metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 8| August 2014| Pages m298-m299

catena-Poly[[[bis­­(1H-imidazole-κN3)zinc(II)]-μ2-imidazol-1-ido-κ2N:N′] nitrate]

aDepartment of Physics, Presidency College, Chennai 600 005, India, bDepartment of Chemistry, Pondicherry University, Pondicherry 605 014, India, and cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India
*Correspondence e-mail: a_sp59@yahoo.in

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 6 April 2014; accepted 28 June 2014; online 11 July 2014)

The title compound, {[Zn(C3H3N2)(C3H4N2)2]NO3}n, is a one-dimensional coordination polymer along [01-1] with the ZnII atom coordinating to four imidazole/imidazolide rings. The ZnII atom has a regular tetra­hedral geometry with the planes of the two monodentate imidazole rings inclined to one another by 87.94 (17)°, while the planes of the bridging imidazolide rings are inclined to one another by 39.06 (17)°. In the crystal, the chains are linked via bifurcated N—H⋯(O,O) hydrogen bonds, forming sheets parallel to (001). These two-dimensional networks are linked via C—H⋯O hydrogen bonds and a C—H⋯π inter­action, forming a three-dimensional structure.

Keywords: crystal structure.

Related literature

For imidazole systems in biological systems, see: Brooks & Davidson, (1960[Brooks, P. & Davidson, N. (1960). J. Am. Chem. Soc. 82, 2118-2123.]). For the crystal structure of a similar compound, see: Fu et al. (2007[Fu, R., Shengmin Hu, S. & Wu, X. (2007). Inorg. Chem. 46, 9630-9640.]). For the synthesis of the title compound, see: Anbalagan & Lydia (2011[Anbalagan, K. & Lydia, I. S. (2011). J. Phys. Org. Chem. 24, 45-53.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C3H3N2)(C3H4N2)2]NO3

  • Mr = 330.62

  • Monoclinic, P 21 /c

  • a = 12.1812 (10) Å

  • b = 10.0713 (7) Å

  • c = 11.3628 (10) Å

  • β = 91.011 (8)°

  • V = 1393.78 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.78 mm−1

  • T = 293 K

  • 0.45 × 0.35 × 0.35 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.478, Tmax = 0.536

  • 7564 measured reflections

  • 3132 independent reflections

  • 2419 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.083

  • S = 1.03

  • 3132 reflections

  • 188 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—N6 1.9871 (18)
Zn1—N1 1.990 (2)
Zn1—N3 1.994 (2)
Zn1—N5 1.9954 (19)

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/N2/C1–C3 imidazole ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O1i 0.92 (3) 1.92 (3) 2.809 (3) 162 (3)
N4—H4N⋯O1ii 0.87 (2) 1.99 (3) 2.826 (3) 161 (3)
N4—H4N⋯O3ii 0.87 (2) 2.52 (3) 3.074 (3) 122 (2)
C2—H2⋯O3iii 0.93 2.37 3.289 (4) 172
C4—H4⋯O3 0.93 2.55 3.283 (4) 135
C7—H7⋯Cg1iv 0.93 2.88 3.587 (4) 133
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL2013 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Imidazoles are of considerable interest as ligands in many biological systems as they provide potential binding sites for metal ions (Brooks & Davidson, 1960). Against this background and to ascertain the molecular structure and conformation of the title compound, the crystal structure determination has been carried out.

The molecular structure of the title compound is shown in Fig. 1. Atom Zn1 has a regular tetrahedral geometry and the bond lengths (Allen et al., 1987) and angles are normal. It is a one-dimensional zigzag polymer with atom Zn1 coordinating to four imidazole units. This structure is similar to that observed for the compound catena-(bis(µ2-Imidazole)-tetrakis(1H-imidazole)-di-ZnII 4,4'-bis(2-sulfonatostyryl)biphenyl) [Fu et al., 2007]. Two of the imidazole units are related by a two-fold screw axis and bridge the zinc atoms. The Zn-N bond distances vary from 1.9871 (18) to 1.9954 (19) Å, while the N-Zn-N bond angles vary from 105.86 (2) to 112.65 (8) °. The two monodentate coordinated imidazole rings [N1/N2/C1-C3 and N3/N4/C4-C6] are inclined to one another by 87.94 (17) °, while the bridging imidazole rings [N5/N6i/C9/C7i/C8i and N5ii/N6/C7ii/C8ii/C9] are inclined to one another by 39.06 (17) ° [symmetry codes: (i) -x+1, y+1/2, -z+1/2; (ii) -x+1, y-1/2, -z+1/2].

In the crystal, the chains are linked via bifurcated N—H···O/O hydrogen bonds forming sheets parallel to (001); (Table 1 and Fig. 2). These two-dimensional networks are linked via C-H···O hydrogen bonds and a C-H···π interaction forming a three-dimensional structure.

Related literature top

For imidazoles in biological systems, see: Brooks & Davidson, (1960). For the crystal structure of a similar compound, see: Fu et al. (2007). For the synthesis of the title compound, see: Anbalagan & Lydia (2011). For standard bond lengths, see: Allen et al. (1987).

Experimental top

The title compound was synthesized following a published procedure (Anbalagan & Lydia, 2011). To an ethanol solution (30 ml) of imidazole (1.0 g, 4.2 mmol) was added an ethanol solution of Zn(NO3)2.6H2O (0.32 g, 1.1 mmol) and the mixture was stirred for 30 min at room temperature. The solvent was removed under vacuum. The white powder obtained was washed several times with water and ether. The final product was dissolved in 5–10 ml of ethanol and allowed to crystallize in a desiccator containing P2O5 for 4 days. Colourless crystals were obtained [yield > 90%], which were filtered, washed with cold ethanol and dried under vacuum.

Refinement top

NH H atoms were located in a difference Fourier map and refined with distance restraints: N-H = 0.88 (2) Å with Uiso(H) = 1.2Ueq(N). The C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms: C–H = 0.93 Å with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atomic labelling [Symmetry codes: (a) -x+1, y+1/2, -z+1/2; (b) -x+1, y-1/2, -z+1/2]. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the b-axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed bonds (see Table 1 for details; H atoms not involved in these interactions have been omitted for clarity).
catena-Poly[[[bis(1H-imidazole-κN3)zinc(II)]-µ2-imidazol-1-ido-κ2N:N'] nitrate] top
Crystal data top
[Zn(C3H3N2)(C3H4N2)2]NO3F(000) = 672
Mr = 330.62Dx = 1.576 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.1812 (10) ÅCell parameters from 1994 reflections
b = 10.0713 (7) Åθ = 3.9–25.0°
c = 11.3628 (10) ŵ = 1.78 mm1
β = 91.011 (8)°T = 293 K
V = 1393.78 (19) Å3Block, pink
Z = 40.45 × 0.35 × 0.35 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
3132 independent reflections
Radiation source: fine-focus sealed tube2419 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 29.1°, θmin = 3.9°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1616
Tmin = 0.478, Tmax = 0.536k = 1313
7564 measured reflectionsl = 1315
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0384P)2 + 0.2989P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3132 reflectionsΔρmax = 0.26 e Å3
188 parametersΔρmin = 0.30 e Å3
2 restraintsExtinction correction: SHELXL2013 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0081 (9)
Crystal data top
[Zn(C3H3N2)(C3H4N2)2]NO3V = 1393.78 (19) Å3
Mr = 330.62Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.1812 (10) ŵ = 1.78 mm1
b = 10.0713 (7) ÅT = 293 K
c = 11.3628 (10) Å0.45 × 0.35 × 0.35 mm
β = 91.011 (8)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
3132 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2419 reflections with I > 2σ(I)
Tmin = 0.478, Tmax = 0.536Rint = 0.025
7564 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0332 restraints
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.26 e Å3
3132 reflectionsΔρmin = 0.30 e Å3
188 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.36252 (2)0.46682 (2)0.22841 (2)0.03923 (12)
N10.25332 (15)0.47069 (19)0.35663 (18)0.0432 (5)
N20.13625 (19)0.4040 (3)0.4868 (2)0.0660 (7)
H2N0.087 (2)0.347 (3)0.521 (3)0.079*
N30.28898 (17)0.5089 (2)0.07477 (18)0.0453 (5)
N40.1623 (2)0.5621 (2)0.0543 (2)0.0629 (6)
H4N0.0994 (18)0.591 (3)0.081 (3)0.075*
N50.42417 (16)0.28445 (18)0.21108 (18)0.0445 (5)
N60.47785 (15)0.59804 (18)0.27271 (17)0.0417 (4)
C10.1922 (2)0.3708 (3)0.3939 (2)0.0542 (7)
H10.18940.28750.35850.065*
C20.1596 (2)0.5311 (4)0.5132 (3)0.0699 (9)
H20.13140.58020.57500.084*
C30.2327 (2)0.5742 (3)0.4320 (3)0.0591 (7)
H30.26320.65870.42820.071*
C40.1872 (2)0.5504 (3)0.0592 (3)0.0547 (7)
H40.13920.56890.11980.066*
C50.2504 (3)0.5270 (3)0.1158 (3)0.0730 (9)
H50.25640.52640.19730.088*
C60.3286 (3)0.4929 (3)0.0364 (3)0.0642 (8)
H60.39860.46320.05420.077*
C70.3839 (3)0.1932 (3)0.1340 (3)0.0754 (10)
H70.32480.20630.08240.090*
C80.50637 (19)0.2215 (2)0.2642 (2)0.0445 (6)
H80.54970.26060.32270.053*
C90.5567 (3)0.5799 (3)0.3560 (3)0.0733 (10)
H90.56840.50260.39930.088*
O10.02383 (16)0.7857 (2)0.38003 (18)0.0670 (5)
O20.0378 (2)0.6253 (3)0.2556 (2)0.0974 (8)
O30.0817 (2)0.7775 (2)0.23084 (19)0.0834 (7)
N70.00643 (19)0.7290 (2)0.2867 (2)0.0568 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.04116 (18)0.03470 (16)0.04196 (18)0.00129 (11)0.00404 (12)0.00016 (11)
N10.0413 (11)0.0480 (11)0.0405 (11)0.0025 (9)0.0064 (9)0.0014 (9)
N20.0451 (13)0.097 (2)0.0562 (16)0.0008 (13)0.0111 (12)0.0142 (15)
N30.0462 (11)0.0477 (11)0.0420 (12)0.0069 (9)0.0037 (9)0.0008 (9)
N40.0626 (16)0.0636 (15)0.0620 (16)0.0042 (12)0.0114 (14)0.0139 (12)
N50.0454 (11)0.0360 (10)0.0520 (12)0.0020 (8)0.0039 (10)0.0049 (9)
N60.0455 (11)0.0358 (9)0.0436 (11)0.0035 (8)0.0004 (9)0.0027 (9)
C10.0436 (14)0.0641 (16)0.0549 (16)0.0020 (12)0.0030 (13)0.0091 (13)
C20.0556 (17)0.108 (3)0.0462 (17)0.0285 (17)0.0086 (14)0.0098 (17)
C30.0615 (17)0.0609 (16)0.0552 (17)0.0117 (13)0.0055 (14)0.0091 (14)
C40.0530 (16)0.0567 (16)0.0544 (17)0.0098 (12)0.0033 (13)0.0038 (13)
C50.096 (3)0.082 (2)0.0402 (16)0.0060 (19)0.0029 (17)0.0034 (15)
C60.0610 (17)0.081 (2)0.0515 (17)0.0143 (14)0.0134 (15)0.0019 (14)
C70.085 (2)0.0483 (15)0.091 (2)0.0114 (14)0.0504 (19)0.0149 (16)
C80.0456 (13)0.0385 (12)0.0492 (14)0.0000 (10)0.0062 (11)0.0063 (11)
C90.097 (2)0.0430 (14)0.078 (2)0.0117 (15)0.0373 (19)0.0206 (15)
O10.0679 (12)0.0734 (13)0.0602 (12)0.0107 (10)0.0150 (10)0.0139 (11)
O20.117 (2)0.0852 (17)0.0903 (18)0.0450 (15)0.0065 (15)0.0264 (14)
O30.1114 (17)0.0825 (15)0.0574 (13)0.0286 (14)0.0313 (13)0.0009 (12)
N70.0637 (14)0.0596 (14)0.0469 (12)0.0080 (12)0.0052 (12)0.0048 (11)
Geometric parameters (Å, º) top
Zn1—N61.9871 (18)C1—H10.9300
Zn1—N11.990 (2)C2—C31.364 (4)
Zn1—N31.994 (2)C2—H20.9300
Zn1—N51.9954 (19)C3—H30.9300
N1—C11.325 (3)C4—H40.9300
N1—C31.375 (3)C5—C61.345 (4)
N2—C11.310 (4)C5—H50.9300
N2—C21.344 (4)C6—H60.9300
N2—H2N0.915 (18)C7—C9ii1.355 (4)
N3—C41.317 (3)C7—H70.9300
N3—C61.369 (3)C8—N6ii1.327 (3)
N4—C41.325 (4)C8—H80.9300
N4—C51.339 (4)C9—C7i1.355 (4)
N4—H4N0.872 (17)C9—H90.9300
N5—C81.322 (3)O1—N71.265 (3)
N5—C71.355 (3)O2—N71.224 (3)
N6—C8i1.327 (3)O3—N71.226 (3)
N6—C91.349 (3)
N6—Zn1—N1106.27 (8)N2—C2—C3106.9 (3)
N6—Zn1—N3112.65 (8)N2—C2—H2126.6
N1—Zn1—N3109.94 (8)C3—C2—H2126.6
N6—Zn1—N5111.81 (8)C2—C3—N1108.0 (3)
N1—Zn1—N5110.35 (8)C2—C3—H3126.0
N3—Zn1—N5105.86 (8)N1—C3—H3126.0
C1—N1—C3105.5 (2)N3—C4—N4111.0 (3)
C1—N1—Zn1127.24 (18)N3—C4—H4124.5
C3—N1—Zn1127.06 (19)N4—C4—H4124.5
C1—N2—C2108.1 (3)N4—C5—C6106.3 (3)
C1—N2—H2N122 (2)N4—C5—H5126.8
C2—N2—H2N130 (2)C6—C5—H5126.8
C4—N3—C6105.0 (2)C5—C6—N3109.4 (3)
C4—N3—Zn1126.31 (19)C5—C6—H6125.3
C6—N3—Zn1128.51 (18)N3—C6—H6125.3
C4—N4—C5108.2 (3)N5—C7—C9ii109.3 (2)
C4—N4—H4N124 (2)N5—C7—H7125.3
C5—N4—H4N128 (2)C9ii—C7—H7125.3
C8—N5—C7103.4 (2)N5—C8—N6ii114.7 (2)
C8—N5—Zn1132.85 (15)N5—C8—H8122.6
C7—N5—Zn1123.74 (16)N6ii—C8—H8122.6
C8i—N6—C9104.1 (2)N6—C9—C7i108.5 (2)
C8i—N6—Zn1130.45 (16)N6—C9—H9125.8
C9—N6—Zn1125.38 (17)C7i—C9—H9125.8
N2—C1—N1111.5 (3)O2—N7—O3121.4 (3)
N2—C1—H1124.2O2—N7—O1119.6 (2)
N1—C1—H1124.2O3—N7—O1119.1 (2)
C2—N2—C1—N10.4 (3)C4—N4—C5—C60.5 (4)
C3—N1—C1—N20.6 (3)N4—C5—C6—N30.9 (4)
Zn1—N1—C1—N2174.19 (16)C4—N3—C6—C50.9 (3)
C1—N2—C2—C30.1 (3)Zn1—N3—C6—C5176.7 (2)
N2—C2—C3—N10.3 (3)C8—N5—C7—C9ii0.0 (4)
C1—N1—C3—C20.5 (3)Zn1—N5—C7—C9ii179.8 (2)
Zn1—N1—C3—C2174.26 (18)C7—N5—C8—N6ii0.2 (3)
C6—N3—C4—N40.6 (3)Zn1—N5—C8—N6ii179.99 (17)
Zn1—N3—C4—N4176.58 (18)C8i—N6—C9—C7i0.3 (4)
C5—N4—C4—N30.1 (3)Zn1—N6—C9—C7i176.6 (2)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/N2/C1–C3 imidazole ring.
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1iii0.92 (3)1.92 (3)2.809 (3)162 (3)
N4—H4N···O1iv0.87 (2)1.99 (3)2.826 (3)161 (3)
N4—H4N···O3iv0.87 (2)2.52 (3)3.074 (3)122 (2)
C2—H2···O3v0.932.373.289 (4)172
C4—H4···O30.932.553.283 (4)135
C7—H7···Cg1vi0.932.883.587 (4)133
Symmetry codes: (iii) x, y+1, z+1; (iv) x, y+3/2, z1/2; (v) x, y+3/2, z+1/2; (vi) x, y1/2, z3/2.
Selected bond lengths (Å) top
Zn1—N61.9871 (18)Zn1—N31.994 (2)
Zn1—N11.990 (2)Zn1—N51.9954 (19)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/N2/C1–C3 imidazole ring.
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1i0.92 (3)1.92 (3)2.809 (3)162 (3)
N4—H4N···O1ii0.87 (2)1.99 (3)2.826 (3)161 (3)
N4—H4N···O3ii0.87 (2)2.52 (3)3.074 (3)122 (2)
C2—H2···O3iii0.932.373.289 (4)172
C4—H4···O30.932.553.283 (4)135
C7—H7···Cg1iv0.932.883.587 (4)133
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+3/2, z1/2; (iii) x, y+3/2, z+1/2; (iv) x, y1/2, z3/2.
 

Acknowledgements

EG and KA thank the CSIR, New Delhi (Lr: No. 01 (2570)/12/EMR-II/3.4.2012) for financial support through a major research project. The authors are grateful to the Department of Chemistry, Pondicherry University, for access to the single-crystal XRD facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAnbalagan, K. & Lydia, I. S. (2011). J. Phys. Org. Chem. 24, 45–53.  Web of Science CrossRef CAS Google Scholar
First citationBrooks, P. & Davidson, N. (1960). J. Am. Chem. Soc. 82, 2118–2123.  CrossRef CAS Web of Science Google Scholar
First citationFu, R., Shengmin Hu, S. & Wu, X. (2007). Inorg. Chem. 46, 9630–9640.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 8| August 2014| Pages m298-m299
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds