research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (1Z)-1-(4-chloro­benzyl­­idene)-5-(4-meth­­oxy­phen­yl)-3-oxopyrazolidin-1-ium-2-ide

aChemistry Department, University of Kinshasa, Kinshasa XI BP 212, Democratic Republic of the Congo, bFaculty of Chemistry, Hanoi National University of Education, 136 – Xuan Thuy – Cau Giay, Hanoi, Vietnam, and cChemistry Department, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven (Heverlee), Belgium
*Correspondence e-mail: luc.vanmeervelt@chem.kuleuven.be

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 4 June 2014; accepted 18 June 2014; online 19 July 2014)

The title mol­ecule, C17H15ClN2O2, is L-shaped with the 4-chloro­benzyl­idene ring almost coplanar with the planar pyrazolidine ring (r.m.s. deviation = 0.020 Å), making a dihedral angle of 4.83 (17)°. The 4-meth­oxy­phenyl ring is almost normal to the mean plane of the pyrazolidine ring and the 4-chloro­benzyl­idene ring, with dihedral angles of 87.36 (17) and 89.23 (16)°, respectively. The pyrazolidine ring occurs in the betaine form with a Z configuration for the exocyclic C=N bond. In the crystal, C—H⋯O and C—H⋯π inter­actions generate ribbons of mol­ecules along [1-10].

1. Chemical context

Acyclic azomethine imides are difficult to synthesize and have thus rarely been explored. However, cyclic azomethine imides of the 3-oxopyrazolidin-1-um-2-ide type are generated under mild conditions and have largely been used for the novel synthesis of heterocyclic compounds (Schantl, 2004[Schantl, J. G. (2004). In Science of Synthesis, Vol. 27, edited by A. Padwa, pp. 731-824. Stuttgart, New York: Georg Thieme Verlag.]; Padwa & Pearson, 2003[Padwa, A. & Pearson, W. H. (2003). Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products. New York: John Wiley & Sons.]) such as monocyclic and bicyclic pyrazolidin­­ones (Zhou et al., 2013[Zhou, W., Li, X.-X., Li, G.-H., Wu, Y. & Chen, Z. (2013). Chem. Commun. 49, 3552-3554.]; Suarez et al., 2005[Suarez, A., Downey, C. W. & Fu, G. C. (2005). J. Am. Chem. Soc. 127, 11244-11245.]) and other bicyclic heterocycles (Svete, 2006[Svete, J. (2006). Arkivoc, vii, 35-56.]; Xu et al., 2013[Xu, X., Xu, X., Zavalij, P. Y. & Doyle, M. P. (2013). Chem. Commun. 49, 2762-2764.]). Since numerous pyrazole derivatives have found use in pharmaceutical, agrochemical and other applications, for example, sildenafil or Viagra (Mulhall, 1997[Mulhall, J. (1997). Br. J. Urol. 79, 663-664.]), lonazolac (Vinge & Bjorkman, 1986[Vinge, E. & Bjorkman, S. B. (1986). Acta Pharmacol. Toxicol. 59, 165-172.]), merpirizole (Naito et al., 1969[Naito, T., Yoshikawa, T., Kitahara, S. & Aoki, N. (1969). Chem. Pharm. Bull. 17, 1467-1478.]), the bicyclic pyrazolidinone LY 186826 (Indelicato & Pasini, 1988[Indelicato, J. M. & Pasini, C. E. (1988). J. Med. Chem. 31, 1227-1230.]) and the developing agent in photography, phenidone, a part of our studies is focused on the synthesis of functionalized pyrazoles. For this purpose, the title compound was synthesized and the mol­ecular and crystal structure are reported herein.

[Scheme 1]

2. Structural Commentary

The pyrazolidine ring is planar with a maximal deviation of 0.017 (3) Å for atom C10. The 4-chloro­benzyl aromatic ring and the pyrazolidine ring are almost coplanar, making a dihedral angle of 4.83 (17)°, whereas the mean plane through the 4-meth­oxy­phenyl aromatic ring is almost perpendicular [87.36 (17)°] to the pyrazolidine plane. The aromatic rings are inclined to one another at 89.23 (16)°. The configuration of the exocyclic C1=N7 bond is Z. The pyrazolidine ring shows a betaine character with opposite charges located on adjacent nitro­gen atoms, N1 and N2. The N1—N2 bond distance of 1.362 (3) Å agrees with the average value of 1.357 (7) Å obtained for N+—N in pyrazolidine rings found in the Cambridge Structural Database (CSD, Version 5.35, February 2014; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). The intra­molecular C3—H3⋯N2 inter­action (Table 1[link] and Fig. 1[link]) is also observed in similar compounds found in the CSD.

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N2 0.96 (4) 2.31 (3) 2.934 (4) 122 (1)
C3—H3⋯O1i 0.96 (4) 2.52 (2) 3.152 (4) 124 (1)
C17—H17CCgii 1.02 (3) 2.73 (3) 3.551 (4) 138 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y+1, z.
[Figure 1]
Figure 1
Mol­ecular structure of the title mol­ecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intra­molecular C—H⋯N inter­action is drawn as a dashed line (see Table 1[link] for details).

3. Supra­molecular features

In the crystal packing C–H⋯O hydrogen bonds are observed (Table 1[link] and Fig. 2[link]), resulting in the formation of inversion dimers with R22(16) loops. Furthermore, the aromatic ring of the 4-chloro­benzyl substituent is involved in C—H⋯π inter­actions (Table 1[link] and Fig. 2[link]), forming ribbons of dimers propagating along [1[\overline{1}]0].

[Figure 2]
Figure 2
Crystal packing for the title compound viewed along the a axis, with the C—H⋯π and C—H⋯O inter­actions drawn as dashed lines (see Table 1[link] for details).

4. Database survey

The Cambridge Structural Database contains 15 crystal structures containing a similar 1-methyl­idene-3-oxopyrazol­idin-1-ium-2-ide fragment. For the 12 structures bearing a 1-benzyl­idene substituent, the dihedral angle between its aromatic ring and the pyrazolidine ring varies from 0.0 to 65.6° depending on the further substitution of the 1-benzyl­idene substituent. A fit of the common parts of the title compound and (1Z)-1-(4-chloro­benzyl­idene-5,5-dimethyl-3-oxopyrazol­idin-1-ium-2-ide (refcode: BOLJUH; Kulpe et al., 1983[Kulpe, S., Seidel, I., Leibnitz, P. & Geissler, G. (1983). Acta Cryst. C39, 278-280.]) results in an r.m.s. deviation of 0.069 Å.

5. Synthesis and crystallization

The starting material, ethyl p-meth­oxy­cinnamate, was isolated from Kaempferia galanga L., a traditional medicinal plant in Vietnam (Do, 2011[Do, T. L. (2011). Vietnamese Medicinal Plants and Remedies, pp. 365-366. Hanoi: Thoi Dai.]). The reaction scheme to synthesize the title compound, (2), is given in Fig. 3[link].

[Figure 3]
Figure 3
Reaction scheme for the title compound.

Synthesis of 5-p-meth­oxy­phenyl­pyrazolidin-3-one (1): A solution of 1.03 g (5 mmol) of ethyl p-meth­oxy­cinnamate, 0.5 ml of N2H4·H2O 80% in 5 ml of ethanol was refluxed for 24 h. To the cool mixture 0.2 ml of H2O was added and allowed to stand. The resulting precipitate was collected and recrystallized from ethanol to give 0.54 g (yield 56%) of (1) in the form of white crystals; m.p. 442–443 K. IR (KBr, cm−1): 3229, 3180 (NH); 3041, 2951, 2834 (C—H), 1675 (C=O); 1605, 1520 (phenyl C=C). 1H NMR (d6-DMSO, δ, ppm; J, Hz): 9.14 s (N2H); 5.46 broadened s, (N1H); 2.63 dd, 2J 15.5, 3J 7.5 (H4a); 2.37 dd, 2J 15.5, 3J 8.0 (H4b); 4.52 t, 3J 7.5 (H5); 7.32 d, 3J 8.5 (2H, Ho); 6.91 d, 3J 8.5 (2H, Hm); 3.74 s (3H, MeO). 13C NMR [d6-DMSO, δ, p.p.m., according to the HSQC and HMBC spectra of (1)]: 175.37 (C3), 39.00 (C4), 59.87 (C5), 132.37 (Ci), 127.85 (Co), 113.66 (Cm), 158.51 (Cp), 55.06 (MeO). Analysis: calculated for C10H12N2O2: C, 62.49; H, 6.29; N, 14.57; found: C, 62.71; H, 6.08; N, 14.29.

Synthesis of 1-(p-chloro­benzyl­idene)-5-(p-meth­oxy­phen­yl)-3-oxopyrazolidin-1-ium-2-ide (2): A solution of 0.192 g (1 mmol) of (1) and 0.141 g (1 mmol) of 4-chloro­benzaldehyde in 5 ml of ethanol was refluxed for 6 h. The reaction mixture was allowed to cool. The resulting precipitate was collected and recrystallized from ethanol to give 0.22 g (yield 70%) of (2) as white crystals; m.p. 467–468 K. IR (KBr, cm−1): 3095, 3052, 2930, 2852 (C-H), 1676 (C=O); 1587, 1563, 1512 (phenyl C=C). Analysis: calculated for C17H15ClN2O2: C, 64.87; H, 4.80; N, 8.90. Found: C, 65.08; H, 4.59; N, 8.64.

Colourless plate-like crystals of (2) suitable for X-ray diffraction were obtained by slow evaporation from a water solution acidified with HCl at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were refined using a riding model with stretchable C—H distances, and with Uiso = 1.5Ueq(C-meth­yl) and = 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C17H15ClN2O2
Mr 314.76
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 5.6966 (6), 10.6852 (13), 12.7750 (17)
α, β, γ (°) 101.573 (7), 100.620 (7), 101.311 (6)
V3) 726.47 (15)
Z 2
Radiation type Cu Kα
μ (mm−1) 2.40
Crystal size (mm) 0.55 × 0.1 × 0.05
 
Data collection
Diffractometer Bruker SMART 6000
Absorption correction Multi-scan (SADABS; Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.695, 0.887
No. of measured, independent and observed [I > 2σ(I)] reflections 13302, 2723, 2053
Rint 0.093
(sin θ/λ)max−1) 0.614
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.171, 1.06
No. of reflections 2723
No. of parameters 212
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.49, −0.52
Computer programs: SMART and SAINT (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Chemical context top

Acyclic azomethine imides are difficult to synthesize and have thus rarely been explored. However, cyclic azomethine imides of the 3-oxopyrazolidin-1-um-2-ide type are generated under mild conditions and have largely been used for the novel synthesis of heterocyclic compounds (Schantl, 2004; Padwa & Pearson, 2003) such as monocyclic and bicyclic pyrazolidinones (Zhou et al., 2013; Suarez et al., 2005) and other bicyclic heterocycles (Svete, 2006; Xu et al., 2013). Since numerous pyrazole derivatives have found use in pharmaceutical, agrochemical and other applications, for example, sildenafil or Viagra (Mulhall, 1997), lonazolac (Vinge & Bjorkman, 1986), merpirizole (Naito et al., 1969), the bicyclic pyrazolidinone LY 186826 (Indelicato & Pasini, 1988) and the developing agent in photography phenidone, a part of our studies is focused on the synthesis of functionalized pyrazoles. For this purpose, the title compound was synthesized and the molecular and crystal structure are reported herein.

Structural Commentary top

The pyrazolidine ring is planar with a maximal deviation of 0.017 (3) Å for atom C10. The 4-chloro­benzyl aromatic ring and the pyrazolidine ring are almost coplanar, making a dihedral angle of 4.83 (17)°, whereas the mean plane through the 4-meth­oxy­phenyl aromatic ring is almost perpendicular [87.36 (17)°] to the pyrazolidine plane. The aromatic rings are inclined to one another at 89.23 (16)°. The conformation of the exocyclic C1N7 bond is Z. The pyrazolidine ring shows a betaine character with opposite charges located on adjacent nitro­gen atoms, N1 and N2. The N1—N2 bond distance of 1.362 (3) Å agrees with the average value of 1.357 (7) Å obtained for N+—N- in pyrazolidine rings found in the Cambridge Structural Database (CSD, Version 5.35, November 2013; Allen, 2002). The intra­molecular C3—H3···N2 inter­action (Table 1 and Fig. 1) is also observed in similar compounds found in the CSD.

Supra­molecular features top

In the crystal packing C–H···O hydrogen bonds are observed (Table 1 and Fig. 2), resulting in the formation of inversion dimers with R22(16) loops. Furthermore, the aromatic ring of the 4-chloro­benzyl substituent is involved in C—H···π inter­actions (Table 1 and Fig. 2), forming ribbons of dimers propagating along [110].

Database survey top

The Cambridge Structural Database contains 15 crystal structures containing a similar 1-methyl­idene-3-oxopyrazolidin-1-ium-2-ide fragment. For the 12 structures bearing a 1-benzyl­idene substituent, the dihedral angle between its aromatic ring and the pyrazolidine ring varies from 0.0 to 65.6° depending on the further substitution of the 1-benzyl­idene substituent. A fit of the common parts of the title compound and (1Z)-1-(4-chloro­benzyl­idene-5,5-di­methyl-3-oxopyrazolidin-1-ium-2-ide (refcode: BOLJUH; Kulpe et al., 1983) results in an r.m.s. deviation of 0.069 Å.

Synthesis and crystallization top

The starting material, ethyl p-meth­oxy­cinnamate, was isolated from Kaempferia galanga L., a traditional medicinal plant in Vietnam (Do, 2011).

Synthesis of 5-p-meth­oxy­phenyl­pyrazolidin-3-one (1)

A solution of 1.03 g (5 mmol) of ethyl p-meth­oxy­cinnamate, 0.5 ml of N2H4.H2O 80% in 5 ml of ethanol was refluxed for 24 hours. To the cool mixture 0.2 ml of H2O was added and allowed to stand. The resulting precipitate was collected and recrystallized from ethanol to give 0.54 g (yield 56%) of (1) in the form of white crystals; m.p. 442–443 K. IR (KBr, cm-1): 3229, 3180 (NH); 3041, 2951, 2834 (C—H), 1675 (C=O); 1605, 1520 (phenyl C=C). 1H NMR (d6-DMSO, δ, ppm; J, Hz): 9.14 s (N2H); 5.46 broadened s, (N1H); 2.63 dd, 2J 15.5, 3J 7.5 (H4a); 2.37 dd, 2J 15.5, 3J 8.0 (H4b); 4.52 t, 3J 7.5 (H5); 7.32 d, 3J 8.5 (2H, Ho); 6.91 d, 3J 8.5 (2H, Hm); 3.74 s (3H, MeO). 13C NMR [d6-DMSO, δ, ppm, according to the HSQC and HMBC spectra of (1)]: 175.37 (C3), 39.00 (C4), 59.87 (C5), 132.37 (Ci), 127.85 (Co), 113.66 (Cm), 158.51 (Cp), 55.06 (MeO). Analysis: calculated for C10H12N2O2: C, 62.49; H, 6.29; N, 14.57. Found: C, 62.71; H, 6.08; N, 14.29.

Synthesis of 1-(p-Chloro­benzyl­idene)-5-(p-meth­oxy­phenyl)-3-oxopyrazolidin-1-ium-2-ide (2)

A solution of 0.192 g (1 mmol) of (1) and 0.141 g (1 mmol) of 4-chloro­benzaldehyde in 5 ml of ethanol was refluxed for 6 hours. The reaction mixture was allowed to cool. The resulting precipitate was collected and recrystallized from ethanol to give 0.22 g (yield 70%) of (2) as white crystals; m.p. 467–468 K. IR (KBr, cm-1): 3095, 3052, 2930, 2852 (C—H), 1676 (C=O); 1587, 1563, 1512 (phenyl C=C). Analysis: calculated for C17H15ClN2O2: C, 64.87; H, 4.80; N, 8.90. Found: C, 65.08; H, 4.59; N, 8.64.

Colourless plate-like crystals of (2) suitable for x-ray diffraction were obtained by slow evaporation from an water solution acidified with HCl at room temperature.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were refined using a riding model with stretchable C—H distances, and with Uiso = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms.

Related literature top

For related literature, see: Allen (2002); Do (2011); Indelicato & Pasini (1988); Kulpe et al. (1983); Mulhall (1997); Naito et al. (1969); Padwa & Pearson (2003); Schantl (2004); Suarez et al. (2005); Svete (2006); Vinge & Bjorkman (1986); Xu et al. (2013); Zhou et al. (2013).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular C—H···N interaction is drawn as a dashed line (see Table 1 for details).
[Figure 2] Fig. 2. Crystal packing for the title compound viewed along the a axis, with the C—H···π and C—H···O interactions drawn as dashed lines (see Table 1 for details).
[Figure 3] Fig. 3. Reaction scheme for the title compound.
(1Z)-1-(4-Chlorobenzylidene)-5-(4-methoxyphenyl)-3-oxopyrazolidin-1-ium-2-ide top
Crystal data top
C17H15ClN2O2Z = 2
Mr = 314.76F(000) = 328
Triclinic, P1Dx = 1.439 Mg m3
a = 5.6966 (6) ÅMelting point: 467(1) K
b = 10.6852 (13) ÅCu Kα radiation, λ = 1.54178 Å
c = 12.7750 (17) ŵ = 2.40 mm1
α = 101.573 (7)°T = 100 K
β = 100.620 (7)°Plate, colourless
γ = 101.311 (6)°0.55 × 0.1 × 0.05 mm
V = 726.47 (15) Å3
Data collection top
Bruker SMART 6000
diffractometer
2053 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.093
Graphite monochromatorθmax = 71.2°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 66
Tmin = 0.695, Tmax = 0.887k = 1313
13302 measured reflectionsl = 1314
2723 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0732P)2 + 0.2182P]
where P = (Fo2 + 2Fc2)/3
2723 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
C17H15ClN2O2γ = 101.311 (6)°
Mr = 314.76V = 726.47 (15) Å3
Triclinic, P1Z = 2
a = 5.6966 (6) ÅCu Kα radiation
b = 10.6852 (13) ŵ = 2.40 mm1
c = 12.7750 (17) ÅT = 100 K
α = 101.573 (7)°0.55 × 0.1 × 0.05 mm
β = 100.620 (7)°
Data collection top
Bruker SMART 6000
diffractometer
2723 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
2053 reflections with I > 2σ(I)
Tmin = 0.695, Tmax = 0.887Rint = 0.093
13302 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.171H-atom parameters constrained
S = 1.06Δρmax = 0.49 e Å3
2723 reflectionsΔρmin = 0.52 e Å3
212 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3159 (5)0.3078 (3)0.0427 (3)0.0335 (7)
C20.3044 (5)0.3400 (3)0.1510 (3)0.0321 (7)
H20.161 (7)0.3085 (15)0.1716 (10)0.039*
C30.5098 (5)0.4202 (3)0.2295 (3)0.0307 (6)
H30.5032 (6)0.4434 (11)0.305 (3)0.037*
C40.7274 (5)0.4666 (3)0.1972 (3)0.0300 (6)
C50.7338 (6)0.4289 (3)0.0867 (3)0.0334 (7)
H50.868 (7)0.4554 (14)0.0670 (11)0.040*
C60.5296 (6)0.3501 (3)0.0079 (3)0.0335 (7)
H60.5348 (6)0.3261 (12)0.066 (3)0.040*
C70.9528 (5)0.5525 (3)0.2711 (3)0.0318 (7)
H71.080 (6)0.5715 (10)0.2403 (15)0.038*
C80.9363 (6)0.6628 (3)0.5421 (3)0.0331 (7)
C91.2007 (6)0.7358 (3)0.5523 (3)0.0348 (7)
H9A1.2191 (8)0.826 (3)0.5724 (7)0.042*
H9B1.309 (3)0.7121 (7)0.6044 (16)0.042*
C101.2471 (5)0.6936 (3)0.4386 (3)0.0328 (7)
H101.362 (5)0.644 (2)0.4414 (3)0.039*
C111.3200 (5)0.8005 (3)0.3817 (3)0.0310 (7)
C121.2013 (5)0.9032 (3)0.3819 (3)0.0343 (7)
H121.076 (6)0.9091 (4)0.4234 (18)0.041*
C131.2591 (6)0.9962 (3)0.3244 (3)0.0349 (7)
H131.178 (4)1.065 (3)0.3263 (3)0.042*
C141.4372 (5)0.9886 (3)0.2629 (3)0.0324 (7)
C151.5645 (6)0.8904 (3)0.2644 (3)0.0332 (7)
H151.688 (6)0.8869 (3)0.2269 (17)0.040*
C161.5032 (5)0.7974 (3)0.3235 (3)0.0323 (7)
H161.590 (4)0.729 (3)0.3241 (3)0.039*
C171.6705 (7)1.0860 (4)0.1506 (3)0.0438 (8)
H17A1.641 (3)0.998 (3)0.095 (2)0.066*
H17B1.833 (4)1.103 (3)0.2060 (15)0.066*
H17C1.677 (4)1.159 (3)0.110 (2)0.066*
Cl10.05505 (14)0.21060 (9)0.05673 (7)0.0434 (3)
N10.9930 (4)0.6049 (2)0.3753 (2)0.0287 (6)
N20.8252 (5)0.5891 (3)0.4379 (2)0.0306 (6)
O10.8327 (4)0.6705 (3)0.6184 (2)0.0432 (6)
O21.4761 (4)1.0831 (2)0.2062 (2)0.0382 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0211 (14)0.0340 (16)0.0422 (19)0.0060 (12)0.0036 (12)0.0064 (13)
C20.0210 (14)0.0334 (15)0.0425 (19)0.0047 (11)0.0088 (12)0.0111 (13)
C30.0239 (14)0.0326 (15)0.0347 (18)0.0048 (12)0.0077 (12)0.0077 (12)
C40.0240 (14)0.0277 (14)0.0389 (18)0.0045 (11)0.0094 (12)0.0095 (12)
C50.0215 (14)0.0340 (16)0.0456 (19)0.0043 (12)0.0111 (12)0.0113 (13)
C60.0286 (15)0.0367 (16)0.0357 (18)0.0082 (12)0.0098 (12)0.0077 (13)
C70.0199 (14)0.0322 (15)0.0438 (19)0.0040 (11)0.0115 (12)0.0091 (13)
C80.0293 (16)0.0328 (15)0.0389 (18)0.0057 (12)0.0096 (13)0.0128 (12)
C90.0259 (15)0.0343 (16)0.0419 (19)0.0024 (12)0.0065 (12)0.0101 (13)
C100.0185 (14)0.0316 (15)0.0463 (19)0.0029 (12)0.0056 (12)0.0100 (13)
C110.0181 (13)0.0316 (15)0.0383 (17)0.0019 (11)0.0028 (11)0.0049 (12)
C120.0200 (14)0.0408 (17)0.0414 (19)0.0050 (12)0.0092 (12)0.0089 (13)
C130.0239 (15)0.0328 (16)0.047 (2)0.0074 (12)0.0056 (13)0.0089 (13)
C140.0226 (14)0.0308 (15)0.0401 (18)0.0003 (11)0.0039 (12)0.0094 (12)
C150.0219 (14)0.0335 (16)0.0424 (18)0.0025 (12)0.0086 (12)0.0088 (13)
C160.0166 (13)0.0340 (16)0.0443 (19)0.0042 (11)0.0058 (12)0.0083 (13)
C170.0370 (18)0.048 (2)0.050 (2)0.0084 (15)0.0136 (15)0.0193 (16)
Cl10.0231 (4)0.0522 (5)0.0450 (5)0.0033 (3)0.0050 (3)0.0024 (3)
N10.0187 (12)0.0307 (13)0.0374 (15)0.0043 (9)0.0089 (10)0.0094 (10)
N20.0230 (12)0.0348 (13)0.0355 (15)0.0049 (10)0.0108 (10)0.0103 (10)
O10.0362 (13)0.0502 (14)0.0420 (14)0.0023 (10)0.0156 (10)0.0105 (10)
O20.0303 (11)0.0371 (12)0.0484 (14)0.0055 (9)0.0088 (9)0.0161 (10)
Geometric parameters (Å, º) top
C1—C21.374 (5)C10—H100.9240
C1—C61.395 (4)C10—C111.506 (4)
C1—Cl11.752 (3)C10—N11.539 (4)
C2—H20.9276C11—C121.398 (5)
C2—C31.392 (4)C11—C161.389 (4)
C3—H30.9509C12—H120.9660
C3—C41.408 (4)C12—C131.375 (5)
C4—C51.398 (5)C13—H130.9441
C4—C71.458 (4)C13—C141.398 (5)
C5—H50.8642C14—C151.388 (5)
C5—C61.385 (5)C14—O21.363 (4)
C6—H60.9337C15—H150.9229
C7—H70.8959C15—C161.394 (5)
C7—N11.296 (4)C16—H160.9566
C8—C91.523 (4)C17—H17A1.0168
C8—N21.366 (4)C17—H17B1.0168
C8—O11.227 (4)C17—H17C1.0168
C9—H9A0.9313C17—O21.420 (4)
C9—H9B0.9313N1—N21.362 (3)
C9—C101.519 (5)
C2—C1—C6122.3 (3)C11—C10—H10109.6
C2—C1—Cl1119.6 (2)C11—C10—N1109.6 (3)
C6—C1—Cl1118.0 (3)N1—C10—H10109.6
C1—C2—H2120.2C12—C11—C10121.6 (3)
C1—C2—C3119.6 (3)C16—C11—C10120.7 (3)
C3—C2—H2120.2C16—C11—C12117.7 (3)
C2—C3—H3120.2C11—C12—H12119.4
C2—C3—C4119.7 (3)C13—C12—C11121.2 (3)
C4—C3—H3120.2C13—C12—H12119.4
C3—C4—C7124.9 (3)C12—C13—H13119.9
C5—C4—C3119.0 (3)C12—C13—C14120.3 (3)
C5—C4—C7116.1 (3)C14—C13—H13119.9
C4—C5—H5119.2C15—C14—C13119.7 (3)
C6—C5—C4121.7 (3)O2—C14—C13115.8 (3)
C6—C5—H5119.2O2—C14—C15124.5 (3)
C1—C6—H6121.1C14—C15—H15120.5
C5—C6—C1117.7 (3)C14—C15—C16119.0 (3)
C5—C6—H6121.1C16—C15—H15120.5
C4—C7—H7115.7C11—C16—C15122.0 (3)
N1—C7—C4128.5 (3)C11—C16—H16119.0
N1—C7—H7115.7C15—C16—H16119.0
N2—C8—C9112.6 (3)H17A—C17—H17B109.5
O1—C8—C9123.9 (3)H17A—C17—H17C109.5
O1—C8—N2123.5 (3)H17B—C17—H17C109.5
C8—C9—H9A110.8O2—C17—H17A109.5
C8—C9—H9B110.8O2—C17—H17B109.5
H9A—C9—H9B108.9O2—C17—H17C109.5
C10—C9—C8104.7 (3)C7—N1—C10120.2 (2)
C10—C9—H9A110.8C7—N1—N2125.3 (3)
C10—C9—H9B110.8N2—N1—C10114.5 (2)
C9—C10—H10109.6N1—N2—C8107.3 (2)
C9—C10—N1100.9 (2)C14—O2—C17117.6 (3)
C11—C10—C9117.1 (3)
C1—C2—C3—C40.4 (5)C10—C11—C16—C15176.0 (3)
C2—C1—C6—C51.0 (5)C10—N1—N2—C81.7 (3)
C2—C3—C4—C51.3 (5)C11—C10—N1—C753.0 (4)
C2—C3—C4—C7179.0 (3)C11—C10—N1—N2127.0 (3)
C3—C4—C5—C61.8 (5)C11—C12—C13—C140.8 (5)
C3—C4—C7—N12.9 (5)C12—C11—C16—C151.8 (5)
C4—C5—C6—C10.7 (5)C12—C13—C14—C153.1 (5)
C4—C7—N1—C10180.0 (3)C12—C13—C14—O2178.2 (3)
C4—C7—N1—N20.1 (5)C13—C14—C15—C163.0 (5)
C5—C4—C7—N1177.4 (3)C13—C14—O2—C17174.5 (3)
C6—C1—C2—C31.6 (5)C14—C15—C16—C110.5 (5)
C7—C4—C5—C6178.4 (3)C15—C14—O2—C174.1 (5)
C7—N1—N2—C8178.3 (3)C16—C11—C12—C131.7 (5)
C8—C9—C10—C11121.5 (3)Cl1—C1—C2—C3178.3 (2)
C8—C9—C10—N12.6 (3)Cl1—C1—C6—C5178.8 (2)
C9—C8—N2—N10.2 (3)N1—C10—C11—C1270.4 (4)
C9—C10—C11—C1243.7 (4)N1—C10—C11—C16107.3 (3)
C9—C10—C11—C16138.5 (3)N2—C8—C9—C102.0 (4)
C9—C10—N1—C7177.1 (3)O1—C8—C9—C10178.9 (3)
C9—C10—N1—N22.8 (3)O1—C8—N2—N1179.4 (3)
C10—C11—C12—C13176.1 (3)O2—C14—C15—C16178.4 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···N20.96 (4)2.31 (3)2.934 (4)122 (1)
C3—H3···O1i0.96 (4)2.52 (2)3.152 (4)124 (1)
C17—H17C···Cgii1.02 (3)2.73 (3)3.551 (4)138 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···N20.96 (4)2.31 (3)2.934 (4)122.2 (8)
C3—H3···O1i0.96 (4)2.521 (17)3.152 (4)123.5 (14)
C17—H17C···Cgii1.02 (3)2.73 (3)3.551 (4)137.9 (18)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H15ClN2O2
Mr314.76
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.6966 (6), 10.6852 (13), 12.7750 (17)
α, β, γ (°)101.573 (7), 100.620 (7), 101.311 (6)
V3)726.47 (15)
Z2
Radiation typeCu Kα
µ (mm1)2.40
Crystal size (mm)0.55 × 0.1 × 0.05
Data collection
DiffractometerBruker SMART 6000
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.695, 0.887
No. of measured, independent and
observed [I > 2σ(I)] reflections
13302, 2723, 2053
Rint0.093
(sin θ/λ)max1)0.614
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.171, 1.06
No. of reflections2723
No. of parameters212
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.52

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

We thank VLIR–UOS and the Chemistry Department of KU Leuven for support of this work.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDo, T. L. (2011). Vietnamese Medicinal Plants and Remedies, pp. 365–366. Hanoi: Thoi Dai.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIndelicato, J. M. & Pasini, C. E. (1988). J. Med. Chem. 31, 1227–1230.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKulpe, S., Seidel, I., Leibnitz, P. & Geissler, G. (1983). Acta Cryst. C39, 278–280.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMulhall, J. (1997). Br. J. Urol. 79, 663–664.  CAS PubMed Web of Science Google Scholar
First citationNaito, T., Yoshikawa, T., Kitahara, S. & Aoki, N. (1969). Chem. Pharm. Bull. 17, 1467–1478.  CrossRef CAS Google Scholar
First citationPadwa, A. & Pearson, W. H. (2003). Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products. New York: John Wiley & Sons.  Google Scholar
First citationSchantl, J. G. (2004). In Science of Synthesis, Vol. 27, edited by A. Padwa, pp. 731–824. Stuttgart, New York: Georg Thieme Verlag.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuarez, A., Downey, C. W. & Fu, G. C. (2005). J. Am. Chem. Soc. 127, 11244–11245.  Web of Science PubMed CAS Google Scholar
First citationSvete, J. (2006). Arkivoc, vii, 35–56.  Google Scholar
First citationVinge, E. & Bjorkman, S. B. (1986). Acta Pharmacol. Toxicol. 59, 165–172.  CrossRef CAS Google Scholar
First citationXu, X., Xu, X., Zavalij, P. Y. & Doyle, M. P. (2013). Chem. Commun. 49, 2762–2764.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhou, W., Li, X.-X., Li, G.-H., Wu, Y. & Chen, Z. (2013). Chem. Commun. 49, 3552–3554.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds