research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Isotypic crystal structures of 2,6-di­bromo-N,N-bis­­(4-nitro­phen­yl)aniline and 2,6-di­chloro-N,N-bis­­(4-nitro­phen­yl)aniline

aInstitute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, A-1060 Vienna, Austria, and bInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, Vienna University of Technology, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria
*Correspondence e-mail: mweil@mail.zserv.tuwien.ac.at

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 13 February 2014; accepted 13 May 2014; online 19 July 2014)

In the mol­ecules of the two isotypic title compounds, C18H11Br2N3O4 (I) and C18H11Cl2N3O4 (II), the tri­phenyl­amine N atoms show no sign of pyramidalization, with marginal displacements of the N atoms from the mean plane of the three connecting C atoms: 0.0058 (13) Å for the Br compound (I) and 0.0074 (9) Å for the Cl compound (II). In the crystals, mol­ecules are linked through C—H⋯O hydrogen bonds between phenyl rings and nitro groups and by X⋯O (X = Br, Cl) inter­actions, that are shorter than the sum of the van der Waals radii, leading to a three-dimensional network.

1. Chemical context

Aryl­amines are among the most important electron donors for functional organic materials, e.g. organic light emitting diodes (OLEDs) (Shirota & Kageyama, 2007[Shirota, Y. & Kageyama, H. (2007). Chem. Rev. 107, 953-1010.]; Tao et al., 2011[Tao, Y., Yang, C. & Qin, J. (2011). Chem. Soc. Rev. 40, 2943-2970.]; Yook & Lee, 2012[Yook, K. S. & Lee, J. Y. (2012). Adv. Mater. 24, 3169-3190.]). In particular, tri­phenyl­amine-based compounds have received great attention due to their good hole-transport properties. Substituted tri­phenyl­amines are therefore highly desirable for further chemical modification, for example, cross-coupling or C—H activation.

[Scheme 1]

We have investigated the conversion of 2,6-dihalogenated anilines (X = Cl, Br) with 1-fluoro-4-nitro­benzene. Despite the sterical demand of the halogen substituents, no di­phenyl­amine inter­mediates were obtained whereas the title tetra-substituted tri­phenyl­amines (I)[link] and (II)[link] could be isolated and their crystal structures are reported here.

2. Structural commentary

Representative for both structures, the mol­ecular structure of compound (II)[link] is displayed in Fig. 1[link]. The isotypic relation of both structures is reflected in the nearly identical bond lengths and angles in the mol­ecules of (I)[link] and (II)[link], and as expected, only the C—X distances (X = Br, Cl) differ significantly. The N atoms in both structures show no pyramidalization, with only marginal displacements from the planes of the bonded C atoms (C1/C7/C13) of 0.0058 (13) Å for (I)[link] and of 0.0074 (9) Å for (II)[link].

[Figure 1]
Figure 1
The mol­ecular structure of compound (II)[link], with atom labelling. Displacement ellipsoids are drawn at the 70% probability level.

The dihedral angles between the benzene rings are 88.98 (7) (C1–C6)/(C13–C18), 82.07 (7) (C1–C6)/(C7–C12) and 51.97 (6)° (C7–C12)/(C13–C18) for (I)[link]. The corresponding values for (II)[link] are 89.34 (4), 81.76 (5) and 49.41 (4)°.

The nitro groups are twisted slightly out of the plane of the benzene ring to which they are attached with dihedral angles of 8.29 (19) [(N3/O3/O4) / (C13–C18)] and 4.60 (19)° [(N2/O1/O2) / (C7–C11)] for (I)[link]. The corresponding values for (II)[link] are 5.85 (13) and 4.81 (12)°.

3. Supra­molecular features

The crystal packing of the structures of both (I)[link] and (II)[link] is consolidated by weak —C—H⋯O—N inter­actions (Tables 1[link] and 2[link]) and X⋯O contacts that are shorter than the sum of the van der Waals radii (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]) of the respective elements. For (I)[link] the Br⋯O contact is 3.3557 (13) Å, and for (II)[link] the Cl⋯O contact is 3.2727 (9) Å. Both types of inter­molecular inter­actions lead to the formation of a three-dimensional network (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H1C5⋯O3i 0.96 2.37 3.175 (2) 141
C12—H1C12⋯O2ii 0.96 2.49 3.347 (2) 148
Symmetry codes: (i) x, y, z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H1C5⋯O3i 0.96 2.35 3.1950 (15) 147
C12—H1C12⋯O2ii 0.96 2.48 3.3304 (15) 148
Symmetry codes: (i) x, y, z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A view of the crystal packing of compound (I)[link], sustained by Br⋯O van der Waals contacts [dashed lines; weak C—H⋯O inter­actions are also present but are not shown for clarity; colour code: O red, C grey, Br ochre, H white]. The displacement ellipsoids are drawn at the 70% probability level.

4. Database survey

A search of the Cambridge Structural Database (Version 5.35, last update February 2014; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) indicated the presence of 759 mol­ecules containing a tri­phenyl­amine backbone or of their metal-organic derivatives; they exclude, however, ring-closed systems such as N-phenyl­carbazoles or N-phenyl­pheno­thia­zines. None of these 759 mol­ecules possesses the substitution pattern of the title compounds, viz. two para- and one ortho,ortho-substituted benzenes with respect to the N atom. The crystal structures of one para-nitro-substituted tri­phenyl­amine, viz. tris-(4-nitro­phen­yl)amine (Welch et al., 2005[Welch, J., Klapötke, T. M. & Polborn, K. (2005). Private Communication (refcode BOBMAG01). CCDC, Cambridge, England.]) and one ortho,ortho-di­chloro-substituted tri­phenyl­amine, viz. tris-(2,3,4,5,6-penta­chloro­phen­yl)amine (Hayes et al., 1980[Hayes, K. S., Nagumo, M., Blount, J. F. & Mislow, K. (1980). J. Am. Chem. Soc. 102, 2773-2776.]) have been reported. As in the title compounds, in both of these mol­ecules the N atom is virtually coplanar with the three connecting C atoms. In the crystal structure of unsubstituted tri­phenyl­amine (Sobolev et al., 1985[Sobolev, A. N., Belsky, V. K., Romm, I. P., Chernikova, N. Yu. & Guryanova, E. N. (1985). Acta Cryst. C41, 967-971.]), on the other hand, in three out of four mol­ecules, the N atom is located distinctly out of the plane defined by the connecting C atoms.

5. Synthesis and crystallization

Compound (I)[link] was prepared by heating 2,6-di­chloro­aniline (405 mg, 2.50 mmol, 1.0 eq.), 1-fluoro-4-nitro­benzene (353 mg, 2.50 mmol, 1.0 eq.) and Cs2CO3 (896 mg, 2.75 mmol, 1.1 eq.) in DMSO (5 ml) at 413 K for 26 h in a capped vial using a heating block. After cooling, the reaction mixture was poured into water and the aqueous phase was extracted with CH2Cl2. The combined organic phases were dried over anhydrous Na2SO4 and concentrated under reduced pressure. Compound (I)[link] was obtained after column chromatography (light petroleum:EtOAc 7:3) as a yellow solid (374 mg, 0.93 mmol, 74%). Yellow single crystals were grown from a CDCl3 solution by slow evaporation of the solvent. Spectroscopic data for compound (I)[link] are available in the archived CIF.

Compound (II)[link] was prepared by heating 2,6-di­bromo­aniline (627 mg, 2.50 mmol, 1.0 eq.), 1-fluoro-4-nitro­benzene (353 mg, 2.50 mmol, 1.0 eq.) and Cs2CO3 (896 mg, 2.75 mmol, 1.1 eq.) in DMSO (5 ml) at 413 K for 18 h in a capped vial using a heating block. After cooling, the reaction mixture was poured into water and the aqueous phase was extracted with CH2Cl2. The combined organic phases were dried over anhydrous Na2SO4 and concentrated under reduced pressure. Compound (II)[link] was obtained after crystallization from an EtOH/toluene mixture as a brown solid (237 mg, 0.48 mmol, 38%). Yellow single crystals were grown from a CDCl3 solution by slow evaporation of the solvent. Spectroscopic data for compound (II)[link] are available in the archived CIF.

6. Refinement

The hydrogen atoms in both structures, (I)[link] and (II)[link], were clearly discernible from difference Fourier maps and were refined as riding with C—H = 0.96 Å and Uiso(H) = 1.2Ueq(C). Experimental details are given in Table 3[link].

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C18H11Br2N3O4 C18H11Cl2N3O4
Mr 493.1 404.2
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 100 100
a, b, c (Å) 13.4705 (7), 11.6686 (6), 11.7081 (7) 13.3117 (3), 11.5460 (3), 11.7558 (3)
β (°) 107.576 (2) 108.7971 (10)
V3) 1754.39 (17) 1710.46 (7)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 4.65 0.41
Crystal size (mm) 0.80 × 0.56 × 0.20 0.76 × 0.65 × 0.35
 
Data collection
Diffractometer Bruker KAPPA APEXII CCD Bruker KAPPA APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.055, 0.390 0.74, 0.87
No. of measured, independent and observed [I > 3σ(I)] reflections 52187, 7731, 5557 29061, 4959, 4374
Rint 0.045 0.031
(sin θ/λ)max−1) 0.808 0.704
 
Refinement
R[F2 > 3σ(F2)], wR(F2), S 0.034, 0.079, 1.36 0.034, 0.131, 1.39
No. of reflections 7731 4959
No. of parameters 244 244
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.00, −0.91 0.24, −0.23
Computer programs: APEX2 and SAINT-Plus (Bruker, 2013[Bruker (2013). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), JANA2006 (Petříček et al., 2014[Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

Aryl­amines are among the most important electron donors for functional organic materials, e.g. organic light emitting diodes (OLEDs) (Shirota & Kageyama, 2007; Tao et al., 2011; Yook & Lee, 2012). In particular, tri­phenyl­amine-based compounds have received great attention due to their good hole-transport properties. Substituted tri­phenyl­amines are therefore highly desirable for further chemical modification, for example, cross-coupling or C—H activation.

We have investigated the conversion of 2,6-dihalogenated anilines (X = Cl, Br) with 1-fluoro-4-nitro­benzene. Despite the sterical demand of the halogen substituents, no di­phenyl­amine inter­mediates were obtained whereas the title tetra-substituted tri­phenyl­amines (I) and (II) could be isolated and their crystal structures are reported here.

Structural commentary top

Representative for both structures, the molecular structure of compound (II) is displayed in Fig. 1. The isotypic relation of both structures is reflected in the nearly identical bond distances and angles in the molecules of (I) and (II), and as expected, only the C—X distances (X = Br, Cl) differ significantly. The N atoms in both structures show no pyramidalization, with only marginal displacements from the planes of the bonded C atoms (C1/C7/C13) of 0.0058 (13) Å for (I) and of 0.0074 (9) Å for (II).

The dihedral angles between the benzene rings are 88.98 (7) (C1–C6)/(C13–C18), 82.07 (7) (C1–C6)/(C7–C12) and 51.97 (6)° (C7–C12)/(C13–C18) for (I). The corresponding values for (II) are 89.34 (4), 81.76 (5) and 49.41 (4)°.

The nitro groups are twisted slightly out of the plane of the benzene ring to which they are attached with dihedral angles of 8.29 (19) [(N3/O3/O4) / (C13–C18)] and 4.60 (19)° [(N2/O1/O2) / (C7–C11)] for (I). The corresponding values for (II) are 5.85 (13) and 4.81 (12)°.

Supra­molecular features top

The crystal packing of the structures of both (I) and (II) is consolidated by weak —C—H···O—N inter­actions (Table 1) and X···O contacts that are shorter than the sum of the van der Waals radii (Bondi, 1964) of the respective elements. For (I) the Br···O contact is 3.3557 (13) Å, and for (II) the Cl···O contact is 3.2727 (9) Å. Both types of inter­molecular inter­actions lead to the formation of a three-dimensional network (Fig. 2).

Database survey top

A search of the Cambridge Structural Database (CSD, V5.35, last update Nov. 2013; Allen, 2002) indicated the presence of 759 molecules containing a tri­phenyl­amine backbone or of their metal-organic derivatives; they exclude, however, ring-closed systems such as N-phenyl­carbazoles or N-phenyl­pheno­thia­zines. None of these 759 molecules possesses the substitution pattern of the title compounds, viz. two para- and one ortho,ortho-substituted benzenes with respect to the N atom. The crystal structures of one para-nitro-substituted tri­phenyl­amine, viz. tris-(4-nitro­phenyl)­amine (Welch et al., 2005) and one ortho,ortho-di­chloro-substituted tri­phenyl­amine, viz. tris-(2,3,4,5,6-penta­chloro­phenyl)­amine (Hayes et al., 1980) have been reported. As in the title compounds, in both of these molecules the N atom is virtually coplanar with the three connecting C atoms. In the crystal structure of unsubstituted tri­phenyl­amine (Sobolev et al., 1985), on the other hand, in three out of four molecules, the N atom is located distinctly out of the plane defined by the connecting C atoms.

Synthesis and crystallization top

Compound (I) was prepared by heating 2,6-di­chloro­aniline (405 mg, 2.50 mmol, 1.0 eq.), 1-fluoro-4-nitro­benzene (353 mg, 2.50 mmol, 1.0 eq.) and Cs2CO3 (896 mg, 2.75 mmol, 1.1 eq.) in DMSO (5 ml) at 413 K for 26 h in a capped vial using a heating block. After cooling, the reaction mixture was poured into water and the aqueous phase was extracted with CH2Cl2. The combined organic phases were dried over anhydrous Na2SO4 and concentrated under reduced pressure. Compound (I) was obtained after column chromatography (light petroleum:EtOAc 7:3) as a yellow solid (374 mg, 0.93 mmol, 74 %). Yellow single crystals were grown from a CDCl3 solution by slow evaporation of the solvent. Spectroscopic data for compound (I) are available in the archived CIF.

Compound (II) was prepared by heating 2,6-di­bromo­aniline (627 mg, 2.50 mmol, 1.0 eq.), 1-fluoro-4-nitro­benzene (353 mg, 2.50 mmol, 1.0 eq.) and Cs2CO3 (896 mg, 2.75 mmol, 1.1 eq.) in DMSO (5 ml) at 413 K for 18 h in a capped vial using a heating block. After cooling, the reaction mixture was poured into water and the aqueous phase was extracted with CH2Cl2. The combined organic phases were dried over anhydrous Na2SO4 and concentrated under reduced pressure. Compound (II) was obtained after crystallization from an EtOH/toluene mixture as a brown solid (237 mg, 0.48 mmol, 38 %). Yellow single crystals were grown from a CDCl3 solution by slow evaporation of the solvent. Spectroscopic data for compound (II) are available in the archived CIF.

Refinement top

The hydrogen atoms in both structures, (I) and (II), were clearly discernible from difference Fourier maps and were refined as riding with C—H = 0.96 Å and Uiso(H) = 1.2Ueq(C) [OK?].

Related literature top

For related literature, see: Allen (2002); Bondi (1964); Hayes et al. (1980); Shirota & Kageyama (2007); Sobolev et al. (1985); Tao et al. (2011); Welch et al. (2005); Yook & Lee (2012).

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2013); cell refinement: SAINT-Plus (Bruker, 2013); data reduction: SAINT-Plus (Bruker, 2013). Program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007) for (I); coordinates taken from Br analogue for (II). Program(s) used to refine structure: JANA2006 (Petříček, et al., 2006) for (I); JANA2006 (Petříček, et al., 2006) for (II). For both compounds, molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (II), with atom labelling. Displacement ellipsoids are drawn at the 70% probability level.
[Figure 2] Fig. 2. A view of the crystal packing of compound (I), sustained by Br···O van der Waals contacts [dashed lines; weak C—H···O interactions are also present but are not shown for clarity; colour code: O red, C grey, Br ochre, H white]. The displacement ellipsoids are drawn at the 70% probability level.
(I) 2,6-Dibromo-N,N-bis(4-nitrophenyl)aniline top
Crystal data top
C18H11Br2N3O4F(000) = 968
Mr = 493.1Dx = 1.866 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycbCell parameters from 9998 reflections
a = 13.4705 (7) Åθ = 2.9–34.9°
b = 11.6686 (6) ŵ = 4.65 mm1
c = 11.7081 (7) ÅT = 100 K
β = 107.576 (2)°Triangular prism, translucent yellow
V = 1754.39 (17) Å30.80 × 0.56 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
7731 independent reflections
Radiation source: X-ray tube5557 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.045
ω and ϕ scansθmax = 35.1°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 2121
Tmin = 0.055, Tmax = 0.390k = 1818
52187 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: iterative
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.36Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0009I2)
7731 reflections(Δ/σ)max = 0.007
244 parametersΔρmax = 1.00 e Å3
0 restraintsΔρmin = 0.91 e Å3
44 constraints
Crystal data top
C18H11Br2N3O4V = 1754.39 (17) Å3
Mr = 493.1Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.4705 (7) ŵ = 4.65 mm1
b = 11.6686 (6) ÅT = 100 K
c = 11.7081 (7) Å0.80 × 0.56 × 0.20 mm
β = 107.576 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
7731 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
5557 reflections with I > 3σ(I)
Tmin = 0.055, Tmax = 0.390Rint = 0.045
52187 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.36Δρmax = 1.00 e Å3
7731 reflectionsΔρmin = 0.91 e Å3
244 parameters
Special details top

Experimental. Spectroscopic data for compound (I): 1H NMR (200 MHz, CDCl3): δ = 8.18 (d, J = 9.1 Hz, 4H), 7.56–7.49 (m, 2H), 7.40 (dd, J = 9.2, 6.6 Hz, 1H), 7.09 (d, J = 9.1 Hz, 4H) p.p.m.. 13C NMR (50 MHz, CDCl3): δ = 149.3 (s), 143.0 (s), 138.0 (s), 136.4 (s), 130.6 (d), 130.1 (d), 125.6 (d), 120.4 (d) p.p.m..

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.573900 (13)0.859367 (14)0.064003 (15)0.01908 (5)
Br20.901801 (14)1.107097 (16)0.387459 (16)0.02362 (6)
O10.60098 (10)1.55865 (11)0.07605 (12)0.0242 (4)
O20.52588 (11)1.50312 (11)0.20583 (12)0.0258 (4)
O30.89116 (11)0.84226 (12)0.27898 (11)0.0275 (5)
O41.01356 (11)0.77627 (12)0.12917 (12)0.0279 (5)
N10.74647 (10)1.04271 (11)0.14278 (11)0.0116 (4)
N20.57864 (11)1.48465 (12)0.13859 (12)0.0169 (4)
N30.93586 (11)0.83519 (12)0.17142 (12)0.0166 (4)
C10.74189 (12)0.96819 (13)0.23780 (13)0.0119 (4)
C20.67254 (13)0.87583 (13)0.21625 (15)0.0146 (5)
C30.67200 (13)0.79887 (15)0.30661 (16)0.0199 (5)
C40.73845 (14)0.81727 (16)0.42090 (16)0.0225 (6)
C50.80581 (14)0.90916 (15)0.44579 (15)0.0191 (5)
C60.80787 (13)0.98333 (13)0.35429 (14)0.0150 (5)
C70.70196 (12)1.15186 (12)0.13580 (13)0.0108 (4)
C80.72745 (13)1.24028 (13)0.06810 (14)0.0143 (5)
C90.68543 (13)1.34821 (13)0.06712 (14)0.0150 (5)
C100.61940 (12)1.36934 (13)0.13585 (14)0.0132 (4)
C110.59367 (12)1.28422 (13)0.20434 (14)0.0132 (4)
C120.63388 (12)1.17542 (13)0.20293 (13)0.0128 (4)
C130.79772 (12)0.99930 (12)0.06341 (13)0.0114 (4)
C140.75857 (13)1.01765 (14)0.06029 (13)0.0153 (5)
C150.80630 (13)0.96656 (14)0.13642 (14)0.0158 (5)
C160.89197 (12)0.89691 (13)0.08923 (13)0.0126 (4)
C170.93330 (12)0.87926 (13)0.03259 (14)0.0138 (4)
C180.88567 (12)0.93065 (13)0.10882 (13)0.0129 (4)
H1c30.626180.7338630.2899830.0239*
H1c40.7376070.7650790.4839860.027*
H1c50.8508180.9215970.5257060.023*
H1c80.7743641.2254810.022280.0171*
H1c90.7016371.4081260.0194490.018*
H1c110.5486041.3005230.2520570.0158*
H1c120.6150281.1152970.2483860.0154*
H1c140.6986851.0656330.0921530.0183*
H1c150.7802390.9793030.2212670.0189*
H1c170.9939280.832220.0637850.0165*
H1c180.9133670.9189840.193710.0154*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01575 (8)0.01677 (8)0.02273 (9)0.00120 (6)0.00282 (6)0.00462 (6)
Br20.02243 (9)0.02083 (9)0.02160 (9)0.00396 (7)0.00238 (7)0.00316 (7)
O10.0279 (7)0.0125 (6)0.0333 (7)0.0028 (5)0.0109 (6)0.0051 (5)
O20.0296 (7)0.0224 (6)0.0294 (7)0.0104 (5)0.0153 (6)0.0009 (5)
O30.0331 (8)0.0390 (8)0.0116 (6)0.0113 (6)0.0086 (5)0.0004 (5)
O40.0290 (7)0.0353 (8)0.0214 (6)0.0179 (6)0.0106 (6)0.0037 (5)
N10.0163 (6)0.0096 (5)0.0106 (6)0.0021 (4)0.0063 (5)0.0016 (4)
N20.0158 (6)0.0131 (6)0.0193 (7)0.0025 (5)0.0016 (5)0.0010 (5)
N30.0186 (7)0.0181 (7)0.0150 (6)0.0022 (5)0.0081 (5)0.0015 (5)
C10.0141 (7)0.0111 (6)0.0125 (7)0.0027 (5)0.0069 (5)0.0024 (5)
C20.0125 (7)0.0127 (7)0.0194 (8)0.0026 (5)0.0060 (6)0.0010 (5)
C30.0153 (8)0.0157 (7)0.0320 (9)0.0045 (6)0.0120 (7)0.0099 (7)
C40.0206 (8)0.0251 (9)0.0264 (9)0.0105 (7)0.0140 (7)0.0151 (7)
C50.0201 (8)0.0260 (9)0.0132 (7)0.0088 (6)0.0077 (6)0.0065 (6)
C60.0162 (7)0.0154 (7)0.0144 (7)0.0017 (6)0.0063 (6)0.0004 (6)
C70.0121 (6)0.0105 (6)0.0099 (6)0.0004 (5)0.0034 (5)0.0009 (5)
C80.0163 (7)0.0132 (7)0.0155 (7)0.0010 (5)0.0082 (6)0.0020 (5)
C90.0167 (7)0.0131 (7)0.0165 (7)0.0005 (5)0.0068 (6)0.0026 (5)
C100.0118 (7)0.0112 (6)0.0155 (7)0.0017 (5)0.0025 (5)0.0026 (5)
C110.0113 (7)0.0146 (7)0.0137 (7)0.0003 (5)0.0038 (5)0.0013 (5)
C120.0130 (7)0.0127 (6)0.0136 (7)0.0005 (5)0.0054 (5)0.0007 (5)
C130.0135 (7)0.0101 (6)0.0109 (6)0.0003 (5)0.0043 (5)0.0002 (5)
C140.0162 (7)0.0167 (7)0.0124 (7)0.0050 (6)0.0036 (6)0.0025 (5)
C150.0196 (8)0.0180 (7)0.0099 (6)0.0037 (6)0.0047 (6)0.0030 (5)
C160.0141 (7)0.0133 (7)0.0123 (7)0.0005 (5)0.0067 (5)0.0007 (5)
C170.0140 (7)0.0133 (7)0.0135 (7)0.0022 (5)0.0033 (5)0.0014 (5)
C180.0147 (7)0.0138 (7)0.0096 (6)0.0010 (5)0.0029 (5)0.0010 (5)
Geometric parameters (Å, º) top
Br1—N13.0882 (13)C5—H1c50.96
Br1—C21.8840 (15)C7—C81.405 (2)
Br2—N13.0869 (12)C7—C121.403 (3)
Br2—C61.8817 (16)C8—C91.379 (2)
O1—N21.227 (2)C8—H1c80.96
O2—N21.228 (2)C9—C101.390 (3)
O3—N31.2237 (17)C9—H1c90.96
O4—N31.2247 (19)C10—C111.385 (2)
N1—C11.428 (2)C11—C121.382 (2)
N1—C71.3995 (19)C11—H1c110.96
N1—C131.409 (2)C12—H1c120.96
N2—C101.457 (2)C13—C141.400 (2)
N3—C161.462 (2)C13—C181.396 (2)
C1—C21.398 (2)C14—C151.382 (3)
C1—C61.396 (2)C14—H1c140.96
C2—C31.389 (3)C15—C161.383 (2)
C3—C41.384 (2)C15—H1c150.96
C3—H1c30.96C16—C171.381 (2)
C4—C51.378 (3)C17—C181.383 (3)
C4—H1c40.96C17—H1c170.96
C5—C61.384 (2)C18—H1c180.96
N1—Br1—C252.74 (6)N1—C7—C8121.85 (16)
N1—Br2—C652.88 (5)N1—C7—C12119.11 (14)
Br1—N1—Br2133.15 (5)C8—C7—C12118.97 (14)
Br1—N1—C166.74 (7)C7—C8—C9120.36 (17)
Br1—N1—C7110.03 (9)C7—C8—H1c8119.82
Br1—N1—C1391.63 (8)C9—C8—H1c8119.82
Br2—N1—C166.54 (7)C8—C9—C10119.34 (16)
Br2—N1—C789.49 (8)C8—C9—H1c9120.33
Br2—N1—C13111.71 (8)C10—C9—H1c9120.33
C1—N1—C7118.76 (14)N2—C10—C9119.20 (15)
C1—N1—C13116.10 (12)N2—C10—C11119.18 (16)
C7—N1—C13125.13 (13)C9—C10—C11121.60 (15)
O1—N2—O2123.55 (15)C10—C11—C12118.96 (16)
O1—N2—C10118.34 (16)C10—C11—H1c11120.52
O2—N2—C10118.09 (14)C12—C11—H1c11120.52
O3—N3—O4123.27 (16)C7—C12—C11120.75 (15)
O3—N3—C16118.22 (14)C7—C12—H1c12119.63
O4—N3—C16118.47 (13)C11—C12—H1c12119.62
N1—C1—C2120.82 (12)N1—C13—C14121.39 (13)
N1—C1—C6121.30 (13)N1—C13—C18118.94 (13)
C2—C1—C6117.86 (15)C14—C13—C18119.55 (16)
Br1—C2—C1119.42 (12)C13—C14—C15119.86 (14)
Br1—C2—C3119.35 (12)C13—C14—H1c14120.07
C1—C2—C3121.17 (14)C15—C14—H1c14120.07
C2—C3—C4119.04 (16)C14—C15—C16119.38 (14)
C2—C3—H1c3120.48C14—C15—H1c15120.31
C4—C3—H1c3120.48C16—C15—H1c15120.31
C3—C4—C5121.18 (17)N3—C16—C15118.75 (13)
C3—C4—H1c4119.41N3—C16—C17119.29 (14)
C5—C4—H1c4119.41C15—C16—C17121.85 (16)
C4—C5—C6119.27 (14)C16—C17—C18118.74 (14)
C4—C5—H1c5120.37C16—C17—H1c17120.63
C6—C5—H1c5120.37C18—C17—H1c17120.63
Br2—C6—C1119.26 (12)C13—C18—C17120.58 (14)
Br2—C6—C5119.31 (11)C13—C18—H1c18119.71
C1—C6—C5121.42 (15)C17—C18—H1c18119.71
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H1C5···O3i0.962.373.175 (2)141
C12—H1C12···O2ii0.962.493.347 (2)148
Symmetry codes: (i) x, y, z+1; (ii) x+1, y1/2, z+1/2.
(II) 2,6-Dichloro-N,N-bis(4-nitrophenyl)aniline top
Crystal data top
C18H11Cl2N3O4F(000) = 824
Mr = 404.2Dx = 1.569 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycbCell parameters from 9690 reflections
a = 13.3117 (3) Åθ = 3.9–30.0°
b = 11.5460 (3) ŵ = 0.41 mm1
c = 11.7558 (3) ÅT = 100 K
β = 108.7971 (10)°Block, translucent yellow
V = 1710.46 (7) Å30.76 × 0.65 × 0.35 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4959 independent reflections
Radiation source: X-ray tube4374 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.031
ω and ϕ scansθmax = 30.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 1818
Tmin = 0.74, Tmax = 0.87k = 1615
29061 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: isomorphous structure methods
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: isomorphous structure methods
wR(F2) = 0.131H-atom parameters constrained
S = 1.39Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0064I2)
4959 reflections(Δ/σ)max = 0.018
244 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.23 e Å3
44 constraints
Crystal data top
C18H11Cl2N3O4V = 1710.46 (7) Å3
Mr = 404.2Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.3117 (3) ŵ = 0.41 mm1
b = 11.5460 (3) ÅT = 100 K
c = 11.7558 (3) Å0.76 × 0.65 × 0.35 mm
β = 108.7971 (10)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4959 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
4374 reflections with I > 3σ(I)
Tmin = 0.74, Tmax = 0.87Rint = 0.031
29061 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.39Δρmax = 0.24 e Å3
4959 reflectionsΔρmin = 0.23 e Å3
244 parameters
Special details top

Experimental. Spectroscopic data for compound (II): 1H NMR (200 MHz, CDCl3): δ = 8.19 (d, J =9.2 Hz, 4H), 7.74 (d, J = 8.1 Hz, 2H), 7.25 (t, J = 8.1 Hz, 1H), 7.10 (d, J = 9.2 Hz, 4H) p.p.m.. 13C NMR (50 MHz, CDCl3): δ = 144.9 (s), 142.9 (s), 140.6 (s), 134.1 (d), 131.5 (d), 126.5 (s), 125.5 (d), 120.5 (d) p.p.m..

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.58310 (2)0.86376 (2)0.06717 (3)0.02676 (11)
Cl20.89794 (2)1.09658 (2)0.39011 (3)0.02968 (11)
O10.59995 (7)1.56656 (7)0.07725 (8)0.0250 (3)
O20.52501 (8)1.50838 (7)0.20576 (9)0.0278 (3)
O30.90032 (8)0.85088 (9)0.27494 (8)0.0324 (3)
O41.01290 (8)0.76623 (8)0.12423 (8)0.0288 (3)
N10.75055 (7)1.04563 (7)0.14397 (7)0.0145 (3)
N20.57820 (7)1.49072 (7)0.13910 (8)0.0183 (3)
N30.94009 (7)0.83429 (8)0.16642 (8)0.0174 (3)
C10.74413 (8)0.96904 (8)0.23650 (9)0.0145 (3)
C20.67230 (9)0.87665 (8)0.21010 (10)0.0185 (3)
C30.66959 (9)0.79754 (9)0.29820 (12)0.0260 (4)
C40.73555 (11)0.81422 (10)0.41472 (12)0.0297 (4)
C50.80543 (10)0.90616 (10)0.44433 (11)0.0253 (4)
C60.80964 (9)0.98244 (9)0.35460 (10)0.0184 (3)
C70.70496 (8)1.15578 (8)0.13637 (9)0.0133 (3)
C80.73029 (9)1.24530 (8)0.06960 (9)0.0166 (3)
C90.68665 (9)1.35445 (8)0.06821 (10)0.0172 (3)
C100.61973 (8)1.37467 (8)0.13544 (9)0.0151 (3)
C110.59475 (8)1.28778 (8)0.20337 (9)0.0158 (3)
C120.63582 (8)1.17818 (8)0.20218 (9)0.0151 (3)
C130.80210 (8)1.00128 (8)0.06577 (9)0.0137 (3)
C140.76400 (9)1.02286 (8)0.05822 (9)0.0179 (3)
C150.81196 (9)0.97117 (8)0.13329 (9)0.0174 (3)
C160.89655 (8)0.89650 (8)0.08506 (9)0.0141 (3)
C170.93636 (8)0.87409 (8)0.03712 (9)0.0145 (3)
C180.88927 (8)0.92743 (8)0.11260 (9)0.0146 (3)
H1c30.6225260.7322120.278360.0311*
H1c40.7327280.7608430.4762260.0357*
H1c50.8504520.9172380.5257230.0303*
H1c80.7779251.2309130.0248350.02*
H1c90.7025391.4154660.0212110.0206*
H1c110.5494541.30370.2506080.019*
H1c120.6169831.1168690.2466440.0181*
H1c140.7045271.0736040.0908990.0215*
H1c150.7869880.9867780.2180110.0209*
H1c170.9954180.8225990.068820.0174*
H1c180.916520.9137350.1976010.0175*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01996 (17)0.02079 (16)0.0347 (2)0.00131 (9)0.00215 (13)0.00737 (10)
Cl20.02831 (18)0.02495 (16)0.02653 (18)0.00245 (10)0.00402 (13)0.00497 (10)
O10.0279 (4)0.0138 (3)0.0335 (5)0.0024 (3)0.0100 (4)0.0026 (3)
O20.0302 (5)0.0245 (4)0.0330 (5)0.0096 (3)0.0163 (4)0.0016 (3)
O30.0390 (5)0.0457 (5)0.0141 (4)0.0168 (4)0.0108 (4)0.0031 (3)
O40.0294 (5)0.0346 (4)0.0233 (4)0.0162 (4)0.0100 (4)0.0014 (3)
N10.0186 (4)0.0124 (3)0.0139 (4)0.0030 (3)0.0073 (3)0.0024 (3)
N20.0166 (4)0.0150 (4)0.0212 (4)0.0035 (3)0.0031 (3)0.0018 (3)
N30.0181 (4)0.0198 (4)0.0160 (4)0.0011 (3)0.0078 (3)0.0000 (3)
C10.0167 (5)0.0128 (4)0.0158 (5)0.0029 (3)0.0076 (4)0.0025 (3)
C20.0161 (5)0.0135 (4)0.0277 (6)0.0025 (3)0.0093 (4)0.0016 (4)
C30.0205 (5)0.0164 (4)0.0473 (8)0.0057 (4)0.0198 (5)0.0120 (4)
C40.0322 (6)0.0284 (5)0.0390 (7)0.0167 (5)0.0260 (6)0.0208 (5)
C50.0297 (6)0.0309 (5)0.0179 (5)0.0146 (5)0.0114 (5)0.0087 (4)
C60.0205 (5)0.0195 (4)0.0156 (5)0.0042 (4)0.0064 (4)0.0005 (4)
C70.0134 (4)0.0121 (4)0.0139 (4)0.0009 (3)0.0040 (3)0.0004 (3)
C80.0187 (5)0.0151 (4)0.0192 (5)0.0030 (3)0.0103 (4)0.0030 (3)
C90.0198 (5)0.0135 (4)0.0193 (5)0.0022 (3)0.0078 (4)0.0027 (3)
C100.0139 (5)0.0125 (4)0.0181 (5)0.0020 (3)0.0039 (4)0.0015 (3)
C110.0133 (4)0.0174 (4)0.0176 (5)0.0006 (3)0.0061 (4)0.0010 (3)
C120.0145 (4)0.0147 (4)0.0171 (5)0.0002 (3)0.0067 (4)0.0008 (3)
C130.0155 (5)0.0123 (4)0.0133 (4)0.0005 (3)0.0048 (4)0.0001 (3)
C140.0200 (5)0.0187 (4)0.0144 (5)0.0060 (4)0.0045 (4)0.0026 (3)
C150.0199 (5)0.0192 (4)0.0131 (4)0.0035 (4)0.0051 (4)0.0026 (3)
C160.0151 (4)0.0142 (4)0.0144 (4)0.0003 (3)0.0067 (4)0.0009 (3)
C170.0138 (4)0.0140 (4)0.0148 (4)0.0013 (3)0.0033 (4)0.0005 (3)
C180.0160 (5)0.0152 (4)0.0114 (4)0.0013 (3)0.0030 (4)0.0009 (3)
Geometric parameters (Å, º) top
Cl1—N12.9827 (9)C7—C81.4032 (15)
Cl2—N12.9848 (8)C7—C121.4041 (17)
O1—N21.2308 (13)C8—C91.3855 (14)
O2—N21.2307 (16)C8—H1c80.96
O3—N31.2285 (12)C9—C101.3880 (18)
O4—N31.2219 (12)C9—H1c90.96
N1—C11.4256 (14)C10—C111.3878 (15)
N1—C71.3996 (12)C11—C121.3803 (14)
N1—C131.4087 (15)C11—H1c110.96
N2—C101.4553 (13)C12—H1c120.96
N3—C161.4573 (15)C13—C141.4027 (14)
C1—C21.3991 (14)C13—C181.4017 (13)
C1—C61.3898 (13)C14—C151.3805 (17)
C2—C31.3901 (18)C14—H1c140.96
C3—C41.3818 (17)C15—C161.3861 (14)
C3—H1c30.96C15—H1c150.96
C4—C51.3801 (17)C16—C171.3858 (14)
C4—H1c40.96C17—C181.3850 (16)
C5—C61.3891 (17)C17—H1c170.96
C5—H1c50.96C18—H1c180.96
Cl1—N1—Cl2128.74 (3)C7—C8—C9120.08 (11)
Cl1—N1—C164.63 (5)C7—C8—H1c8119.96
Cl1—N1—C7110.73 (6)C9—C8—H1c8119.96
Cl1—N1—C1391.15 (5)C8—C9—C10119.33 (10)
Cl2—N1—C164.21 (4)C8—C9—H1c9120.33
Cl2—N1—C791.08 (5)C10—C9—H1c9120.33
Cl2—N1—C13113.45 (6)N2—C10—C9119.43 (9)
C1—N1—C7118.75 (9)N2—C10—C11119.00 (11)
C1—N1—C13115.72 (8)C9—C10—C11121.52 (9)
C7—N1—C13125.53 (9)C10—C11—C12119.20 (11)
O1—N2—O2123.46 (9)C10—C11—H1c11120.4
O1—N2—C10118.27 (10)C12—C11—H1c11120.4
O2—N2—C10118.25 (9)C7—C12—C11120.43 (10)
O3—N3—O4122.81 (11)C7—C12—H1c12119.78
O3—N3—C16118.37 (9)C11—C12—H1c12119.78
O4—N3—C16118.80 (9)N1—C13—C14121.63 (9)
N1—C1—C2120.56 (8)N1—C13—C18118.72 (9)
N1—C1—C6121.37 (9)C14—C13—C18119.51 (10)
C2—C1—C6118.06 (10)C13—C14—C15120.04 (9)
C1—C2—C3121.05 (9)C13—C14—H1c14119.98
C2—C3—C4119.09 (10)C15—C14—H1c14119.98
C2—C3—H1c3120.45C14—C15—C16119.31 (9)
C4—C3—H1c3120.45C14—C15—H1c15120.34
C3—C4—C5121.24 (12)C16—C15—H1c15120.34
C3—C4—H1c4119.38N3—C16—C15118.73 (9)
C5—C4—H1c4119.38N3—C16—C17119.22 (8)
C4—C5—C6119.01 (10)C15—C16—C17121.94 (11)
C4—C5—H1c5120.49C16—C17—C18118.70 (9)
C6—C5—H1c5120.49C16—C17—H1c17120.65
C1—C6—C5121.48 (10)C18—C17—H1c17120.65
N1—C7—C8121.84 (10)C13—C18—C17120.48 (9)
N1—C7—C12118.69 (9)C13—C18—H1c18119.76
C8—C7—C12119.40 (9)C17—C18—H1c18119.76
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H1C5···O3i0.962.353.1950 (15)147
C12—H1C12···O2ii0.962.483.3304 (15)148
Symmetry codes: (i) x, y, z+1; (ii) x+1, y1/2, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC18H11Br2N3O4C18H11Cl2N3O4
Mr493.1404.2
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)100100
a, b, c (Å)13.4705 (7), 11.6686 (6), 11.7081 (7)13.3117 (3), 11.5460 (3), 11.7558 (3)
β (°) 107.576 (2) 108.7971 (10)
V3)1754.39 (17)1710.46 (7)
Z44
Radiation typeMo KαMo Kα
µ (mm1)4.650.41
Crystal size (mm)0.80 × 0.56 × 0.200.76 × 0.65 × 0.35
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Bruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2013)
Multi-scan
(SADABS; Bruker, 2013)
Tmin, Tmax0.055, 0.3900.74, 0.87
No. of measured, independent and
observed [I > 3σ(I)] reflections
52187, 7731, 5557 29061, 4959, 4374
Rint0.0450.031
(sin θ/λ)max1)0.8080.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.079, 1.36 0.034, 0.131, 1.39
No. of reflections77314959
No. of parameters244244
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.00, 0.910.24, 0.23

Computer programs: APEX2 (Bruker, 2013), SAINT-Plus (Bruker, 2013), SUPERFLIP (Palatinus & Chapuis, 2007), coordinates taken from Br analogue, JANA2006 (Petříček, et al., 2006), JANA2006 (Petříček, et al., 2006), Mercury (Macrae et al., 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C5—H1C5···O3i0.962.373.175 (2)141
C12—H1C12···O2ii0.962.493.347 (2)148
Symmetry codes: (i) x, y, z+1; (ii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C5—H1C5···O3i0.962.353.1950 (15)147
C12—H1C12···O2ii0.962.483.3304 (15)148
Symmetry codes: (i) x, y, z+1; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

The X-ray centre of the Vienna University of Technology is acknowledged for providing access to the single-crystal diffractometer.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2013). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationHayes, K. S., Nagumo, M., Blount, J. F. & Mislow, K. (1980). J. Am. Chem. Soc. 102, 2773–2776.  CSD CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352.  Google Scholar
First citationShirota, Y. & Kageyama, H. (2007). Chem. Rev. 107, 953–1010.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSobolev, A. N., Belsky, V. K., Romm, I. P., Chernikova, N. Yu. & Guryanova, E. N. (1985). Acta Cryst. C41, 967–971.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationTao, Y., Yang, C. & Qin, J. (2011). Chem. Soc. Rev. 40, 2943–2970.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWelch, J., Klapötke, T. M. & Polborn, K. (2005). Private Communication (refcode BOBMAG01). CCDC, Cambridge, England.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYook, K. S. & Lee, J. Y. (2012). Adv. Mater. 24, 3169–3190.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds