metal-organic compounds
catena-Poly[[[bis(1H-imidazole-κN3)zinc(II)]-μ2-imidazol-1-ido-κ2N:N′] nitrate]
aDepartment of Physics, Presidency College, Chennai 600 005, India, bDepartment of Chemistry, Pondicherry University, Pondicherry 605 014, India, and cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India
*Correspondence e-mail: a_sp59@yahoo.in
The title compound, {[Zn(C3H3N2)(C3H4N2)2]NO3}n, is a one-dimensional coordination polymer along [01-1] with the ZnII atom coordinating to four imidazole/imidazolide rings. The ZnII atom has a regular tetrahedral geometry with the planes of the two monodentate imidazole rings inclined to one another by 87.94 (17)°, while the planes of the bridging imidazolide rings are inclined to one another by 39.06 (17)°. In the crystal, the chains are linked via bifurcated N—H⋯(O,O) hydrogen bonds, forming sheets parallel to (001). These two-dimensional networks are linked via C—H⋯O hydrogen bonds and a C—H⋯π interaction, forming a three-dimensional structure.
Keywords: crystal structure.
CCDC reference: 1011008
Related literature
For imidazole systems in biological systems, see: Brooks & Davidson, (1960). For the of a similar compound, see: Fu et al. (2007). For the synthesis of the title compound, see: Anbalagan & Lydia (2011). For standard bond lengths, see: Allen et al. (1987).
Experimental
Crystal data
|
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2013 and PLATON (Spek, 2009).
Supporting information
CCDC reference: 1011008
10.1107/S1600536814015232/su2723sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814015232/su2723Isup2.hkl
The title compound was synthesized following a published procedure (Anbalagan & Lydia, 2011). To an ethanol solution (30 ml) of imidazole (1.0 g, 4.2 mmol) was added an ethanol solution of Zn(NO3)2.6H2O (0.32 g, 1.1 mmol) and the mixture was stirred for 30 min at room temperature. The solvent was removed under vacuum. The white powder obtained was washed several times with water and ether. The final product was dissolved in 5–10 ml of ethanol and allowed to crystallize in a desiccator containing P2O5 for 4 days. Colourless crystals were obtained [yield > 90%], which were filtered, washed with cold ethanol and dried under vacuum.
NH H atoms were located in a difference Fourier map and refined with distance restraints: N-H = 0.88 (2) Å with Uiso(H) = 1.2Ueq(N). The C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms: C–H = 0.93 Å with Uiso(H) = 1.2Ueq(C).
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound, with atomic labelling [Symmetry codes: (a) -x+1, y+1/2, -z+1/2; (b) -x+1, y-1/2, -z+1/2]. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. A view along the b-axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed bonds (see Table 1 for details; H atoms not involved in these interactions have been omitted for clarity). |
[Zn(C3H3N2)(C3H4N2)2]NO3 | F(000) = 672 |
Mr = 330.62 | Dx = 1.576 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.1812 (10) Å | Cell parameters from 1994 reflections |
b = 10.0713 (7) Å | θ = 3.9–25.0° |
c = 11.3628 (10) Å | µ = 1.78 mm−1 |
β = 91.011 (8)° | T = 293 K |
V = 1393.78 (19) Å3 | Block, pink |
Z = 4 | 0.45 × 0.35 × 0.35 mm |
Oxford Diffraction Xcalibur Eos diffractometer | 3132 independent reflections |
Radiation source: fine-focus sealed tube | 2419 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
ω scans | θmax = 29.1°, θmin = 3.9° |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | h = −16→16 |
Tmin = 0.478, Tmax = 0.536 | k = −13→13 |
7564 measured reflections | l = −13→15 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.083 | w = 1/[σ2(Fo2) + (0.0384P)2 + 0.2989P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
3132 reflections | Δρmax = 0.26 e Å−3 |
188 parameters | Δρmin = −0.30 e Å−3 |
2 restraints | Extinction correction: SHELXL2013 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0081 (9) |
[Zn(C3H3N2)(C3H4N2)2]NO3 | V = 1393.78 (19) Å3 |
Mr = 330.62 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.1812 (10) Å | µ = 1.78 mm−1 |
b = 10.0713 (7) Å | T = 293 K |
c = 11.3628 (10) Å | 0.45 × 0.35 × 0.35 mm |
β = 91.011 (8)° |
Oxford Diffraction Xcalibur Eos diffractometer | 3132 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | 2419 reflections with I > 2σ(I) |
Tmin = 0.478, Tmax = 0.536 | Rint = 0.025 |
7564 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 2 restraints |
wR(F2) = 0.083 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.26 e Å−3 |
3132 reflections | Δρmin = −0.30 e Å−3 |
188 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.36252 (2) | 0.46682 (2) | 0.22841 (2) | 0.03923 (12) | |
N1 | 0.25332 (15) | 0.47069 (19) | 0.35663 (18) | 0.0432 (5) | |
N2 | 0.13625 (19) | 0.4040 (3) | 0.4868 (2) | 0.0660 (7) | |
H2N | 0.087 (2) | 0.347 (3) | 0.521 (3) | 0.079* | |
N3 | 0.28898 (17) | 0.5089 (2) | 0.07477 (18) | 0.0453 (5) | |
N4 | 0.1623 (2) | 0.5621 (2) | −0.0543 (2) | 0.0629 (6) | |
H4N | 0.0994 (18) | 0.591 (3) | −0.081 (3) | 0.075* | |
N5 | 0.42417 (16) | 0.28445 (18) | 0.21108 (18) | 0.0445 (5) | |
N6 | 0.47785 (15) | 0.59804 (18) | 0.27271 (17) | 0.0417 (4) | |
C1 | 0.1922 (2) | 0.3708 (3) | 0.3939 (2) | 0.0542 (7) | |
H1 | 0.1894 | 0.2875 | 0.3585 | 0.065* | |
C2 | 0.1596 (2) | 0.5311 (4) | 0.5132 (3) | 0.0699 (9) | |
H2 | 0.1314 | 0.5802 | 0.5750 | 0.084* | |
C3 | 0.2327 (2) | 0.5742 (3) | 0.4320 (3) | 0.0591 (7) | |
H3 | 0.2632 | 0.6587 | 0.4282 | 0.071* | |
C4 | 0.1872 (2) | 0.5504 (3) | 0.0592 (3) | 0.0547 (7) | |
H4 | 0.1392 | 0.5689 | 0.1198 | 0.066* | |
C5 | 0.2504 (3) | 0.5270 (3) | −0.1158 (3) | 0.0730 (9) | |
H5 | 0.2564 | 0.5264 | −0.1973 | 0.088* | |
C6 | 0.3286 (3) | 0.4929 (3) | −0.0364 (3) | 0.0642 (8) | |
H6 | 0.3986 | 0.4632 | −0.0542 | 0.077* | |
C7 | 0.3839 (3) | 0.1932 (3) | 0.1340 (3) | 0.0754 (10) | |
H7 | 0.3248 | 0.2063 | 0.0824 | 0.090* | |
C8 | 0.50637 (19) | 0.2215 (2) | 0.2642 (2) | 0.0445 (6) | |
H8 | 0.5497 | 0.2606 | 0.3227 | 0.053* | |
C9 | 0.5567 (3) | 0.5799 (3) | 0.3560 (3) | 0.0733 (10) | |
H9 | 0.5684 | 0.5026 | 0.3993 | 0.088* | |
O1 | −0.02383 (16) | 0.7857 (2) | 0.38003 (18) | 0.0670 (5) | |
O2 | −0.0378 (2) | 0.6253 (3) | 0.2556 (2) | 0.0974 (8) | |
O3 | 0.0817 (2) | 0.7775 (2) | 0.23084 (19) | 0.0834 (7) | |
N7 | 0.00643 (19) | 0.7290 (2) | 0.2867 (2) | 0.0568 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.04116 (18) | 0.03470 (16) | 0.04196 (18) | 0.00129 (11) | 0.00404 (12) | −0.00016 (11) |
N1 | 0.0413 (11) | 0.0480 (11) | 0.0405 (11) | 0.0025 (9) | 0.0064 (9) | 0.0014 (9) |
N2 | 0.0451 (13) | 0.097 (2) | 0.0562 (16) | −0.0008 (13) | 0.0111 (12) | 0.0142 (15) |
N3 | 0.0462 (11) | 0.0477 (11) | 0.0420 (12) | 0.0069 (9) | 0.0037 (9) | 0.0008 (9) |
N4 | 0.0626 (16) | 0.0636 (15) | 0.0620 (16) | 0.0042 (12) | −0.0114 (14) | 0.0139 (12) |
N5 | 0.0454 (11) | 0.0360 (10) | 0.0520 (12) | 0.0020 (8) | −0.0039 (10) | −0.0049 (9) |
N6 | 0.0455 (11) | 0.0358 (9) | 0.0436 (11) | −0.0035 (8) | 0.0004 (9) | 0.0027 (9) |
C1 | 0.0436 (14) | 0.0641 (16) | 0.0549 (16) | −0.0020 (12) | 0.0030 (13) | 0.0091 (13) |
C2 | 0.0556 (17) | 0.108 (3) | 0.0462 (17) | 0.0285 (17) | 0.0086 (14) | −0.0098 (17) |
C3 | 0.0615 (17) | 0.0609 (16) | 0.0552 (17) | 0.0117 (13) | 0.0055 (14) | −0.0091 (14) |
C4 | 0.0530 (16) | 0.0567 (16) | 0.0544 (17) | 0.0098 (12) | 0.0033 (13) | 0.0038 (13) |
C5 | 0.096 (3) | 0.082 (2) | 0.0402 (16) | 0.0060 (19) | −0.0029 (17) | 0.0034 (15) |
C6 | 0.0610 (17) | 0.081 (2) | 0.0515 (17) | 0.0143 (14) | 0.0134 (15) | −0.0019 (14) |
C7 | 0.085 (2) | 0.0483 (15) | 0.091 (2) | 0.0114 (14) | −0.0504 (19) | −0.0149 (16) |
C8 | 0.0456 (13) | 0.0385 (12) | 0.0492 (14) | 0.0000 (10) | −0.0062 (11) | −0.0063 (11) |
C9 | 0.097 (2) | 0.0430 (14) | 0.078 (2) | −0.0117 (15) | −0.0373 (19) | 0.0206 (15) |
O1 | 0.0679 (12) | 0.0734 (13) | 0.0602 (12) | −0.0107 (10) | 0.0150 (10) | −0.0139 (11) |
O2 | 0.117 (2) | 0.0852 (17) | 0.0903 (18) | −0.0450 (15) | 0.0065 (15) | −0.0264 (14) |
O3 | 0.1114 (17) | 0.0825 (15) | 0.0574 (13) | −0.0286 (14) | 0.0313 (13) | 0.0009 (12) |
N7 | 0.0637 (14) | 0.0596 (14) | 0.0469 (12) | −0.0080 (12) | −0.0052 (12) | 0.0048 (11) |
Zn1—N6 | 1.9871 (18) | C1—H1 | 0.9300 |
Zn1—N1 | 1.990 (2) | C2—C3 | 1.364 (4) |
Zn1—N3 | 1.994 (2) | C2—H2 | 0.9300 |
Zn1—N5 | 1.9954 (19) | C3—H3 | 0.9300 |
N1—C1 | 1.325 (3) | C4—H4 | 0.9300 |
N1—C3 | 1.375 (3) | C5—C6 | 1.345 (4) |
N2—C1 | 1.310 (4) | C5—H5 | 0.9300 |
N2—C2 | 1.344 (4) | C6—H6 | 0.9300 |
N2—H2N | 0.915 (18) | C7—C9ii | 1.355 (4) |
N3—C4 | 1.317 (3) | C7—H7 | 0.9300 |
N3—C6 | 1.369 (3) | C8—N6ii | 1.327 (3) |
N4—C4 | 1.325 (4) | C8—H8 | 0.9300 |
N4—C5 | 1.339 (4) | C9—C7i | 1.355 (4) |
N4—H4N | 0.872 (17) | C9—H9 | 0.9300 |
N5—C8 | 1.322 (3) | O1—N7 | 1.265 (3) |
N5—C7 | 1.355 (3) | O2—N7 | 1.224 (3) |
N6—C8i | 1.327 (3) | O3—N7 | 1.226 (3) |
N6—C9 | 1.349 (3) | ||
N6—Zn1—N1 | 106.27 (8) | N2—C2—C3 | 106.9 (3) |
N6—Zn1—N3 | 112.65 (8) | N2—C2—H2 | 126.6 |
N1—Zn1—N3 | 109.94 (8) | C3—C2—H2 | 126.6 |
N6—Zn1—N5 | 111.81 (8) | C2—C3—N1 | 108.0 (3) |
N1—Zn1—N5 | 110.35 (8) | C2—C3—H3 | 126.0 |
N3—Zn1—N5 | 105.86 (8) | N1—C3—H3 | 126.0 |
C1—N1—C3 | 105.5 (2) | N3—C4—N4 | 111.0 (3) |
C1—N1—Zn1 | 127.24 (18) | N3—C4—H4 | 124.5 |
C3—N1—Zn1 | 127.06 (19) | N4—C4—H4 | 124.5 |
C1—N2—C2 | 108.1 (3) | N4—C5—C6 | 106.3 (3) |
C1—N2—H2N | 122 (2) | N4—C5—H5 | 126.8 |
C2—N2—H2N | 130 (2) | C6—C5—H5 | 126.8 |
C4—N3—C6 | 105.0 (2) | C5—C6—N3 | 109.4 (3) |
C4—N3—Zn1 | 126.31 (19) | C5—C6—H6 | 125.3 |
C6—N3—Zn1 | 128.51 (18) | N3—C6—H6 | 125.3 |
C4—N4—C5 | 108.2 (3) | N5—C7—C9ii | 109.3 (2) |
C4—N4—H4N | 124 (2) | N5—C7—H7 | 125.3 |
C5—N4—H4N | 128 (2) | C9ii—C7—H7 | 125.3 |
C8—N5—C7 | 103.4 (2) | N5—C8—N6ii | 114.7 (2) |
C8—N5—Zn1 | 132.85 (15) | N5—C8—H8 | 122.6 |
C7—N5—Zn1 | 123.74 (16) | N6ii—C8—H8 | 122.6 |
C8i—N6—C9 | 104.1 (2) | N6—C9—C7i | 108.5 (2) |
C8i—N6—Zn1 | 130.45 (16) | N6—C9—H9 | 125.8 |
C9—N6—Zn1 | 125.38 (17) | C7i—C9—H9 | 125.8 |
N2—C1—N1 | 111.5 (3) | O2—N7—O3 | 121.4 (3) |
N2—C1—H1 | 124.2 | O2—N7—O1 | 119.6 (2) |
N1—C1—H1 | 124.2 | O3—N7—O1 | 119.1 (2) |
C2—N2—C1—N1 | 0.4 (3) | C4—N4—C5—C6 | 0.5 (4) |
C3—N1—C1—N2 | −0.6 (3) | N4—C5—C6—N3 | −0.9 (4) |
Zn1—N1—C1—N2 | 174.19 (16) | C4—N3—C6—C5 | 0.9 (3) |
C1—N2—C2—C3 | −0.1 (3) | Zn1—N3—C6—C5 | 176.7 (2) |
N2—C2—C3—N1 | −0.3 (3) | C8—N5—C7—C9ii | 0.0 (4) |
C1—N1—C3—C2 | 0.5 (3) | Zn1—N5—C7—C9ii | −179.8 (2) |
Zn1—N1—C3—C2 | −174.26 (18) | C7—N5—C8—N6ii | 0.2 (3) |
C6—N3—C4—N4 | −0.6 (3) | Zn1—N5—C8—N6ii | 179.99 (17) |
Zn1—N3—C4—N4 | −176.58 (18) | C8i—N6—C9—C7i | 0.3 (4) |
C5—N4—C4—N3 | 0.1 (3) | Zn1—N6—C9—C7i | −176.6 (2) |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2. |
Cg1 is the centroid of the N1/N2/C1–C3 imidazole ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N···O1iii | 0.92 (3) | 1.92 (3) | 2.809 (3) | 162 (3) |
N4—H4N···O1iv | 0.87 (2) | 1.99 (3) | 2.826 (3) | 161 (3) |
N4—H4N···O3iv | 0.87 (2) | 2.52 (3) | 3.074 (3) | 122 (2) |
C2—H2···O3v | 0.93 | 2.37 | 3.289 (4) | 172 |
C4—H4···O3 | 0.93 | 2.55 | 3.283 (4) | 135 |
C7—H7···Cg1vi | 0.93 | 2.88 | 3.587 (4) | 133 |
Symmetry codes: (iii) −x, −y+1, −z+1; (iv) x, −y+3/2, z−1/2; (v) x, −y+3/2, z+1/2; (vi) x, −y−1/2, z−3/2. |
Cg1 is the centroid of the N1/N2/C1–C3 imidazole ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N···O1i | 0.92 (3) | 1.92 (3) | 2.809 (3) | 162 (3) |
N4—H4N···O1ii | 0.87 (2) | 1.99 (3) | 2.826 (3) | 161 (3) |
N4—H4N···O3ii | 0.87 (2) | 2.52 (3) | 3.074 (3) | 122 (2) |
C2—H2···O3iii | 0.93 | 2.37 | 3.289 (4) | 172 |
C4—H4···O3 | 0.93 | 2.55 | 3.283 (4) | 135 |
C7—H7···Cg1iv | 0.93 | 2.88 | 3.587 (4) | 133 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, −y+3/2, z−1/2; (iii) x, −y+3/2, z+1/2; (iv) x, −y−1/2, z−3/2. |
Acknowledgements
EG and KA thank the CSIR, New Delhi (Lr: No. 01 (2570)/12/EMR-II/3.4.2012) for financial support through a major research project. The authors are grateful to the Department of Chemistry, Pondicherry University, for access to the single-crystal XRD facilities.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Anbalagan, K. & Lydia, I. S. (2011). J. Phys. Org. Chem. 24, 45–53. Web of Science CrossRef CAS Google Scholar
Brooks, P. & Davidson, N. (1960). J. Am. Chem. Soc. 82, 2118–2123. CrossRef CAS Web of Science Google Scholar
Fu, R., Shengmin Hu, S. & Wu, X. (2007). Inorg. Chem. 46, 9630–9640. Web of Science CSD CrossRef PubMed CAS Google Scholar
Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Imidazoles are of considerable interest as ligands in many biological systems as they provide potential binding sites for metal ions (Brooks & Davidson, 1960). Against this background and to ascertain the molecular structure and conformation of the title compound, the crystal structure determination has been carried out.
The molecular structure of the title compound is shown in Fig. 1. Atom Zn1 has a regular tetrahedral geometry and the bond lengths (Allen et al., 1987) and angles are normal. It is a one-dimensional zigzag polymer with atom Zn1 coordinating to four imidazole units. This structure is similar to that observed for the compound catena-(bis(µ2-Imidazole)-tetrakis(1H-imidazole)-di-ZnII 4,4'-bis(2-sulfonatostyryl)biphenyl) [Fu et al., 2007]. Two of the imidazole units are related by a two-fold screw axis and bridge the zinc atoms. The Zn-N bond distances vary from 1.9871 (18) to 1.9954 (19) Å, while the N-Zn-N bond angles vary from 105.86 (2) to 112.65 (8) °. The two monodentate coordinated imidazole rings [N1/N2/C1-C3 and N3/N4/C4-C6] are inclined to one another by 87.94 (17) °, while the bridging imidazole rings [N5/N6i/C9/C7i/C8i and N5ii/N6/C7ii/C8ii/C9] are inclined to one another by 39.06 (17) ° [symmetry codes: (i) -x+1, y+1/2, -z+1/2; (ii) -x+1, y-1/2, -z+1/2].
In the crystal, the chains are linked via bifurcated N—H···O/O hydrogen bonds forming sheets parallel to (001); (Table 1 and Fig. 2). These two-dimensional networks are linked via C-H···O hydrogen bonds and a C-H···π interaction forming a three-dimensional structure.