research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of ethyl (2S*,2′R*)-1′-methyl-2′′,3-dioxo-2,3-di­hydro­di­spiro­[1-benzo­thio­phene-2,3′-pyrrolidine-2′,3′′-indoline]-4′-carboxyl­ate and ethyl (2S*,2′R*)-5′′-chloro-1′-methyl-2′′,3-dioxo-2,3-di­hydro­di­spiro­[1-benzo­thio­phene-2,3′-pyrrolidine-2′,3′′-indoline]-4′-carboxyl­ate

aDepartment of Physics, Queen Mary's College (Autonomous), Chennai 600 004, India, bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India
*Correspondence e-mail: aspandian59@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 23 April 2014; accepted 1 July 2014; online 19 July 2014)

In the title compounds, C22H20N2O4S, (I), and C22H19ClN2O4S, (II), the pyrrolidine rings have twist conformations on the spiro–spiro C—C bonds. In (I), the five-membered ring of the oxindole moiety has an envelope conformation with the spiro C atom as the flap, while in (II) this ring is flat (r.m.s. deviation = 0.042 Å). The mean planes of the pyrrolidine rings are inclined to the mean planes of the indole units [r.m.s deviations = 0.073 and 0.069 Å for (I) and (II), respectively] and the benzo­thio­phene ring systems (r.m.s. deviations = 0.019 and 0.034 Å for (I) and (II), respectively) by 79.57 (8) and 88.61 (7)° for (I), and by 81.99 (10) and 88.79 (10)° for (II). In both compounds, the eth­oxy­carbonyl group occupies an equatorial position with an extended conformation. The overall conformation of the two mol­ecules differs in the angle of inclination of the indole unit with respect to the benzo­thio­phene ring system, with a dihedral angle between the planes of 71.59 (5) in (I) and 82.27 (7)° in (II). In the crystal of (I), mol­ecules are linked via pairs of N—H⋯O hydrogen bonds, forming inversion dimers enclosing R22(14) loops. The dimers are linked via C—H⋯O and bifurcated C—H⋯O(O) hydrogen bonds, forming sheets lying parallel to (100). In the crystal of (II), mol­ecules are again linked via pairs of N—H⋯O hydrogen bonds, forming inversion dimers but enclosing smaller R22(8) loops. Here, the dimers are linked by C—H⋯O hydrogen bonds, forming ribbons propagating along [010].

1. Chemical context

The spiro-indole-pyrrolidine ring system is a frequently encountered structural motif in many biologically important and pharmacologically relevant alkaloids, such as vincrinstine, vinblastine and spiro­typostatins (Cordell, 1981[Cordell, G. (1981). In Introduction to Alkaloids: A Biogenic Approach. New York: Wiley International.]). Highly functionalized pyrrolidines have gained much inter­est in the past few years as they constitute the main structural element of many natural and synthetic pharmacologically active compounds (Waldmann, 1995[Waldmann, H. (1995). Synlett. pp. 133-141.]). Optically active pyrrolidines have been used as inter­mediates, chiral ligands or auxiliaries in controlled asymmetric synthesis (Suzuki et al., 1994[Suzuki, H., Aoyagi, S. & Kibayashi, C. (1994). Tetrahedron Lett. 35, 6119-6122.]; Huryn et al., 1991[Huryn, D. M., Trost, B. M. & Fleming, I. (1991). Comp. Org. Synth. 1, 64-74.]). In view of this importance, the title compounds were synthesized and we report herein on their mol­ecular and crystal structures.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of mol­ecule (I)[link] is shown in Fig. 1[link]. The pyrrolidine ring (N2/C8–C11) exhibits a twist conformation on bond C8—C11. The five-membered ring (N1/C11–C14) of the oxindole moiety adopts an envelope conformation with C11 as the flap atom. The C12=O2 bond length of 1.213 (1) Å confirms the presence of a keto group in the indoline moiety. The benzo­thio­phene ring system (S1/C1–C8; r.m.s. deviation = 0.019 Å) and the mean plane of the indole ring system (N1/C11–C18; r.m.s. deviation = 0.073 Å) are inclined to one another by 71.59 (5)°, and are both almost normal to the mean plane of the pyrrolidine ring (N2/C8–C11) with dihedral angles of 88.61 (17) and 79.57 (8)°, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of mol­ecule (I)[link], with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

The mol­ecular structure of the compound (II)[link] is illustrated in Fig. 2[link]. The overall geometry of the mol­ecule is similar to that of (II)[link]. The pyrrolidine ring (N2/C8–C11) also adopts a twist conformation on the C8—C11 bond, and the five-membered ring (N1/C11–C14) of the oxindole moiety has an r.m.s. deviation = 0.042 Å. The mean plane of the benzo­thio­phene ring system (S1/C1–C8; r.m.s. deviation = 0.034 Å) and the mean plane of the indole ring system (N1/C11–C18; r.m.s. deviation = 0.069 Å) are inclined to one another by 82.27 (7)°, and are both almost normal to the mean plane of the pyrrol­idine ring (N2/C8–C11) with dihedral angles of 88.79 (10) and 81.99 (10)°, respectively.

[Figure 2]
Figure 2
The mol­ecular structure of mol­ecule (II)[link], with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Mol­ecules (I)[link] and (II)[link] differ only in the presence of a chloride atom at position 5 in the oxo­indole unit in (II)[link]. The conformation of the two mol­ecules differ in the angle of inclination of the indole moiety with respect to the benzo­thio­phene ring system, with a dihedral angle of 71.59 (5) in (I)[link] and 82.27 (7)° in (II)[link]. This is illustrated in Fig. 3[link], which shows a view of the superposition of the two mol­ecules (Mercury; Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]). There is also a small difference in the orientation of the ester function, the C20—O4—C21—C22 torsion angle being 173.44 (19) in (I)[link] and 162.3 (3)° in (II)[link].

[Figure 3]
Figure 3
A view of the mol­ecular superposition of mol­ecules (I)[link] and (II)[link] [red (I)[link]; blue (II)[link]; Cl atom in (II)[link] is shown as a blue ball (Mercury; Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.])].

3. Supra­molecular features

In the crystal of (I)[link], mol­ecules are linked via pairs of N—H⋯O hydrogen bonds, forming inversion dimers enclosing R22(14) loops (Table 1[link] and Fig. 4[link]). The dimers are linked via C—H⋯O and bifurcated C—H⋯O(O) hydrogen bonds, forming sheets lying parallel to (100).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.83 (2) 2.09 (2) 2.890 (2) 164 (2)
C3—H3⋯O2ii 0.93 2.56 3.385 (2) 148
C18—H18⋯O3iii 0.93 2.56 3.299 (2) 136
C21—H21B⋯O2iv 0.97 2.59 3.560 (2) 174
C2—H2⋯Cgv 0.93 2.81 3.649 (2) 151
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, y-1, z; (iii) x, y, z+1; (iv) -x, -y+1, -z; (v) -x, -y, -z+1.
[Figure 4]
Figure 4
The crystal packing of compound (I)[link], viewed along the a axis. The hydrogen bonds are shown as dashed lines (see Table 1[link] for details; H atoms not involved in hydrogen bonding have been omitted for clarity).

In the crystal of (II)[link], mol­ecules are again linked via pairs of N—-H⋯O hydrogen bonds, forming inversion dimers but enclosing smaller R22(8) loops (Table 2[link] and Fig. 5[link]). Here the dimers are linked by C—H⋯O hydrogen bonds, forming double-stranded chains propagating along [010].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.81 (2) 2.03 (2) 2.842 (2) 172 (2)
C18—H18⋯O3ii 0.93 2.57 3.496 (3) 171
C2—H2⋯Cgiii 0.93 2.83 3.649 (2) 155
Symmetry codes: (i) -x+1, -y, -z+2; (ii) x, y-1, z; (iii) -x, -y, -z+1.
[Figure 5]
Figure 5
A partial view along the a axis of the crystal packing of compound (II)[link]. The hydrogen bonds are shown as dashed lines (see Table 2[link] for details; H atoms not involved in hydrogen bonding have been omitted for clarity).

4. Database survey

A search of the Cambridge Structural Database (Version 5.35, last update November 2013; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) revealed that the title compounds are the first examples of di­spiro-indole-pyrrolidine derivatives with a benzo­thio­phene substituent on the pyrrolidine ring creating the second spiro C atom. There are a large number of indole-spiro-pyrrolidine compounds but there was only one hit for a di­spiro-indole-pyrrolidine-`cyclo­pentane-type' compound, namely 4′-(p-meth­oxy­phenyl)-1′-methyl-1H-indole-3-spiro-2′-pyrrolidine-3′-spiro-1′′-cyclo­pentane-2(3H),2′′-dione (refcode: ILIMUL; Govind et al., 2003[Govind, M. M., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Sridhar, G. & Raghunathan, R. (2003). Acta Cryst. E59, o1438-o1440.]). The geometry of the pyrrolidine and oxindole ring systems of the two mol­ecules compare well with those reported for similar structures, for example, ethyl 1′′-benzyl-2′′-oxo-2′,3′,5′,6′,7′,7a′-hexa­hydro-1′H-di­spiro­[indeno[1,2-b]-quinoxaline-11,2′-pyrrolizine-3′,3′′-indoline]-1′-carboxyl­ate monohydrate (refcode: IFOVUW; Kannan et al., 2013a[Kannan, P. S., Lanka, S., Thennarasu, S., Vimala, G. & SubbiahPandi, A. (2013a). Acta Cryst. E69, o854-o855.]) and methyl 5′′-chloro-1′,1′′-dimethyl-2,2′′-dioxodi­spiro­[indo­line-3,2′-pyrrolidine-3′,3′′-indoline]-4′-carboxyl­ate (refcode: IFOQUR; Kannan et al., 2013b[Kannan, P. S., Yuvaraj, P. S., Manivannan, K., Reddy, B. S. R. & SubbiahPandi, A. (2013b). Acta Cryst. E69, o825-o826.]).

5. Synthesis and crystallization

The two compounds were prepared in a similar manner using isatin (1.1 mmol) for (I)[link] and 5-chloro isatin (1.1 mmol) for (II)[link]. A mixture of (E)-ethyl 2-(3-oxobenzo[b]thio­phen-2(3H)-yl­idene) acetate (1.0 mmol) and the relevant isatin together with sarcosine (1.1 mmol) was refluxed in methanol (20 ml) until completion of the reaction, as evidenced by TLC analysis. After completion of the reaction, the solvent was evaporated under reduced pressure. The crude reaction mixture was dissolved in di­chloro­methane (2 × 50 ml) and washed with water followed by brine solution. The organic layer was separated and dried over sodium sulfate. After filtration, the solvent was evaporation under reduced pressure. The product was separated by column chromatography using hexane and ethyl acetate (9:1) as eluent to give a white solid. This was dissolved in chloro­form (3 ml) and heated for 2 min. The resulting solutions were allowed to evaporate slowly at room temperature and yielded colourless block-like crystals of compounds (I)[link] and (II)[link].

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. For both mol­ecules (I)[link] and (II)[link], the NH H atoms were located in difference Fourier maps and freely refined. The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93–0.98 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and = 1.2Ueq(C) for other H atoms.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C22H20N2O4S C22H19ClN2O4S
Mr 408.46 442.90
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 293 293
a, b, c (Å) 8.7196 (4), 10.7874 (5), 11.3488 (5) 10.4678 (5), 10.9074 (5), 11.5652 (5)
α, β, γ (°) 82.624 (2), 82.775 (2), 79.214 (2) 85.973 (2), 65.612 (2), 62.089 (2)
V3) 1034.27 (8) 1050.26 (9)
Z 2 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.19 0.31
Crystal size (mm) 0.35 × 0.30 × 0.30 0.35 × 0.30 × 0.30
 
Data collection
Diffractometer Bruker Kappa APEXII CCD Bruker AXS kappa APEX2 CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.938, 0.946 0.931, 0.940
No. of measured, independent and observed [I > 2σ(I)] reflections 18982, 3745, 3389 16876, 3788, 3178
Rint 0.024 0.024
(sin θ/λ)max−1) 0.600 0.600
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.087, 1.05 0.036, 0.103, 1.11
No. of reflections 3745 3788
No. of parameters 268 276
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.17 0.29, −0.27
Computer programs: APEX2, SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

The spiro-indole-pyrrolidine ring system is a frequently encountered structural motif in many biologically important and pharmacologically relevant alkaloids, such as vincrinstine, vinblastine and spiro­typostatins (Cordell, 1981). Highly functionalized pyrrolidines have gained much inter­est in the past few years as they constitute the main structural element of many natural and synthetic pharmacologically active compounds (Waldmann, 1995). Optically active pyrrolidines have been used as inter­mediates, chiral ligands or auxiliaries in controlled asymmetric synthesis (Suzuki et al., 1994; Huryn et al., 1991). In view of this importance, the title compounds were synthesized and we report herein on their molecular and crystal structures.

Structural commentary top

The molecular structure of molecule (I) is shown in Fig. 1. The pyrrolidine ring (N2/C8–C11) exhibits a twist conformation on bond C8—C11. The five-membered ring (N1/C11–C14) of the oxindole moiety adopts an envelope conformation with C11 as the flap atom. The C12O2 bond length of 1.213 (1) Å confirms the presence of a keto group in the indoline moiety. The benzo­thio­phene ring system (S1/C1–C8; r.m.s. deviation = 0.019 Å) and the mean plane of the indole ring system (N1/C11–C18; r.m.s. deviation = 0.073 Å) are inclined to one another by 71.59 (5)°, and are both almost normal to the mean plane of the pyrrolidine ring (N2/C8–C11) with dihedral angles of 88.61 (17) and 79.57 (8)°, respectively.

The molecular structure of the compound (II) is illustrated in Fig. 2. The overall geometry of the molecule is similar to that of (II). The pyrrolidine ring (N2/C8–C11) also adopts a twist conformation on the C8—C11 bond, and the five-membered ring (N1/C11–C14) of the oxindole moiety has an r.m.s. deviation = 0.042 Å. The mean plane of the benzo­thio­phene ring system (S1/C1–C8; r.m.s. deviation = 0.034 Å) and the mean plane of the indole ring system (N1/C11–C18; r.m.s. deviation = 0.069 Å) are inclined to one another by 82.27 (7)°, and are both almost normal to the mean plane of the pyrrolidine ring (N2/C8–C11) with dihedral angles of 88.79 (10) and 81.99 (10)°, respectively.

Molecules (I) and (II) differ only in the presence of a chloride atom at position 5 in the oxo­indole unit in (II). The conformation of the two molecules differ in the angle of inclination of the indole moiety with respect to the benzo­thio­phene ring system, with a dihedral angle of 71.59 (5) in (I) and 82.27 (7)° in (II). This is illustrated in Fig. 3, which shows a view of the superposition of the two molecules (Mercury; Macrae et al., 2008). There is also a small difference in the orientation of the ester function, the C20—O4—C21—C22 torsion angle being 173.44 (19) in (I) and 162.3 (3)° in (II).

Supra­molecular features top

In the crystal of (I), molecules are linked via pairs of N—H···O hydrogen bonds, forming inversion dimers enclosing R22(14) loops (Table 1 and Fig. 4). The dimers are linked via C—H···O and bifurcated C—H···O(O) hydrogen bonds, forming sheets lying parallel to (100).

In the crystal of (II), molecules are again linked via pairs of N—-H···O hydrogen bonds, forming inversion dimers but enclosing smaller R22(8) loops (Table 2 and Fig. 5). Here the dimers are linked by C—H···O hydrogen bonds, forming double-stranded chains propagating along [010].

Database survey top

A search of the Cambridge Structural Database (Version 5.35, last update November 2013; Allen, 2002) revealed that the title compounds are the first examples of di­spiro-indole-pyrrolidine derivatives with a benzo­thio­phene substituent on the pyrrolidine ring creating the second spiro C atom. There are a large number of indole-spiro-pyrrolidine compounds but there was only one hit for a di­spiro-indole-pyrrolidine-"cyclo­pentane-type" compound, namely 4'-(p-meth­oxy­phenyl)-1'-methyl-1H-indole-3-spiro-2'-pyrrolidine-3'-spiro-1''-cyclo­pentane-2(3H),2''-dione (refcode: ILIMUL; Govind et al., 2003). The geometry of the pyrrolidine and oxindole ring systems of the two molecules compares well with those reported for similar structures, for example, ethyl 1''-benzyl-2''-oxo-2',3',5',6',7',7a'-hexa­hydro-1'H-di­spiro­[indeno­[1,2-b]- quinoxaline-11,2'-pyrrolizine-3',3''-indoline]-1'-carboxyl­ate monohydrate (refcode: IFOVUW; Kannan et al., 2013a) and methyl 5''-chloro-1',1''-di­methyl-2,2''-dioxodi­spiro­[indoline-3,2'-pyrrolidine-3',3''-indoline]-4'-carboxyl­ate (refcode: IFOQUR; Kannan et al., 2013b).

Synthesis and crystallization top

The two compounds were prepared in a similar manner using isatin (1.1 mmol) for (I) and 5-chloro isatin (1.1 mmol) for (II). A mixture of (E)-ethyl 2-(3-oxobenzo[b]thio­phen-2(3H)-yl­idene) acetate (1.0 mmol) and the relevant isatin together with sarcosine (1.1 mmol) was refluxed in methanol (20 ml) until completion of the reaction, as evidenced by TLC analysis. After completion of the reaction, the solvent was evaporated under reduced pressure. The crude reaction mixture was dissolved in di­chloro­methane (2 × 50 ml) and washed with water followed by brine solution. The organic layer was separated and dried over sodium sulfate. After filtration, the solvent was evaporation under reduced pressure. The product was separated by column chromatography using hexane and ethyl acetate (9:1) as eluent to give a white solid. This was dissolved in chloro­form (3 ml) and heated for 2 min. The resulting solutions were allowed to evaporate slowly at room temperature and yielded colourless block-like crystals of compounds (I) and (II).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 3. For both molecules (I) and (II), the NH H atoms were located in difference Fourier maps and freely refined. The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93–0.98 Å with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms.

Related literature top

For related literature, see: Allen (2002); Cordell (1981); Govind et al. (2003); Huryn et al. (1991); Kannan et al. (2013a, 2013b); Macrae et al. (2008); Suzuki et al. (1994); Waldmann (1995).

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of molecule (I), with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular structure of molecule (II), with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3] Fig. 3. A view of the molecular superposition of molecules (I) and (II) [red (I); blue (II); Cl atom in (II) is shown as a blue ball (Mercury; Macrae et al., 2008)].
[Figure 4] Fig. 4. The crystal packing of compound (I), viewed along the a axis. The hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).
[Figure 5] Fig. 5. A partial view along the a axis of the crystal packing of compound (II). The hydrogen bonds are shown as dashed lines (see Table 2 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).
(I) Ethyl (2S*,2'R*)-1'-methyl-2'',3-dioxo-2,3-dihydrodispiro[1-benzothiophene-2,3'-pyrrolidine-2',3''-indoline]-4'-carboxylate top
Crystal data top
C22H20N2O4SV = 1034.27 (8) Å3
Mr = 408.46Z = 2
Triclinic, P1F(000) = 428
Hall symbol: -P 1Dx = 1.312 Mg m3
a = 8.7196 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.7874 (5) Åθ = 2.4–25.0°
c = 11.3488 (5) ŵ = 0.19 mm1
α = 82.624 (2)°T = 293 K
β = 82.775 (2)°Block, colourless
γ = 79.214 (2)°0.35 × 0.30 × 0.30 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3745 independent reflections
Radiation source: fine-focus sealed tube3389 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω and ϕ scansθmax = 25.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.938, Tmax = 0.946k = 1212
18982 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0417P)2 + 0.2979P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3745 reflectionsΔρmax = 0.25 e Å3
268 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL2013 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0099 (17)
Crystal data top
C22H20N2O4Sγ = 79.214 (2)°
Mr = 408.46V = 1034.27 (8) Å3
Triclinic, P1Z = 2
a = 8.7196 (4) ÅMo Kα radiation
b = 10.7874 (5) ŵ = 0.19 mm1
c = 11.3488 (5) ÅT = 293 K
α = 82.624 (2)°0.35 × 0.30 × 0.30 mm
β = 82.775 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3745 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3389 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 0.946Rint = 0.024
18982 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.25 e Å3
3745 reflectionsΔρmin = 0.17 e Å3
268 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.30889 (4)0.13663 (3)0.21159 (3)0.03693 (12)
O10.05178 (12)0.36372 (10)0.34437 (10)0.0491 (3)
O20.15077 (17)0.58243 (10)0.29000 (11)0.0647 (4)
O30.2116 (2)0.32476 (19)0.07349 (11)0.1024 (6)
O40.01130 (15)0.28291 (12)0.05809 (10)0.0580 (3)
N10.18901 (15)0.47295 (12)0.47309 (12)0.0449 (3)
H1N0.145 (2)0.5301 (17)0.5141 (16)0.054*
N20.42620 (15)0.38340 (12)0.21313 (10)0.0452 (3)
C10.11000 (18)0.09770 (16)0.37801 (14)0.0466 (4)
H10.19550.15240.41090.056*
C20.1138 (2)0.02952 (17)0.38248 (16)0.0569 (4)
H20.20270.06130.41790.068*
C30.0142 (2)0.11030 (16)0.33441 (16)0.0556 (4)
H30.01000.19620.33790.067*
C40.14759 (19)0.06681 (14)0.28153 (14)0.0448 (4)
H40.23340.12250.25030.054*
C50.15164 (16)0.06238 (12)0.27566 (11)0.0337 (3)
C60.02306 (15)0.14358 (13)0.32381 (11)0.0343 (3)
C70.04308 (15)0.27552 (13)0.30944 (11)0.0333 (3)
C80.20210 (16)0.29422 (12)0.24261 (11)0.0326 (3)
C90.1918 (2)0.38436 (14)0.12494 (12)0.0447 (4)
H90.11310.45950.14110.054*
C100.3518 (2)0.42508 (18)0.10187 (14)0.0581 (4)
H10A0.41420.38510.03550.070*
H10B0.34040.51650.08350.070*
C110.30303 (16)0.36257 (12)0.30895 (12)0.0339 (3)
C120.20227 (18)0.48789 (13)0.35267 (13)0.0425 (3)
C130.28113 (15)0.36078 (13)0.51820 (12)0.0354 (3)
C140.35773 (15)0.29409 (12)0.42447 (11)0.0314 (3)
C150.46804 (16)0.18729 (13)0.44844 (13)0.0382 (3)
H150.52320.14310.38670.046*
C160.49556 (18)0.14672 (15)0.56609 (14)0.0480 (4)
H160.57090.07550.58320.058*
C170.4122 (2)0.21104 (16)0.65801 (14)0.0504 (4)
H170.42970.18050.73650.060*
C180.30339 (18)0.31964 (15)0.63592 (13)0.0448 (4)
H180.24750.36320.69780.054*
C190.5353 (2)0.4616 (2)0.23767 (18)0.0693 (5)
H19A0.61910.46130.17410.104*
H19B0.57770.42810.31160.104*
H19C0.48100.54700.24350.104*
C200.1438 (2)0.32731 (17)0.02394 (14)0.0562 (4)
C210.0480 (3)0.2184 (2)0.02642 (17)0.0750 (6)
H21A0.03260.15090.05500.090*
H21B0.07990.27760.09440.090*
C220.1847 (4)0.1653 (3)0.0376 (2)0.1083 (9)
H22A0.22770.12200.01580.162*
H22B0.26330.23290.06580.162*
H22C0.15140.10660.10430.162*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0377 (2)0.0370 (2)0.0362 (2)0.00533 (14)0.00290 (14)0.01255 (14)
O10.0431 (6)0.0461 (6)0.0584 (7)0.0027 (5)0.0034 (5)0.0240 (5)
O20.0975 (10)0.0318 (6)0.0652 (8)0.0029 (6)0.0309 (7)0.0053 (5)
O30.1453 (15)0.1480 (16)0.0305 (7)0.0721 (13)0.0019 (8)0.0137 (8)
O40.0749 (8)0.0634 (7)0.0427 (6)0.0156 (6)0.0209 (6)0.0118 (5)
N10.0507 (7)0.0394 (7)0.0452 (7)0.0031 (6)0.0083 (6)0.0197 (6)
N20.0532 (7)0.0504 (7)0.0361 (6)0.0256 (6)0.0020 (5)0.0023 (5)
C10.0385 (8)0.0581 (10)0.0459 (8)0.0140 (7)0.0024 (6)0.0097 (7)
C20.0565 (10)0.0616 (11)0.0597 (10)0.0318 (9)0.0057 (8)0.0026 (8)
C30.0719 (11)0.0419 (9)0.0602 (10)0.0243 (8)0.0173 (9)0.0009 (7)
C40.0539 (9)0.0347 (7)0.0480 (8)0.0051 (6)0.0135 (7)0.0084 (6)
C50.0384 (7)0.0344 (7)0.0300 (6)0.0060 (5)0.0083 (5)0.0056 (5)
C60.0357 (7)0.0381 (7)0.0311 (7)0.0073 (6)0.0063 (5)0.0065 (5)
C70.0354 (7)0.0380 (7)0.0278 (6)0.0023 (6)0.0077 (5)0.0099 (5)
C80.0410 (7)0.0302 (6)0.0269 (6)0.0054 (5)0.0041 (5)0.0052 (5)
C90.0641 (10)0.0407 (8)0.0305 (7)0.0127 (7)0.0096 (6)0.0015 (6)
C100.0809 (12)0.0603 (10)0.0365 (8)0.0313 (9)0.0019 (8)0.0055 (7)
C110.0410 (7)0.0304 (7)0.0317 (7)0.0092 (5)0.0032 (5)0.0050 (5)
C120.0529 (9)0.0322 (7)0.0456 (8)0.0063 (6)0.0137 (7)0.0091 (6)
C130.0343 (7)0.0383 (7)0.0364 (7)0.0090 (6)0.0046 (5)0.0098 (6)
C140.0312 (6)0.0332 (7)0.0322 (7)0.0106 (5)0.0029 (5)0.0056 (5)
C150.0329 (7)0.0383 (7)0.0448 (8)0.0060 (6)0.0057 (6)0.0088 (6)
C160.0470 (8)0.0441 (8)0.0553 (9)0.0072 (7)0.0215 (7)0.0000 (7)
C170.0611 (10)0.0588 (10)0.0368 (8)0.0214 (8)0.0183 (7)0.0030 (7)
C180.0485 (8)0.0576 (9)0.0334 (7)0.0176 (7)0.0034 (6)0.0126 (6)
C190.0765 (13)0.0797 (13)0.0629 (11)0.0506 (11)0.0017 (9)0.0009 (10)
C200.0842 (13)0.0554 (10)0.0313 (8)0.0168 (9)0.0142 (8)0.0018 (7)
C210.1095 (17)0.0731 (13)0.0542 (11)0.0218 (12)0.0389 (11)0.0129 (9)
C220.134 (2)0.125 (2)0.0921 (18)0.0653 (19)0.0405 (17)0.0196 (16)
Geometric parameters (Å, º) top
S1—C51.7496 (14)C9—C201.505 (2)
S1—C81.8330 (13)C9—C101.522 (2)
O1—C71.2109 (16)C9—H90.9800
O2—C121.2125 (18)C10—H10A0.9700
O3—C201.187 (2)C10—H10B0.9700
O4—C201.327 (2)C11—C141.5063 (18)
O4—C211.450 (2)C11—C121.5696 (19)
N1—C121.348 (2)C13—C181.378 (2)
N1—C131.3972 (19)C13—C141.3904 (18)
N1—H1N0.827 (18)C14—C151.3773 (19)
N2—C111.4561 (17)C15—C161.387 (2)
N2—C191.457 (2)C15—H150.9300
N2—C101.473 (2)C16—C171.380 (2)
C1—C21.373 (2)C16—H160.9300
C1—C61.388 (2)C17—C181.380 (2)
C1—H10.9300C17—H170.9300
C2—C31.381 (3)C18—H180.9300
C2—H20.9300C19—H19A0.9600
C3—C41.375 (2)C19—H19B0.9600
C3—H30.9300C19—H19C0.9600
C4—C51.394 (2)C21—C221.486 (3)
C4—H40.9300C21—H21A0.9700
C5—C61.3871 (19)C21—H21B0.9700
C6—C71.4523 (19)C22—H22A0.9600
C7—C81.5295 (18)C22—H22B0.9600
C8—C91.5495 (18)C22—H22C0.9600
C8—C111.5611 (18)
C5—S1—C892.66 (6)N2—C11—C899.56 (10)
C20—O4—C21117.69 (15)C14—C11—C8116.51 (10)
C12—N1—C13112.19 (12)N2—C11—C12114.06 (11)
C12—N1—H1N122.9 (12)C14—C11—C12101.21 (10)
C13—N1—H1N124.0 (12)C8—C11—C12110.24 (11)
C11—N2—C19115.58 (13)O2—C12—N1126.23 (14)
C11—N2—C10107.91 (12)O2—C12—C11126.46 (14)
C19—N2—C10115.00 (13)N1—C12—C11107.26 (12)
C2—C1—C6119.16 (15)C18—C13—C14122.52 (13)
C2—C1—H1120.4C18—C13—N1127.67 (13)
C6—C1—H1120.4C14—C13—N1109.76 (12)
C1—C2—C3120.05 (15)C15—C14—C13119.22 (12)
C1—C2—H2120.0C15—C14—C11131.91 (12)
C3—C2—H2120.0C13—C14—C11108.80 (11)
C4—C3—C2121.62 (15)C14—C15—C16118.95 (14)
C4—C3—H3119.2C14—C15—H15120.5
C2—C3—H3119.2C16—C15—H15120.5
C3—C4—C5118.61 (15)C17—C16—C15120.63 (14)
C3—C4—H4120.7C17—C16—H16119.7
C5—C4—H4120.7C15—C16—H16119.7
C6—C5—C4119.78 (13)C18—C17—C16121.38 (14)
C6—C5—S1114.47 (10)C18—C17—H17119.3
C4—C5—S1125.75 (11)C16—C17—H17119.3
C5—C6—C1120.77 (13)C13—C18—C17117.16 (14)
C5—C6—C7113.66 (12)C13—C18—H18121.4
C1—C6—C7125.57 (13)C17—C18—H18121.4
O1—C7—C6126.02 (13)N2—C19—H19A109.5
O1—C7—C8121.74 (12)N2—C19—H19B109.5
C6—C7—C8112.24 (11)H19A—C19—H19B109.5
C7—C8—C9114.43 (11)N2—C19—H19C109.5
C7—C8—C11115.22 (10)H19A—C19—H19C109.5
C9—C8—C1199.72 (10)H19B—C19—H19C109.5
C7—C8—S1106.91 (9)O3—C20—O4124.34 (17)
C9—C8—S1110.04 (9)O3—C20—C9125.41 (18)
C11—C8—S1110.43 (9)O4—C20—C9110.23 (14)
C20—C9—C10115.35 (14)O4—C21—C22107.01 (17)
C20—C9—C8114.02 (12)O4—C21—H21A110.3
C10—C9—C8103.71 (12)C22—C21—H21A110.3
C20—C9—H9107.8O4—C21—H21B110.3
C10—C9—H9107.8C22—C21—H21B110.3
C8—C9—H9107.8H21A—C21—H21B108.6
N2—C10—C9105.51 (12)C21—C22—H22A109.5
N2—C10—H10A110.6C21—C22—H22B109.5
C9—C10—H10A110.6H22A—C22—H22B109.5
N2—C10—H10B110.6C21—C22—H22C109.5
C9—C10—H10B110.6H22A—C22—H22C109.5
H10A—C10—H10B108.8H22B—C22—H22C109.5
N2—C11—C14115.81 (11)
C6—C1—C2—C30.6 (2)C9—C8—C11—N247.31 (12)
C1—C2—C3—C40.1 (3)S1—C8—C11—N268.47 (11)
C2—C3—C4—C50.7 (2)C7—C8—C11—C1464.43 (15)
C3—C4—C5—C60.6 (2)C9—C8—C11—C14172.58 (11)
C3—C4—C5—S1179.58 (11)S1—C8—C11—C1456.80 (13)
C8—S1—C5—C62.05 (11)C7—C8—C11—C1250.11 (14)
C8—S1—C5—C4178.17 (12)C9—C8—C11—C1272.88 (13)
C4—C5—C6—C10.0 (2)S1—C8—C11—C12171.35 (9)
S1—C5—C6—C1179.75 (11)C13—N1—C12—O2170.75 (15)
C4—C5—C6—C7179.06 (12)C13—N1—C12—C116.75 (16)
S1—C5—C6—C71.15 (15)N2—C11—C12—O243.7 (2)
C2—C1—C6—C50.7 (2)C14—C11—C12—O2168.82 (15)
C2—C1—C6—C7178.32 (14)C8—C11—C12—O267.27 (19)
C5—C6—C7—O1179.54 (13)N2—C11—C12—N1133.76 (13)
C1—C6—C7—O11.4 (2)C14—C11—C12—N18.68 (14)
C5—C6—C7—C80.68 (16)C8—C11—C12—N1115.23 (13)
C1—C6—C7—C8178.36 (13)C12—N1—C13—C18175.59 (14)
O1—C7—C8—C959.73 (17)C12—N1—C13—C141.69 (17)
C6—C7—C8—C9120.06 (12)C18—C13—C14—C154.4 (2)
O1—C7—C8—C1155.04 (17)N1—C13—C14—C15173.00 (12)
C6—C7—C8—C11125.17 (12)C18—C13—C14—C11178.13 (12)
O1—C7—C8—S1178.16 (11)N1—C13—C14—C114.43 (15)
C6—C7—C8—S12.05 (12)N2—C11—C14—C1545.34 (19)
C5—S1—C8—C72.25 (9)C8—C11—C14—C1571.24 (18)
C5—S1—C8—C9122.58 (10)C12—C11—C14—C15169.23 (14)
C5—S1—C8—C11128.30 (9)N2—C11—C14—C13131.64 (12)
C7—C8—C9—C2073.99 (17)C8—C11—C14—C13111.78 (12)
C11—C8—C9—C20162.46 (14)C12—C11—C14—C137.76 (13)
S1—C8—C9—C2046.39 (16)C13—C14—C15—C162.27 (19)
C7—C8—C9—C10159.77 (12)C11—C14—C15—C16178.99 (13)
C11—C8—C9—C1036.22 (14)C14—C15—C16—C171.0 (2)
S1—C8—C9—C1079.85 (13)C15—C16—C17—C182.3 (2)
C11—N2—C10—C919.43 (17)C14—C13—C18—C173.1 (2)
C19—N2—C10—C9150.08 (15)N1—C13—C18—C17173.84 (14)
C20—C9—C10—N2137.43 (14)C16—C17—C18—C130.3 (2)
C8—C9—C10—N212.03 (16)C21—O4—C20—O34.9 (3)
C19—N2—C11—C1461.82 (18)C21—O4—C20—C9176.82 (15)
C10—N2—C11—C14167.85 (12)C10—C9—C20—O38.5 (3)
C19—N2—C11—C8172.43 (14)C8—C9—C20—O3128.4 (2)
C10—N2—C11—C842.11 (14)C10—C9—C20—O4173.27 (14)
C19—N2—C11—C1255.08 (18)C8—C9—C20—O453.38 (19)
C10—N2—C11—C1275.25 (15)C20—O4—C21—C22173.44 (19)
C7—C8—C11—N2170.30 (11)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.83 (2)2.09 (2)2.890 (2)164 (2)
C3—H3···O2ii0.932.563.385 (2)148
C18—H18···O3iii0.932.563.299 (2)136
C21—H21B···O2iv0.972.593.560 (2)174
C2—H2···Cgv0.932.813.649 (2)151
Symmetry codes: (i) x, y+1, z+1; (ii) x, y1, z; (iii) x, y, z+1; (iv) x, y+1, z; (v) x, y, z+1.
(II) Ethyl (2S*,2'R*)-5''-chloro-1'-methyl-2'',3-dioxo-2,3-dihydrodispiro[1-benzothiophene-2,3'-pyrrolidine-2',3''-indoline]-4'-carboxylate top
Crystal data top
C22H19ClN2O4SV = 1050.26 (9) Å3
Mr = 442.90Z = 2
Triclinic, P1F(000) = 460
Hall symbol: -P 1Dx = 1.401 Mg m3
a = 10.4678 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.9074 (5) Åθ = 2.0–25.0°
c = 11.5652 (5) ŵ = 0.31 mm1
α = 85.973 (2)°T = 293 K
β = 65.612 (2)°Block, colourless
γ = 62.089 (2)°0.35 × 0.30 × 0.30 mm
Data collection top
Bruker AXS kappa APEX2 CCD
diffractometer
Rint = 0.024
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 25.3°, θmin = 2.1°
Tmin = 0.931, Tmax = 0.940h = 1210
16876 measured reflectionsk = 1311
3788 independent reflectionsl = 1312
3178 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: mixed
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0458P)2 + 0.3849P]
where P = (Fo2 + 2Fc2)/3
3788 reflections(Δ/σ)max < 0.001
276 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C22H19ClN2O4Sγ = 62.089 (2)°
Mr = 442.90V = 1050.26 (9) Å3
Triclinic, P1Z = 2
a = 10.4678 (5) ÅMo Kα radiation
b = 10.9074 (5) ŵ = 0.31 mm1
c = 11.5652 (5) ÅT = 293 K
α = 85.973 (2)°0.35 × 0.30 × 0.30 mm
β = 65.612 (2)°
Data collection top
Bruker AXS kappa APEX2 CCD
diffractometer
3788 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3178 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.940Rint = 0.024
16876 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.29 e Å3
3788 reflectionsΔρmin = 0.27 e Å3
276 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.78453 (7)0.07384 (7)0.27294 (5)0.06115 (18)
S10.47022 (6)0.40379 (5)0.61542 (4)0.04426 (15)
O10.24464 (18)0.30234 (17)0.93183 (14)0.0622 (4)
O20.5511 (2)0.14387 (16)0.96174 (13)0.0596 (4)
O30.5065 (3)0.6187 (2)0.8095 (3)0.1135 (8)
O40.2715 (3)0.62165 (17)0.89290 (19)0.0794 (5)
N10.5579 (2)0.00867 (18)0.83019 (16)0.0476 (4)
H1N0.534 (3)0.054 (2)0.886 (2)0.057*
N20.7301 (2)0.20503 (19)0.70036 (16)0.0493 (4)
C10.0252 (3)0.4697 (2)0.8114 (2)0.0612 (6)
H10.02870.44480.88740.073*
C20.0533 (3)0.5469 (3)0.7396 (3)0.0782 (8)
H20.16130.57520.76720.094*
C30.0283 (3)0.5822 (3)0.6265 (3)0.0793 (8)
H30.02620.63400.57880.095*
C40.1878 (3)0.5431 (3)0.5823 (2)0.0629 (6)
H40.24110.56760.50580.075*
C50.2670 (2)0.4661 (2)0.65526 (19)0.0444 (4)
C60.1862 (2)0.42945 (19)0.76880 (18)0.0443 (4)
C70.2853 (2)0.34936 (19)0.83467 (17)0.0420 (4)
C80.4562 (2)0.33081 (19)0.76494 (16)0.0378 (4)
C90.4971 (3)0.4035 (2)0.84540 (19)0.0498 (5)
H90.45330.38730.93440.060*
C100.6786 (3)0.3230 (3)0.7914 (2)0.0643 (6)
H100.72410.38230.74850.077*
H110.71180.28980.85950.077*
C110.5959 (2)0.17760 (19)0.73600 (16)0.0378 (4)
C120.5630 (2)0.1056 (2)0.85934 (18)0.0448 (4)
C130.6002 (2)0.03474 (19)0.69931 (17)0.0396 (4)
C140.6242 (2)0.07240 (18)0.63836 (16)0.0358 (4)
C150.6818 (2)0.0617 (2)0.50663 (17)0.0394 (4)
H150.70090.13110.46390.047*
C160.7104 (2)0.0557 (2)0.43996 (18)0.0439 (4)
C170.6825 (2)0.1597 (2)0.5010 (2)0.0491 (5)
H170.70140.23640.45330.059*
C180.6265 (2)0.1503 (2)0.6330 (2)0.0492 (5)
H180.60740.21980.67550.059*
C190.8815 (3)0.0837 (3)0.6825 (3)0.0811 (8)
H22A0.90670.01010.62270.122*
H22B0.87320.05150.76340.122*
H190.96470.10940.64960.122*
C200.4289 (4)0.5589 (3)0.8460 (3)0.0688 (7)
C210.1907 (6)0.7722 (3)0.8925 (5)0.1379 (18)
H20A0.18670.82080.96200.165*
H20B0.25020.79440.81220.165*
C220.0345 (5)0.8180 (3)0.9074 (5)0.1294 (15)
H21A0.02170.91860.91770.194*
H21B0.02050.78690.98200.194*
H21C0.03890.77970.83280.194*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0577 (3)0.0831 (4)0.0385 (3)0.0329 (3)0.0163 (2)0.0048 (2)
S10.0478 (3)0.0544 (3)0.0399 (3)0.0309 (2)0.0221 (2)0.0220 (2)
O10.0585 (9)0.0682 (10)0.0430 (8)0.0321 (8)0.0069 (7)0.0171 (7)
O20.0964 (12)0.0631 (9)0.0399 (8)0.0478 (9)0.0388 (8)0.0224 (7)
O30.158 (2)0.0845 (14)0.163 (2)0.0951 (16)0.0874 (18)0.0504 (14)
O40.1093 (16)0.0397 (9)0.0970 (14)0.0343 (10)0.0535 (12)0.0116 (8)
N10.0641 (11)0.0461 (9)0.0387 (9)0.0316 (8)0.0234 (8)0.0172 (7)
N20.0486 (9)0.0683 (11)0.0483 (9)0.0363 (9)0.0274 (8)0.0151 (8)
C10.0441 (11)0.0570 (13)0.0658 (14)0.0223 (10)0.0099 (10)0.0021 (11)
C20.0431 (12)0.0802 (18)0.101 (2)0.0206 (12)0.0317 (14)0.0097 (16)
C30.0645 (16)0.0875 (19)0.095 (2)0.0303 (14)0.0514 (16)0.0261 (16)
C40.0618 (14)0.0712 (15)0.0665 (14)0.0327 (12)0.0387 (12)0.0247 (12)
C50.0468 (11)0.0438 (10)0.0456 (11)0.0231 (9)0.0211 (9)0.0070 (8)
C60.0425 (10)0.0387 (10)0.0453 (11)0.0183 (8)0.0138 (9)0.0021 (8)
C70.0460 (10)0.0368 (10)0.0355 (10)0.0215 (8)0.0084 (8)0.0001 (8)
C80.0491 (10)0.0410 (10)0.0314 (9)0.0281 (8)0.0180 (8)0.0115 (7)
C90.0785 (14)0.0518 (12)0.0426 (11)0.0435 (11)0.0336 (10)0.0153 (9)
C100.0840 (17)0.0814 (16)0.0663 (15)0.0578 (14)0.0467 (13)0.0207 (12)
C110.0434 (10)0.0463 (10)0.0322 (9)0.0260 (8)0.0197 (8)0.0136 (7)
C120.0554 (11)0.0462 (11)0.0364 (10)0.0252 (9)0.0234 (9)0.0144 (8)
C130.0366 (9)0.0421 (10)0.0389 (10)0.0175 (8)0.0174 (8)0.0087 (8)
C140.0322 (8)0.0405 (9)0.0348 (9)0.0167 (7)0.0159 (7)0.0069 (7)
C150.0341 (9)0.0495 (11)0.0367 (9)0.0211 (8)0.0163 (8)0.0084 (8)
C160.0334 (9)0.0574 (12)0.0380 (10)0.0188 (9)0.0153 (8)0.0004 (8)
C170.0448 (11)0.0481 (11)0.0536 (12)0.0193 (9)0.0226 (9)0.0035 (9)
C180.0494 (11)0.0431 (11)0.0589 (13)0.0238 (9)0.0254 (10)0.0100 (9)
C190.0530 (14)0.104 (2)0.091 (2)0.0317 (14)0.0412 (14)0.0100 (16)
C200.116 (2)0.0585 (14)0.0698 (16)0.0582 (16)0.0565 (16)0.0242 (12)
C210.190 (5)0.0420 (16)0.224 (5)0.044 (2)0.142 (4)0.033 (2)
C220.142 (4)0.060 (2)0.162 (4)0.028 (2)0.071 (3)0.034 (2)
Geometric parameters (Å, º) top
Cl1—C161.7448 (19)C8—C111.559 (3)
S1—C51.755 (2)C9—C201.499 (3)
S1—C81.8308 (17)C9—C101.519 (3)
O1—C71.198 (2)C9—H90.9800
O2—C121.221 (2)C10—H100.9700
O3—C201.199 (3)C10—H110.9700
O4—C201.318 (3)C11—C141.506 (2)
O4—C211.454 (3)C11—C121.568 (2)
N1—C121.344 (3)C13—C181.374 (3)
N1—C131.399 (2)C13—C141.392 (2)
N1—H1N0.81 (2)C14—C151.378 (2)
N2—C191.453 (3)C15—C161.384 (3)
N2—C101.459 (3)C15—H150.9300
N2—C111.460 (2)C16—C171.377 (3)
C1—C21.376 (4)C17—C181.382 (3)
C1—C61.388 (3)C17—H170.9300
C1—H10.9300C18—H180.9300
C2—C31.379 (4)C19—H22A0.9600
C2—H20.9300C19—H22B0.9600
C3—C41.374 (3)C19—H190.9600
C3—H30.9300C21—C221.402 (6)
C4—C51.390 (3)C21—H20A0.9700
C4—H40.9300C21—H20B0.9700
C5—C61.388 (3)C22—H21A0.9600
C6—C71.460 (3)C22—H21B0.9600
C7—C81.543 (3)C22—H21C0.9600
C8—C91.558 (3)
C5—S1—C893.13 (9)N2—C11—C8100.04 (14)
C20—O4—C21116.5 (3)C14—C11—C8119.28 (14)
C12—N1—C13111.90 (16)N2—C11—C12114.02 (14)
C12—N1—H1N120.4 (16)C14—C11—C12101.08 (14)
C13—N1—H1N127.7 (16)C8—C11—C12109.68 (14)
C19—N2—C10114.16 (18)O2—C12—N1126.35 (17)
C19—N2—C11115.48 (18)O2—C12—C11125.72 (17)
C10—N2—C11107.82 (16)N1—C12—C11107.87 (15)
C2—C1—C6119.0 (2)C18—C13—C14122.24 (17)
C2—C1—H1120.5C18—C13—N1127.88 (17)
C6—C1—H1120.5C14—C13—N1109.75 (16)
C1—C2—C3119.9 (2)C15—C14—C13119.77 (17)
C1—C2—H2120.0C15—C14—C11130.86 (16)
C3—C2—H2120.0C13—C14—C11109.00 (15)
C4—C3—C2122.0 (2)C14—C15—C16117.82 (17)
C4—C3—H3119.0C14—C15—H15121.1
C2—C3—H3119.0C16—C15—H15121.1
C3—C4—C5118.1 (2)C17—C16—C15122.18 (18)
C3—C4—H4120.9C17—C16—Cl1118.56 (15)
C5—C4—H4120.9C15—C16—Cl1119.27 (15)
C6—C5—C4120.30 (19)C16—C17—C18120.25 (19)
C6—C5—S1114.19 (14)C16—C17—H17119.9
C4—C5—S1125.49 (17)C18—C17—H17119.9
C5—C6—C1120.6 (2)C13—C18—C17117.71 (18)
C5—C6—C7113.80 (17)C13—C18—H18121.1
C1—C6—C7125.61 (19)C17—C18—H18121.1
O1—C7—C6126.40 (18)N2—C19—H22A109.5
O1—C7—C8121.59 (18)N2—C19—H22B109.5
C6—C7—C8112.01 (15)H22A—C19—H22B109.5
C7—C8—C9113.63 (15)N2—C19—H19109.5
C7—C8—C11115.91 (14)H22A—C19—H19109.5
C9—C8—C11100.13 (14)H22B—C19—H19109.5
C7—C8—S1106.50 (12)O3—C20—O4124.3 (3)
C9—C8—S1110.40 (12)O3—C20—C9124.8 (3)
C11—C8—S1110.23 (12)O4—C20—C9110.9 (2)
C20—C9—C10114.2 (2)C22—C21—O4110.4 (3)
C20—C9—C8114.23 (17)C22—C21—H20A109.6
C10—C9—C8104.53 (16)O4—C21—H20A109.6
C20—C9—H9107.9C22—C21—H20B109.6
C10—C9—H9107.9O4—C21—H20B109.6
C8—C9—H9107.9H20A—C21—H20B108.1
N2—C10—C9105.75 (16)C21—C22—H21A109.5
N2—C10—H10110.6C21—C22—H21B109.5
C9—C10—H10110.6H21A—C22—H21B109.5
N2—C10—H11110.6C21—C22—H21C109.5
C9—C10—H11110.6H21A—C22—H21C109.5
H10—C10—H11108.7H21B—C22—H21C109.5
N2—C11—C14113.34 (15)
C6—C1—C2—C30.5 (4)S1—C8—C11—N271.69 (14)
C1—C2—C3—C40.3 (5)C7—C8—C11—C1468.6 (2)
C2—C3—C4—C50.2 (4)C9—C8—C11—C14168.71 (15)
C3—C4—C5—C60.5 (3)S1—C8—C11—C1452.40 (18)
C3—C4—C5—S1179.1 (2)C7—C8—C11—C1247.1 (2)
C8—S1—C5—C64.41 (16)C9—C8—C11—C1275.54 (16)
C8—S1—C5—C4177.0 (2)S1—C8—C11—C12168.15 (12)
C4—C5—C6—C10.3 (3)C13—N1—C12—O2170.6 (2)
S1—C5—C6—C1179.02 (16)C13—N1—C12—C116.5 (2)
C4—C5—C6—C7179.70 (19)N2—C11—C12—O249.3 (3)
S1—C5—C6—C71.6 (2)C14—C11—C12—O2171.21 (19)
C2—C1—C6—C50.2 (3)C8—C11—C12—O262.0 (2)
C2—C1—C6—C7179.1 (2)N2—C11—C12—N1127.93 (18)
C5—C6—C7—O1177.65 (19)C14—C11—C12—N15.98 (19)
C1—C6—C7—O13.0 (3)C8—C11—C12—N1120.84 (17)
C5—C6—C7—C82.9 (2)C12—N1—C13—C18171.55 (19)
C1—C6—C7—C8176.43 (18)C12—N1—C13—C144.3 (2)
O1—C7—C8—C963.4 (2)C18—C13—C14—C152.4 (3)
C6—C7—C8—C9116.04 (17)N1—C13—C14—C15173.75 (15)
O1—C7—C8—C1151.8 (2)C18—C13—C14—C11176.13 (16)
C6—C7—C8—C11128.75 (16)N1—C13—C14—C110.0 (2)
O1—C7—C8—S1174.81 (16)N2—C11—C14—C1546.9 (2)
C6—C7—C8—S15.73 (18)C8—C11—C14—C1570.5 (2)
C5—S1—C8—C75.57 (13)C12—C11—C14—C15169.32 (18)
C5—S1—C8—C9118.22 (15)N2—C11—C14—C13125.89 (16)
C5—S1—C8—C11132.08 (13)C8—C11—C14—C13116.74 (16)
C7—C8—C9—C2078.9 (2)C12—C11—C14—C133.47 (18)
C11—C8—C9—C20156.84 (19)C13—C14—C15—C161.4 (2)
S1—C8—C9—C2040.7 (2)C11—C14—C15—C16173.56 (17)
C7—C8—C9—C10155.62 (16)C14—C15—C16—C170.3 (3)
C11—C8—C9—C1031.38 (17)C14—C15—C16—Cl1179.61 (13)
S1—C8—C9—C1084.80 (16)C15—C16—C17—C181.0 (3)
C19—N2—C10—C9153.17 (19)Cl1—C16—C17—C18178.82 (14)
C11—N2—C10—C923.4 (2)C14—C13—C18—C171.6 (3)
C20—C9—C10—N2132.10 (19)N1—C13—C18—C17173.82 (18)
C8—C9—C10—N26.6 (2)C16—C17—C18—C130.1 (3)
C19—N2—C11—C1459.7 (2)C21—O4—C20—O33.5 (4)
C10—N2—C11—C14171.34 (16)C21—O4—C20—C9176.8 (3)
C19—N2—C11—C8172.22 (17)C10—C9—C20—O30.9 (4)
C10—N2—C11—C843.22 (18)C8—C9—C20—O3121.1 (3)
C19—N2—C11—C1255.3 (2)C10—C9—C20—O4179.43 (19)
C10—N2—C11—C1273.7 (2)C8—C9—C20—O459.2 (3)
C7—C8—C11—N2167.27 (14)C20—O4—C21—C22162.3 (3)
C9—C8—C11—N244.62 (16)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.81 (2)2.03 (2)2.842 (2)172 (2)
C18—H18···O3ii0.932.573.496 (3)171
C2—H2···Cgiii0.932.833.649 (2)155
Symmetry codes: (i) x+1, y, z+2; (ii) x, y1, z; (iii) x, y, z+1.
Hydrogen-bond geometry (Å, º) for (I) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.83 (2)2.09 (2)2.890 (2)164 (2)
C3—H3···O2ii0.932.563.385 (2)148
C18—H18···O3iii0.932.563.299 (2)136
C21—H21B···O2iv0.972.593.560 (2)174
C2—H2···Cgv0.932.813.649 (2)151
Symmetry codes: (i) x, y+1, z+1; (ii) x, y1, z; (iii) x, y, z+1; (iv) x, y+1, z; (v) x, y, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.81 (2)2.03 (2)2.842 (2)172 (2)
C18—H18···O3ii0.932.573.496 (3)171
C2—H2···Cgiii0.932.833.649 (2)155
Symmetry codes: (i) x+1, y, z+2; (ii) x, y1, z; (iii) x, y, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC22H20N2O4SC22H19ClN2O4S
Mr408.46442.90
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)293293
a, b, c (Å)8.7196 (4), 10.7874 (5), 11.3488 (5)10.4678 (5), 10.9074 (5), 11.5652 (5)
α, β, γ (°)82.624 (2), 82.775 (2), 79.214 (2)85.973 (2), 65.612 (2), 62.089 (2)
V3)1034.27 (8)1050.26 (9)
Z22
Radiation typeMo KαMo Kα
µ (mm1)0.190.31
Crystal size (mm)0.35 × 0.30 × 0.300.35 × 0.30 × 0.30
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Bruker AXS kappa APEX2 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.938, 0.9460.931, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
18982, 3745, 3389 16876, 3788, 3178
Rint0.0240.024
(sin θ/λ)max1)0.6000.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.087, 1.05 0.036, 0.103, 1.11
No. of reflections37453788
No. of parameters268276
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.170.29, 0.27

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009), SHELXL2013 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCordell, G. (1981). In Introduction to Alkaloids: A Biogenic Approach. New York: Wiley International.  Google Scholar
First citationGovind, M. M., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Sridhar, G. & Raghunathan, R. (2003). Acta Cryst. E59, o1438–o1440.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHuryn, D. M., Trost, B. M. & Fleming, I. (1991). Comp. Org. Synth. 1, 64–74.  Google Scholar
First citationKannan, P. S., Lanka, S., Thennarasu, S., Vimala, G. & SubbiahPandi, A. (2013a). Acta Cryst. E69, o854–o855.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationKannan, P. S., Yuvaraj, P. S., Manivannan, K., Reddy, B. S. R. & SubbiahPandi, A. (2013b). Acta Cryst. E69, o825–o826.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuzuki, H., Aoyagi, S. & Kibayashi, C. (1994). Tetrahedron Lett. 35, 6119–6122.  CrossRef CAS Web of Science Google Scholar
First citationWaldmann, H. (1995). Synlett. pp. 133–141.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds