butcher, R. J., Fallah, M. S. E. & Ribas, J. (2005). Inorg. Chem. 44, 3880-3889.]; Khavasi et al., 2011[Khavasi, H. R., Sasan, K., Hashjin, S. S. & Zahedi, M. (2011). C. R. Chim. 14, 563-567.]). However, the tzdSH ligand could also act as a reducing agent during the reaction, converting CuII to CuI and forming 3-(2-thia­zolin-2-yl)thia­zolidine-2-thione [tztzdt or C6H8N2S3] in the process. A similar reduction reaction was described previously by Ainscough et al. (1985[Ainscough, E. W., Anderson, B. F., Baker, E. N., Bingham, A. G., Brader, M. L. & Brodie, A. M. (1985). Inorg. Chim. Acta, 105, L5-L7.]). Complexation of the resulting CuI cation to both the tztzdt ligand thus formed, and to tzdSH generates the title compound.

[Scheme 1]

2. Structural commentary

The title compound is a mononuclear CuI complex and its structure is shown in Fig. 1[link]. The CuI atom has a distorted trigonal–planar coordination geometry and is chelated by the exocyclic S3 atom and the N3 atom of the thia­zolidine ring of the tztzdt ligand, forming a six-membered chelate ring. The trigonal coordination sphere is completed by the exocyclic S1 atom of the tzdSH ligand. The NO3 acts solely as counter-ion. The complex mol­ecule is strictly planar as all non-hydrogen atoms of the complex lie on a mirror plane. Atoms N4 and O1 of the nitrate counter-ion also lie on a mirror plane, such that the mirror plane of the cationic complex is perpendicular to that of the NO3 anion. The Cu1—S1 [2.1774 (9) Å], and Cu1—N3 [1.956 (3) Å] bond lengths are not unusual in comparison with the mean values [Cu—S = 2.21 (3) and Cu—N = 1.99 (3) Å] found in the Cambridge Structural Database. In contrast, the Cu1—S1 distance of 2.1774 (9) Å is somewhat shorter than those previously reported for other CuI complexes of tzdSH [mean Cu—S = 2.33 (1) Å].

[Figure 1]
Figure 1
Mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. [Symmetry code: (i) x, −y + ½, z.]

3. Supra­molecular features

In the crystal, layers are generated parallel to (010) by classical N1—H1⋯O1 hydrogen bonds (Table 1[link]) supported by short S2⋯O2 [3.038 (3) Å], S5⋯O2 [3.196 (4) Å] and S1⋯S4 [3.4392 (13) Å] contacts (Fig. 2[link]). Adjacent layers are linked by C5—H5A⋯O1 hydrogen bonds and weak ππ stacking inter­actions [centroid–centroid distance 4.0045 (10) Å] between the thia­zoline rings of a tzdSH ligand with those of tztzdt ligands in adjacent layers, forming a three-dimensional network. This stacking also imposes a close contact, of approximately 3.678 Å, between the copper cations and the centroids of the six-membered Cu1, S3, C4, N2, C7, N3 chelate rings of the mol­ecules in the adjacent layers (Fig. 3[link]). The three-dimensional network of stacked layers is shown in Fig. 4[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.84 (2) 2.25 (2) 2.981 (4) 146 (2)
N1—H1⋯O1ii 0.84 (2) 2.25 (2) 2.981 (4) 146 (2)
C5—H5A⋯O1iii 0.97 2.62 3.388 (4) 136
Symmetry codes: (i) x+1, y, z; (ii) [x+1, -y+{\script{1\over 2}}, z]; (iii) -x, -y, -z+1.
[Figure 2]
Figure 2
Two-dimensional sheets of mol­ecules parallel to (010). Hydrogen bonds are drawn as dashed lines and H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 3]
Figure 3
ππ stacking inter­actions between mol­ecules. Centroid–centroid and unusual Cu1–centroid contacts are drawn as dotted lines with the centroids shown as coloured spheres. Hydrogen bonds are drawn as dashed lines and H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 4]
Figure 4
The overall packing of the title compound. Hydrogen bonds are drawn as dashed lines and H atoms not involved in hydrogen bonding have been omitted for clarity.

4. Database survey

Only four discrete reports are given of transition-metal complexes with the metal atom chelated by the tztzdt ligand. All are copper complexes, three of CuI (Lobana et al., 2013[Lobana, T. S., Sultana, R., Butcher, R. J., Castineiras, A., Akitsu, T., Fernandez, F. J. & Cristina Vega, M. (2013). Eur. J. Inorg. Chem. pp. 5161-5170.]) and the fourth a CuII coordination polymer (Ainscough et al., 1985[Ainscough, E. W., Anderson, B. F., Baker, E. N., Bingham, A. G., Brader, M. L. & Brodie, A. M. (1985). Inorg. Chim. Acta, 105, L5-L7.]). Complexes of tzdSH are more plentiful with 29 unique entries, ten of which involve CuI cations (see, for example: Lobana et al., 2013[Lobana, T. S., Sultana, R., Butcher, R. J., Castineiras, A., Akitsu, T., Fernandez, F. J. & Cristina Vega, M. (2013). Eur. J. Inorg. Chem. pp. 5161-5170.]; Raper et al., 1998[Raper, E. S., Creighton, J. R., Clegg, W., Cucurull-Sanchez, L., Hill, M. N. S. & Akrivos, P. D. (1998). Inorg. Chim. Acta, 271, 57-64.]).

5. Synthesis and crystallization

1,3-Thia­zolidine-2-thione (0.1 g, 0.084 mmol) was added to a solution of Cu(NO3)2·3H2O (0.07 g, 0.039 mmol) in an MeOH: EtOH solvent mixture (1/1 v/v) at 340 K. The mixture was refluxed for 5 h. Rod-like yellow crystals appeared after the light-brown filtrate had been kept at room temperature for a day (yield 10%). The crystals melt and decompose at 434–436 K.

6. Refinement

The N1—H1 hydrogen atom was located in a difference map and its coordinates were refined with Uiso(H) = 1.2Ueq(N). The hydrogen atoms of the methyl­ene groups were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.97 Å and Uiso = 1.2Ueq(C). Experimental details are given in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Cu(C3H5NS2)(C6H8N2S3)]NO3
Mr 449.13
Crystal system, space group Monoclinic, P21/m
Temperature (K) 293
a, b, c (Å) 9.8937 (6), 6.9932 (5), 11.8054 (7)
β (°) 102.078 (1)
V3) 798.72 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.04
Crystal size (mm) 0.35 × 0.12 × 0.06
 
Data collection
Diffractometer Bruker APEX CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2003[Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.814, 1.000
No. of measured, independent and observed [I > 2s(I)] reflections 8700, 1534, 1402
Rint 0.026
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.080, 1.07
No. of reflections 1534
No. of parameters 133
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.37, −0.27
Computer programs: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2003[Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

1,3-Thia­zolidine-2-thione (tzdSH: C3H5NS2), is a well known, heterocyclic thione/thiol ligand. Crystallographic studies and investigations of its modes of coordination have been reported (Raper et al., 1998; Ainscough et al., 1985; Kubiak & Głowiak, 1987; Cowie & Sielisch, 1988; Ballester et al., 1992; Fackler et al., 1992; Saithong et al., 2007). We are inter­ested in the coordination behaviour and structure of tzdSH complexes with CuII cations. We have normally used Cu(NO3)2.3H2O as the starting material with the possibility that the NO3- anions could function as simple counter-ions to balance the charge on the metal or alternatively act as a ligand to the metal ion (Ferrer et al., 2000; Pal et al., 2005; Khavasi et al., 2011). However, the tzdSH ligand could also act as a reducing agent during the reaction, converting CuII to CuI) and forming 3-(2-thia­zolin-2-yl)thia­zolidine-2-thione [tztzdt or C6H8N2S3] in the process. A similar reduction reaction was described previously by Ainscough et al. (1985). Complexation of the resulting CuI cation to both the tztzdt ligand thus formed, and to tzdSH generates the title compound.

Structural commentary top

The title compound is a mononuclear CuI complex and its structure is shown in Fig I. The CuI atom has a distorted trigonal–planar geometry and is chelated by the exocyclic S3 atom and the N3 atom of the thia­zolidine ring of the tztzdt ligand, forming a six-membered chelate ring. The trigonal coordination sphere is completed by the exocyclic S1 atom of the tzdSH ligand. The NO3- acts solely as counter-ion. The complex molecule is strictly planar as all non-hydrogen atoms of the complex lie on a mirror plane. Atoms N4 and O1 of the nitrate counter-ion also lie on a mirror plane, such that the mirror plane of the cationic complex is perpendicular to that of the NO3- anion. The Cu1—S1 [2.1774 (9) Å], and Cu1—N3 [1.956 (3) Å] bond lengths are not unusual in comparison with the mean values [Cu—S = 2.21 (3) and Cu—N = 1.99 (3) Å] found in the Cambridge Structural Database. In contrast, the Cu1—S1 distance of 2.1774 (9) Å is somewhat shorter than those previously reported for other CuI complexes of tzdSH [mean Cu—S = 2.33 (1) Å].

Supra­molecular features top

In the crystal, layers are generated parallel to the (010) plane by classical N1—H1···O1 hydrogen bonds (Table 1) supported by short S2···O2 [3.038 (3) Å], S5···O2 [3.196 (4) Å] and S1···S4 [3.4392 (13) Å] contacts (Fig 2). Adjacent layers are linked by C5—H5A···O1 hydrogen bonds and weak ππ stacking inter­actions [centroid–centroid distance 4.0045 (10) Å] between the thia­zoline rings of a tzdSH ligand with those of tztzdt ligands in adjacent layers, forming a three-dimensional network. This stacking also imposes a close contact, of approximately 3.678 Å, between the copper cations and the centroids of the six-membered Cu1, S3, C4, N2, C7, N3 chelate rings of the molecules in the adjacent layers (Fig 3). The three dimensional network of stacked layers is shown in Fig. 4.

Database survey top

Only four discrete reports of transition-metal complexes with the metal atom chelated by the tztzdt ligand. All are copper complexes, three of CuI (Lobana et al., 2013) and the fourth a CuII coordination polymer (Ainscough et al., 1985). Complexes of tzdSH are more plentiful with 29 unique entries, ten of which involve CuI cations (see, for example, Lobana et al., 2013; Raper et al., 1998).

Synthesis and crystallization top

1,3-Thia­zolidine-2-thione (0.1 g, 0.084 mmol) was added to a solution of Cu(NO3)2.3H2O (0.07 g, 0.039 mmol) in an MeOH: EtOH solvent mixture (1/1 v/v) at 340 K. The mixture was refluxed for 5 h. Rod-like yellow crystals appeared after the light-brown filtrate had been kept at room temperature for a day (yield 10%). The crystals melt and decompose at 434–436 K.

Refinement top

The N1—H1 hydrogen atom was located in a difference map and its coordinates were refined with Uiso(H) = 1.2Ueq(N). The hydrogen atoms of the methyl­ene groups were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.97 Å and Uiso = 1.2Ueq(C).

Related literature top

For related literature, see: Ainscough et al. (1985); Ballester et al. (1992); Cowie & Sielisch (1988); Fackler et al. (1992); Ferrer et al. (2000); Khavasi et al. (2011); Kubiak & Głowiak (1987); Lobana et al. (2013); Pal et al. (2005); Raper et al. (1998); Saithong et al. (2007).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: ShelXle (Hübschle et al., 2011) and SHELXTL (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. [Symmetry code: (i) x, -y+1/2, z.]
[Figure 2] Fig. 2. Two-dimensional sheets of molecules parallel to (010). Hydrogen bonds are drawn as dashed lines and H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 3] Fig. 3. ππ stacking interactions between molecules. Centroid–centroid and unusual Cu1–centroid contacts are drawn as dotted lines with the centroids shown as coloured spheres. Hydrogen bonds are drawn as dashed lines and H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 4] Fig. 4. The overall packing of the title compound. Hydrogen bonds are drawn as dashed lines and H atoms not involved in hydrogen bonding have been omitted for clarity.
[3-(4,5-Dihydro-1,3-thiazolin-2-yl-κN)-1,3-thiazolidine-2-thione-κS2](1,3-thiazolidine-2-thione-κS2)copper(I) nitrate top
Crystal data top
[Cu(C3H5NS2)(C6H8N2S3)]NO3F(000) = 456
Mr = 449.13Dx = 1.867 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 3943 reflections
a = 9.8937 (6) Åθ = 2.5–28.0°
b = 6.9932 (5) ŵ = 2.04 mm1
c = 11.8054 (7) ÅT = 293 K
β = 102.078 (1)°Block, yellow
V = 798.72 (9) Å30.35 × 0.12 × 0.06 mm
Z = 2
Data collection top
Bruker APEX CCD area-detector
diffractometer
1534 independent reflections
Radiation source: fine-focus sealed tube1402 reflections with I > 2s(I)
Graphite monochromatorRint = 0.026
Frames, each covering 0.3 ° in ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1111
Tmin = 0.814, Tmax = 1.000k = 88
8700 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0471P)2 + 0.3435P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
1534 reflectionsΔρmax = 0.37 e Å3
133 parametersΔρmin = 0.27 e Å3
1 restraintExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0074 (13)
Crystal data top
[Cu(C3H5NS2)(C6H8N2S3)]NO3V = 798.72 (9) Å3
Mr = 449.13Z = 2
Monoclinic, P21/mMo Kα radiation
a = 9.8937 (6) ŵ = 2.04 mm1
b = 6.9932 (5) ÅT = 293 K
c = 11.8054 (7) Å0.35 × 0.12 × 0.06 mm
β = 102.078 (1)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
1534 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
1402 reflections with I > 2s(I)
Tmin = 0.814, Tmax = 1.000Rint = 0.026
8700 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0291 restraint
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.37 e Å3
1534 reflectionsΔρmin = 0.27 e Å3
133 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on al data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.53707 (4)0.25000.52014 (4)0.05377 (19)
S10.75417 (8)0.25000.60684 (7)0.0471 (2)
S20.61224 (9)0.25000.80799 (8)0.0494 (2)
S30.34723 (10)0.25000.58878 (8)0.0641 (3)
S40.05567 (9)0.25000.50537 (9)0.0571 (3)
S50.28736 (10)0.25000.15159 (7)0.0527 (3)
N10.8731 (3)0.25000.8311 (3)0.0509 (7)
H10.951 (3)0.25000.813 (3)0.061*
N20.2147 (3)0.25000.3586 (2)0.0404 (6)
N30.4543 (3)0.25000.3544 (2)0.0446 (6)
C10.7591 (3)0.25000.7514 (3)0.0408 (7)
C20.7099 (4)0.25000.9567 (3)0.0565 (9)
H2A0.68790.36260.99730.068*0.50
H2B0.68790.13740.99730.068*0.50
C30.8615 (4)0.25000.9509 (3)0.0654 (11)
H3A0.90660.36240.98970.079*0.50
H3B0.90660.13760.98970.079*0.50
C40.2171 (3)0.25000.4737 (3)0.0434 (7)
C50.0321 (4)0.25000.3563 (4)0.0737 (12)
H5A0.09010.13750.33960.088*0.50
H5B0.09010.36250.33960.088*0.50
C60.0736 (3)0.25000.2847 (3)0.0592 (10)
H6A0.06180.36230.23540.071*0.50
H6B0.06180.13770.23540.071*0.50
C70.3273 (3)0.25000.3040 (3)0.0392 (7)
C80.4694 (4)0.25000.1485 (3)0.0577 (9)
H8A0.49260.13740.10850.069*0.50
H8B0.49260.36260.10850.069*0.50
C90.5473 (4)0.25000.2725 (3)0.0542 (9)
H9A0.60620.13790.28610.065*0.50
H9B0.60620.36210.28610.065*0.50
N40.2237 (3)0.25000.8549 (2)0.0596 (9)
O10.1564 (3)0.1019 (4)0.8343 (2)0.1071 (8)
O20.3440 (3)0.25000.8948 (3)0.1254 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0365 (3)0.0762 (4)0.0445 (3)0.0000.00081 (18)0.000
S10.0334 (4)0.0643 (5)0.0435 (5)0.0000.0076 (3)0.000
S20.0366 (4)0.0644 (5)0.0474 (5)0.0000.0093 (4)0.000
S30.0403 (5)0.1106 (8)0.0396 (5)0.0000.0045 (4)0.000
S40.0369 (5)0.0729 (6)0.0632 (6)0.0000.0145 (4)0.000
S50.0501 (5)0.0668 (6)0.0383 (4)0.0000.0025 (4)0.000
N10.0345 (15)0.0683 (19)0.0471 (16)0.0000.0020 (12)0.000
N20.0313 (13)0.0443 (14)0.0427 (15)0.0000.0010 (11)0.000
N30.0350 (14)0.0541 (16)0.0438 (15)0.0000.0059 (11)0.000
C10.0339 (16)0.0407 (16)0.0461 (18)0.0000.0046 (13)0.000
C20.060 (2)0.066 (2)0.0425 (18)0.0000.0085 (16)0.000
C30.053 (2)0.091 (3)0.047 (2)0.0000.0020 (17)0.000
C40.0358 (16)0.0442 (17)0.0495 (18)0.0000.0076 (14)0.000
C50.039 (2)0.110 (4)0.068 (3)0.0000.0015 (18)0.000
C60.0361 (18)0.080 (3)0.055 (2)0.0000.0037 (16)0.000
C70.0390 (17)0.0391 (16)0.0380 (16)0.0000.0044 (13)0.000
C80.055 (2)0.069 (2)0.052 (2)0.0000.0168 (17)0.000
C90.0401 (18)0.072 (2)0.052 (2)0.0000.0131 (15)0.000
N40.0409 (17)0.101 (3)0.0340 (15)0.0000.0022 (12)0.000
O10.110 (2)0.0932 (18)0.122 (2)0.0237 (16)0.0328 (17)0.0061 (17)
O20.0409 (16)0.273 (6)0.0588 (18)0.0000.0021 (14)0.000
Geometric parameters (Å, º) top
Cu1—N31.956 (3)C2—C31.516 (5)
Cu1—S12.1774 (9)C2—H2A0.9700
Cu1—S32.1957 (10)C2—H2B0.9700
S1—C11.698 (3)C3—H3A0.9700
S2—C11.721 (3)C3—H3B0.9700
S2—C21.818 (4)C5—C61.475 (6)
S3—C41.665 (3)C5—H5A0.9700
S4—C41.715 (3)C5—H5B0.9700
S4—C51.792 (4)C6—H6A0.9700
S5—C71.760 (3)C6—H6B0.9700
S5—C81.810 (4)C8—C91.505 (5)
N1—C11.308 (4)C8—H8A0.9700
N1—C31.443 (5)C8—H8B0.9700
N1—H10.841 (19)C9—H9A0.9700
N2—C41.354 (4)C9—H9B0.9700
N2—C71.398 (4)N4—O21.185 (4)
N2—C61.483 (4)N4—O11.228 (3)
N3—C71.273 (4)N4—O1i1.228 (3)
N3—C91.468 (4)
N3—Cu1—S1129.45 (8)N2—C4—S4113.4 (2)
N3—Cu1—S399.07 (8)S3—C4—S4114.7 (2)
S1—Cu1—S3131.48 (4)C6—C5—S4107.9 (3)
C1—S1—Cu1106.90 (11)C6—C5—H5A110.1
C1—S2—C293.06 (16)S4—C5—H5A110.1
C4—S3—Cu1105.89 (12)C6—C5—H5B110.1
C4—S4—C593.88 (18)S4—C5—H5B110.1
C7—S5—C890.55 (16)H5A—C5—H5B108.4
C1—N1—C3118.1 (3)C5—C6—N2110.9 (3)
C1—N1—H1121 (3)C5—C6—H6A109.5
C3—N1—H1121 (3)N2—C6—H6A109.5
C4—N2—C7127.9 (3)C5—C6—H6B109.5
C4—N2—C6114.0 (3)N2—C6—H6B109.5
C7—N2—C6118.1 (3)H6A—C6—H6B108.1
C7—N3—C9112.7 (3)N3—C7—N2126.0 (3)
C7—N3—Cu1129.3 (2)N3—C7—S5117.8 (2)
C9—N3—Cu1118.0 (2)N2—C7—S5116.2 (2)
N1—C1—S1124.2 (3)C9—C8—S5106.8 (2)
N1—C1—S2113.1 (2)C9—C8—H8A110.4
S1—C1—S2122.75 (18)S5—C8—H8A110.4
C3—C2—S2106.7 (3)C9—C8—H8B110.4
C3—C2—H2A110.4S5—C8—H8B110.4
S2—C2—H2A110.4H8A—C8—H8B108.6
C3—C2—H2B110.4N3—C9—C8112.1 (3)
S2—C2—H2B110.4N3—C9—H9A109.2
H2A—C2—H2B108.6C8—C9—H9A109.2
N1—C3—C2109.0 (3)N3—C9—H9B109.2
N1—C3—H3A109.9C8—C9—H9B109.2
C2—C3—H3A109.9H9A—C9—H9B107.9
N1—C3—H3B109.9O2—N4—O1122.47 (18)
C2—C3—H3B109.9O2—N4—O1i122.47 (18)
H3A—C3—H3B108.3O1—N4—O1i115.0 (4)
N2—C4—S3131.9 (3)
N3—Cu1—S1—C1180.0Cu1—S3—C4—S4180.0
S3—Cu1—S1—C10.0C5—S4—C4—N20.0
N3—Cu1—S3—C40.0C5—S4—C4—S3180.0
S1—Cu1—S3—C4180.0C4—S4—C5—C60.0
S1—Cu1—N3—C7180.0S4—C5—C6—N20.0
S3—Cu1—N3—C70.0C4—N2—C6—C50.0
S1—Cu1—N3—C90.0C7—N2—C6—C5180.0
S3—Cu1—N3—C9180.0C9—N3—C7—N2180.0
C3—N1—C1—S1180.0Cu1—N3—C7—N20.0
C3—N1—C1—S20.0C9—N3—C7—S50.0
Cu1—S1—C1—N1180.0Cu1—N3—C7—S5180.0
Cu1—S1—C1—S20.0C4—N2—C7—N30.0
C2—S2—C1—N10.0C6—N2—C7—N3180.0
C2—S2—C1—S1180.0C4—N2—C7—S5180.0
C1—S2—C2—C30.0C6—N2—C7—S50.0
C1—N1—C3—C20.000 (1)C8—S5—C7—N30.0
S2—C2—C3—N10.000 (1)C8—S5—C7—N2180.0
C7—N2—C4—S30.0C7—S5—C8—C90.0
C6—N2—C4—S3180.0C7—N3—C9—C80.0
C7—N2—C4—S4180.0Cu1—N3—C9—C8180.0
C6—N2—C4—S40.0S5—C8—C9—N30.0
Cu1—S3—C4—N20.0
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1ii0.84 (2)2.25 (2)2.981 (4)146 (2)
N1—H1···O1iii0.84 (2)2.25 (2)2.981 (4)146 (2)
C5—H5A···O1iv0.972.623.388 (4)136
Symmetry codes: (ii) x+1, y, z; (iii) x+1, y+1/2, z; (iv) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.841 (19)2.25 (2)2.981 (4)146 (2)
N1—H1···O1ii0.841 (19)2.25 (2)2.981 (4)146 (2)
C5—H5A···O1iii0.972.623.388 (4)135.8
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C3H5NS2)(C6H8N2S3)]NO3
Mr449.13
Crystal system, space groupMonoclinic, P21/m
Temperature (K)293
a, b, c (Å)9.8937 (6), 6.9932 (5), 11.8054 (7)
β (°) 102.078 (1)
V3)798.72 (9)
Z2
Radiation typeMo Kα
µ (mm1)2.04
Crystal size (mm)0.35 × 0.12 × 0.06
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.814, 1.000
No. of measured, independent and
observed [I > 2s(I)] reflections
8700, 1534, 1402
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.080, 1.07
No. of reflections1534
No. of parameters133
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.27

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 2003), ShelXle (Hübschle et al., 2011) and SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

 

Acknowledgements

We are grateful to the Center of Excellence for Innovation in Chemistry (PERCH–CIC), Office of the Higher Education Commission, Ministry of Education, and the Department of Chemistry, Faculty of Science, Prince of Songkla University, for financial support. We also thank Professor Dr Brian Hodgson, Faculty of Science, Prince of Songkla University, for reading the manuscript and providing valuable comments.

References

First citationAinscough, E. W., Anderson, B. F., Baker, E. N., Bingham, A. G., Brader, M. L. & Brodie, A. M. (1985). Inorg. Chim. Acta, 105, L5–L7.  CSD CrossRef CAS Web of Science Google Scholar
First citationBallester, L., Coronado, E., Gutierrez, A., Mange, A., Perpifitin, M. F., Pinilla, E. & Ricot, T. (1992). Inorg. Chem. 31, 2053–2056.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCowie, M. & Sielisch, T. (1988). J. Organomet. Chem. 34, 241–254.  CSD CrossRef Web of Science Google Scholar
First citationFackler, J. P., Lopez, C. A., Staples, R. J., Wang, S., Winpenny, R. E. P. & Lattimer, R. P. (1992). J. Chem. Soc. Chem. Commun. pp. 146–148.  CrossRef Web of Science Google Scholar
First citationFerrer, S., Haasnoot, J. G., Reedijk, J., Müller, E., Cingi, M. B., Lanfranchi, M., Lanfredi, A. M. M. & Ribas, J. (2000). Inorg. Chem. 39, 1859–1867.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKhavasi, H. R., Sasan, K., Hashjin, S. S. & Zahedi, M. (2011). C. R. Chim. 14, 563–567.  Web of Science CSD CrossRef CAS Google Scholar
First citationKubiak, M. & Głowiak, T. (1987). Acta Cryst. C43, 641–643.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLobana, T. S., Sultana, R., Butcher, R. J., Castineiras, A., Akitsu, T., Fernandez, F. J. & Cristina Vega, M. (2013). Eur. J. Inorg. Chem. pp. 5161–5170.  Web of Science CSD CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S.-M., Lee, G.-H., Butcher, R. J., Fallah, M. S. E. & Ribas, J. (2005). Inorg. Chem. 44, 3880–3889.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRaper, E. S., Creighton, J. R., Clegg, W., Cucurull-Sanchez, L., Hill, M. N. S. & Akrivos, P. D. (1998). Inorg. Chim. Acta, 271, 57–64.  Web of Science CSD CrossRef CAS Google Scholar
First citationSaithong, S., Pakawatchai, C. & Charmant, J. P. H. (2007). Acta Cryst. E63, m857–m858.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds