organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

An amide cyclo­phane

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: shirai2011@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 19 May 2014; accepted 4 July 2014; online 11 July 2014)

The title compound, 8,18-dithia-2,6-diaza-13(1,4)-piperidina-1(1,2),4(1,3),7(1,2)-tribenzenaoctadecaphane-10,15-diyne-3,6-dione, C32H30N4O2S2, is composed of a relatively planar bis­(2-mercaptophen­yl)isophthalamide unit linked to a bridging 1,4-di(but-2-yn-1-yl)piperazine unit, forming a macrocycle. The isophthalamide ring is inclined to the outer mercaptophenyl rings by 8.18 (11) and 5.59 (10)°, while these two rings are inclined to one another by 9.10 (12)°. The piperazine ring adopts a chair conformation. There are two intra­molecular N—H⋯S hydrogen bonds generating S(5) ring motifs. In the crystal, mol­ecules are linked via C—H⋯S and C—H⋯O hydrogen bonds, forming slabs lying parallel to (001). An O atom in the isophthalamide group is disordered over two positions with an occupancy ratio of 0.41 (6):0.59 (6).

Keywords: crystal structure.

Related literature

For the biological activity of piperazine derivatives, see: Fun et al. (2011[Fun, H.-K., Asik, S. I. J., Chandrakantha, B., Isloor, A. M. & Shetty, P. (2011). Acta Cryst. E67, o3115.]); Kavitha et al. (2013[Kavitha, C. N., Yathirajan, H. S., Narayana, B., Gerber, T., van Brecht, B. & Betz, R. (2013). Acta Cryst. E69, o260-o261.]). For standard bond lengths, see: Allen et al. (1987[Allen, H. F., Olga, K. & David, G. W. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

[Scheme 1]

Experimental

Crystal data
  • C32H30N4O2S2

  • Mr = 566.72

  • Monoclinic, C 2/c

  • a = 23.0760 (5) Å

  • b = 9.9380 (3) Å

  • c = 27.0341 (7) Å

  • β = 108.428 (2)°

  • V = 5881.8 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.380, Tmax = 0.745

  • 27488 measured reflections

  • 7294 independent reflections

  • 4040 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.117

  • S = 1.01

  • 7294 reflections

  • 377 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯S1 0.83 (2) 2.46 (2) 2.9621 (18) 120 (2)
N3—H3A⋯S2 0.83 (2) 2.49 (2) 2.9905 (19) 120 (2)
C21—H21B⋯O2Ai 0.97 2.57 3.43 (3) 148
C21—H21B⋯O2Bi 0.97 2.34 3.230 (11) 152
C24—H24A⋯O1ii 0.97 2.54 3.505 (3) 171
C26—H26B⋯S2ii 0.97 2.85 3.632 (2) 139
C32—H32B⋯O1iii 0.97 2.49 3.146 (3) 125
Symmetry codes: (i) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) x, y-1, z; (iii) [-x+1, y, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Piperazine derivatives are popular in organic synthesis and for their applications in biology and medicine. They are known to exhibit antibacterial and antimicrobial activities (Fun et al., 2011). They are also amongst the most important building blocks found in biologically active compounds in a number of different therapeutic areas and a review about the current pharmacological and toxicological information for piperazine derivatives is available (Kavitha et al., 2013).

The molecular structure of the title molecule is shown in Fig. 1. It is composed of a relatively planar bis(2-mercaptophenyl)isophthalamide moiety linked to a bridging 1,4-di(but-2-yn-1-yl)piperazine unit forming a macrocycle. The isophthalamide ring (C8-C13) is inclined to the outer mercaptophenyl rings (C1-C6 and C15-C20) by 8.18 (11) and 5.59 (10) °, respectively. The two mercaptophenyl rings (C1-C6 and C15-C20) are inclined to one another by 9.10 (12) °. The S2–C1 and S1–C20 bond lengths are 1.773 (2) Å and 1.777 (2) Å, respectively, similar to the standard value of 1.769 (9) Å (Allen et al., 1987). There are two intramolecular N—H···S hydrogen bonds generating S(5) ring motifs (Fig. 1 and Table 1).

The but-2-yne group is linear and connects the piperazine group to the bis(2-mercaptophenyl)isophthalamide moiety. The piperazine ring (N1/N4/C25-C28) adopts a chair conformation.

In the crystal, molecules are linked via C—H···S and C—H···O hydrogen bonds forming slabs lying parallel to (001); see Table 1 and Fig. 2.

Related literature top

For the biological activity of piperazine derivatives, see: Fun et al. (2011); Kavitha et al. (2013). For standard bond lengths, see: Allen et al. (1987).

Experimental top

A mixture of precyclophane diyne (0.2 g, 3.98 mmol), piperazine (0.04 g, 3.98 mmol), formaldehyde (0.02 g, 7.96 mmol) from 37-41% formalin solution and CuCl (0.04 g, 3.98 mmol) in dioxane (30 mL) was refluxed at 363 K for 2 h under a nitrogen atmosphere by the Multi Components Reaction (MCR) technique. After the reaction was complete, the solvent was removed under reduced pressure and the residue was extracted with CHCl3 (3 × 100 mL), washed with water (2 × 100 mL), brine (150 mL) and dried over anhydrous Na2SO4. The solvent was removed and the crude product was purified by column chromatography on silica gel using CHCl3/MeOH (24:1) as eluent. After purification the piperazinophane was recrystallised in MeOH by slow evaporation yielding block-like colourless crystals.

Refinement top

N-bound H atoms were refined with distance restraints: N-H = 0.86 (2) Å with Uiso(H) = 1.2Ueq(N). The C-bound H atoms were positioned geometrically (C–H = 0.93–0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms. In the isophthalamide group atom O2 is disordered over two positions with an occupancy ratio of 0.41 (6):0.59 (6).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular N-H···S hydrogen bonds are shown as dashed lines (see Table 1 for details).
[Figure 2] Fig. 2. A partial view of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1 for details; H-atoms not involved in hydrogen bonding have been omitted for clarity).
8,18-Dithia-2,6-diaza-13(1,4)-piperidina-1(1,2),4(1,3),7(1,2)-tribenzenaoctadecaphane-10,15-diyne-3,6-dione top
Crystal data top
C32H30N4O2S2F(000) = 2384
Mr = 566.72Dx = 1.280 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7294 reflections
a = 23.0760 (5) Åθ = 1.6–28.3°
b = 9.9380 (3) ŵ = 0.22 mm1
c = 27.0341 (7) ÅT = 293 K
β = 108.428 (2)°Block, colourless
V = 5881.8 (3) Å30.30 × 0.25 × 0.20 mm
Z = 8
Data collection top
Bruker SMART APEXII area-detector
diffractometer
7294 independent reflections
Radiation source: fine-focus sealed tube4040 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω and ϕ scansθmax = 28.3°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 3030
Tmin = 0.380, Tmax = 0.745k = 1313
27488 measured reflectionsl = 3435
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0438P)2 + 2.0132P]
where P = (Fo2 + 2Fc2)/3
7294 reflections(Δ/σ)max = 0.001
377 parametersΔρmax = 0.20 e Å3
2 restraintsΔρmin = 0.23 e Å3
Crystal data top
C32H30N4O2S2V = 5881.8 (3) Å3
Mr = 566.72Z = 8
Monoclinic, C2/cMo Kα radiation
a = 23.0760 (5) ŵ = 0.22 mm1
b = 9.9380 (3) ÅT = 293 K
c = 27.0341 (7) Å0.30 × 0.25 × 0.20 mm
β = 108.428 (2)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
7294 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4040 reflections with I > 2σ(I)
Tmin = 0.380, Tmax = 0.745Rint = 0.036
27488 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0422 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.20 e Å3
7294 reflectionsΔρmin = 0.23 e Å3
377 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.41059 (2)0.21672 (6)1.01916 (2)0.06329 (16)
S20.58670 (2)0.64936 (6)0.76454 (2)0.06810 (17)
O10.47117 (6)0.54558 (14)0.89655 (5)0.0671 (4)
O2A0.7513 (7)0.440 (3)0.9253 (10)0.108 (5)0.41 (6)
O2B0.7544 (4)0.482 (3)0.9314 (5)0.115 (4)0.59 (6)
N10.57053 (7)0.08419 (16)0.81521 (6)0.0584 (4)
N20.45152 (7)0.37111 (18)0.94254 (7)0.0634 (5)
H2A0.4674 (9)0.3112 (19)0.9642 (8)0.076*
N30.67548 (7)0.5408 (2)0.86248 (7)0.0650 (5)
H3A0.6377 (7)0.544 (2)0.8508 (8)0.078*
N40.50216 (7)0.03836 (15)0.87441 (6)0.0541 (4)
C10.66745 (9)0.6485 (2)0.78117 (9)0.0625 (5)
C20.69417 (11)0.7074 (3)0.74746 (11)0.0866 (7)
H20.66950.74580.71660.104*
C30.75672 (13)0.7100 (3)0.75881 (13)0.1039 (9)
H30.77440.75070.73610.125*
C40.79235 (11)0.6519 (3)0.80401 (13)0.0995 (9)
H40.83460.65190.81150.119*
C50.76738 (10)0.5931 (3)0.83875 (10)0.0825 (7)
H50.79250.55400.86930.099*
C60.70420 (8)0.5926 (2)0.82788 (9)0.0618 (5)
C70.69931 (9)0.4820 (2)0.90941 (9)0.0660 (6)
C80.65534 (8)0.43753 (18)0.93660 (8)0.0536 (5)
C90.67931 (9)0.3618 (2)0.98150 (9)0.0657 (6)
H90.72110.34480.99370.079*
C100.64258 (10)0.3116 (2)1.00816 (9)0.0709 (6)
H100.65940.25961.03790.085*
C110.58065 (9)0.3380 (2)0.99107 (8)0.0622 (5)
H110.55580.30341.00920.075*
C120.55554 (8)0.41599 (17)0.94693 (7)0.0484 (4)
C130.59316 (8)0.46595 (18)0.92026 (7)0.0497 (4)
H130.57660.51940.89090.060*
C140.48890 (8)0.45151 (19)0.92630 (7)0.0517 (4)
C150.38767 (8)0.3776 (2)0.93183 (8)0.0578 (5)
C160.34978 (10)0.4520 (2)0.89092 (9)0.0770 (7)
H160.36630.50210.86960.092*
C170.28782 (11)0.4512 (3)0.88210 (11)0.0917 (8)
H170.26250.50060.85450.110*
C180.26290 (11)0.3792 (3)0.91326 (12)0.0942 (8)
H180.22090.37930.90680.113*
C190.30033 (10)0.3061 (2)0.95441 (10)0.0763 (6)
H190.28340.25770.97590.092*
C200.36274 (8)0.3043 (2)0.96403 (8)0.0575 (5)
C210.39422 (9)0.0419 (2)1.00030 (8)0.0623 (5)
H21A0.41400.01441.03020.075*
H21B0.35050.02770.99150.075*
C220.41344 (9)0.0032 (2)0.95642 (9)0.0573 (5)
C230.42885 (9)0.0462 (2)0.92174 (9)0.0590 (5)
C240.44899 (10)0.1063 (2)0.88040 (8)0.0651 (5)
H24A0.45870.20030.88840.078*
H24B0.41580.10200.84770.078*
C250.53008 (10)0.1175 (2)0.84244 (9)0.0685 (6)
H25A0.50120.12870.80770.082*
H25B0.54080.20610.85770.082*
C260.58637 (10)0.0470 (2)0.83922 (9)0.0695 (6)
H26A0.61530.03660.87390.083*
H26B0.60560.10070.81880.083*
C270.48647 (9)0.0944 (2)0.85116 (9)0.0638 (5)
H27A0.46860.14800.87260.077*
H27B0.45640.08540.81690.077*
C280.54223 (9)0.1640 (2)0.84643 (9)0.0648 (6)
H28A0.53090.25140.83030.078*
H28B0.57130.17790.88090.078*
C290.62297 (9)0.1516 (2)0.80817 (9)0.0725 (6)
H29A0.64310.09160.79050.087*
H29B0.65180.17330.84200.087*
C300.60525 (10)0.2749 (3)0.77769 (9)0.0668 (6)
C310.58869 (9)0.3744 (3)0.75342 (9)0.0651 (6)
C320.56795 (10)0.4989 (2)0.72467 (8)0.0748 (6)
H32A0.52400.49460.70860.090*
H32B0.58610.50570.69690.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0621 (3)0.0687 (3)0.0562 (3)0.0058 (3)0.0146 (2)0.0010 (3)
S20.0538 (3)0.0752 (4)0.0786 (4)0.0148 (3)0.0256 (3)0.0111 (3)
O10.0593 (8)0.0693 (9)0.0674 (9)0.0087 (7)0.0123 (7)0.0201 (8)
O2A0.035 (5)0.131 (11)0.160 (10)0.023 (6)0.032 (6)0.061 (7)
O2B0.050 (3)0.167 (9)0.104 (5)0.038 (5)0.010 (3)0.051 (5)
N10.0518 (9)0.0574 (10)0.0665 (11)0.0045 (8)0.0195 (8)0.0074 (8)
N20.0491 (9)0.0689 (12)0.0744 (12)0.0115 (8)0.0229 (9)0.0232 (9)
N30.0378 (8)0.0918 (13)0.0638 (11)0.0020 (9)0.0140 (8)0.0025 (10)
N40.0568 (9)0.0477 (9)0.0555 (10)0.0057 (7)0.0146 (8)0.0030 (8)
C10.0536 (11)0.0650 (13)0.0762 (15)0.0019 (10)0.0308 (11)0.0003 (11)
C20.0780 (16)0.1015 (19)0.0924 (18)0.0038 (14)0.0444 (14)0.0149 (15)
C30.0777 (18)0.134 (3)0.118 (2)0.0075 (17)0.0565 (18)0.016 (2)
C40.0535 (14)0.137 (3)0.119 (2)0.0141 (15)0.0430 (16)0.006 (2)
C50.0482 (12)0.114 (2)0.0867 (17)0.0087 (13)0.0239 (12)0.0074 (15)
C60.0466 (11)0.0719 (13)0.0715 (14)0.0064 (10)0.0250 (10)0.0109 (11)
C70.0454 (11)0.0712 (14)0.0750 (15)0.0064 (11)0.0098 (11)0.0034 (12)
C80.0461 (10)0.0476 (10)0.0620 (12)0.0014 (8)0.0101 (9)0.0022 (9)
C90.0483 (11)0.0615 (13)0.0798 (15)0.0079 (10)0.0094 (10)0.0108 (11)
C100.0644 (13)0.0672 (14)0.0718 (15)0.0120 (11)0.0082 (11)0.0211 (11)
C110.0606 (12)0.0617 (12)0.0640 (13)0.0072 (10)0.0194 (10)0.0130 (10)
C120.0501 (10)0.0419 (10)0.0515 (11)0.0050 (8)0.0138 (9)0.0006 (8)
C130.0491 (10)0.0452 (10)0.0500 (11)0.0003 (8)0.0087 (8)0.0014 (8)
C140.0541 (11)0.0515 (11)0.0490 (11)0.0065 (9)0.0156 (9)0.0003 (9)
C150.0459 (10)0.0674 (13)0.0605 (12)0.0093 (9)0.0176 (9)0.0024 (10)
C160.0611 (13)0.0964 (17)0.0723 (15)0.0196 (12)0.0192 (11)0.0208 (13)
C170.0590 (14)0.116 (2)0.0890 (18)0.0270 (14)0.0080 (13)0.0195 (17)
C180.0475 (13)0.118 (2)0.112 (2)0.0165 (14)0.0184 (14)0.0008 (18)
C190.0549 (13)0.0916 (17)0.0885 (17)0.0025 (12)0.0313 (12)0.0010 (14)
C200.0491 (10)0.0642 (12)0.0596 (12)0.0033 (9)0.0176 (9)0.0051 (10)
C210.0569 (12)0.0657 (13)0.0643 (13)0.0067 (10)0.0192 (10)0.0061 (11)
C220.0478 (11)0.0565 (12)0.0624 (13)0.0020 (9)0.0101 (10)0.0099 (10)
C230.0534 (11)0.0564 (12)0.0627 (14)0.0017 (9)0.0117 (10)0.0056 (11)
C240.0688 (13)0.0605 (13)0.0627 (13)0.0048 (11)0.0159 (11)0.0036 (11)
C250.0812 (15)0.0525 (12)0.0730 (15)0.0038 (11)0.0259 (12)0.0107 (11)
C260.0676 (13)0.0595 (13)0.0838 (16)0.0143 (11)0.0274 (12)0.0113 (12)
C270.0598 (12)0.0596 (12)0.0746 (14)0.0140 (10)0.0249 (11)0.0068 (11)
C280.0679 (13)0.0508 (11)0.0794 (15)0.0084 (10)0.0287 (11)0.0017 (11)
C290.0562 (12)0.0752 (15)0.0877 (17)0.0028 (11)0.0252 (12)0.0067 (13)
C300.0542 (12)0.0773 (16)0.0728 (15)0.0072 (12)0.0257 (11)0.0155 (13)
C310.0503 (12)0.0834 (17)0.0638 (14)0.0069 (12)0.0213 (10)0.0138 (13)
C320.0618 (13)0.1047 (18)0.0559 (13)0.0025 (12)0.0157 (11)0.0029 (13)
Geometric parameters (Å, º) top
S1—C201.777 (2)C12—C131.384 (3)
S1—C211.817 (2)C12—C141.503 (2)
S2—C11.773 (2)C13—H130.9300
S2—C321.814 (2)C15—C161.387 (3)
O1—C141.217 (2)C15—C201.391 (3)
O2A—C71.215 (11)C16—C171.373 (3)
O2B—C71.222 (9)C16—H160.9300
N1—C291.448 (3)C17—C181.363 (4)
N1—C261.451 (3)C17—H170.9300
N1—C281.454 (2)C18—C191.380 (3)
N2—C141.347 (2)C18—H180.9300
N2—C151.411 (2)C19—C201.380 (3)
N2—H2A0.833 (15)C19—H190.9300
N3—C71.346 (3)C21—C221.462 (3)
N3—C61.404 (3)C21—H21A0.9700
N3—H3A0.828 (15)C21—H21B0.9700
N4—C241.454 (3)C22—C231.183 (3)
N4—C271.457 (2)C23—C241.466 (3)
N4—C251.461 (2)C24—H24A0.9700
C1—C21.382 (3)C24—H24B0.9700
C1—C61.395 (3)C25—C261.503 (3)
C2—C31.378 (3)C25—H25A0.9700
C2—H20.9300C25—H25B0.9700
C3—C41.367 (4)C26—H26A0.9700
C3—H30.9300C26—H26B0.9700
C4—C51.378 (4)C27—C281.502 (3)
C4—H40.9300C27—H27A0.9700
C5—C61.393 (3)C27—H27B0.9700
C5—H50.9300C28—H28A0.9700
C7—C81.496 (3)C28—H28B0.9700
C8—C91.386 (3)C29—C301.461 (3)
C8—C131.390 (2)C29—H29A0.9700
C9—C101.369 (3)C29—H29B0.9700
C9—H90.9300C30—C311.181 (3)
C10—C111.381 (3)C31—C321.459 (3)
C10—H100.9300C32—H32A0.9700
C11—C121.387 (3)C32—H32B0.9700
C11—H110.9300
C20—S1—C21102.37 (10)C18—C17—C16121.0 (2)
C1—S2—C32100.43 (10)C18—C17—H17119.5
C29—N1—C26111.83 (16)C16—C17—H17119.5
C29—N1—C28111.80 (16)C17—C18—C19119.7 (2)
C26—N1—C28109.05 (16)C17—C18—H18120.1
C14—N2—C15129.86 (17)C19—C18—H18120.1
C14—N2—H2A117.9 (15)C18—C19—C20120.6 (2)
C15—N2—H2A112.1 (15)C18—C19—H19119.7
C7—N3—C6130.45 (17)C20—C19—H19119.7
C7—N3—H3A116.3 (16)C19—C20—C15119.24 (19)
C6—N3—H3A113.1 (16)C19—C20—S1119.93 (17)
C24—N4—C27111.41 (15)C15—C20—S1120.74 (14)
C24—N4—C25111.20 (15)C22—C21—S1115.54 (14)
C27—N4—C25109.16 (16)C22—C21—H21A108.4
C2—C1—C6119.7 (2)S1—C21—H21A108.4
C2—C1—S2118.89 (18)C22—C21—H21B108.4
C6—C1—S2121.39 (15)S1—C21—H21B108.4
C3—C2—C1121.1 (3)H21A—C21—H21B107.5
C3—C2—H2119.5C23—C22—C21176.6 (2)
C1—C2—H2119.5C22—C23—C24176.9 (2)
C4—C3—C2118.9 (2)N4—C24—C23112.22 (16)
C4—C3—H3120.6N4—C24—H24A109.2
C2—C3—H3120.6C23—C24—H24A109.2
C3—C4—C5121.7 (2)N4—C24—H24B109.2
C3—C4—H4119.1C23—C24—H24B109.2
C5—C4—H4119.1H24A—C24—H24B107.9
C4—C5—C6119.5 (2)N4—C25—C26109.52 (16)
C4—C5—H5120.2N4—C25—H25A109.8
C6—C5—H5120.2C26—C25—H25A109.8
C5—C6—C1119.1 (2)N4—C25—H25B109.8
C5—C6—N3122.9 (2)C26—C25—H25B109.8
C1—C6—N3117.99 (17)H25A—C25—H25B108.2
O2A—C7—N3123.2 (9)N1—C26—C25110.17 (17)
O2B—C7—N3120.8 (7)N1—C26—H26A109.6
O2A—C7—C8118.2 (9)C25—C26—H26A109.6
O2B—C7—C8121.5 (6)N1—C26—H26B109.6
N3—C7—C8116.93 (17)C25—C26—H26B109.6
C9—C8—C13118.33 (18)H26A—C26—H26B108.1
C9—C8—C7116.48 (17)N4—C27—C28110.57 (16)
C13—C8—C7125.19 (18)N4—C27—H27A109.5
C10—C9—C8121.13 (19)C28—C27—H27A109.5
C10—C9—H9119.4N4—C27—H27B109.5
C8—C9—H9119.4C28—C27—H27B109.5
C9—C10—C11120.15 (19)H27A—C27—H27B108.1
C9—C10—H10119.9N1—C28—C27110.61 (17)
C11—C10—H10119.9N1—C28—H28A109.5
C10—C11—C12120.04 (19)C27—C28—H28A109.5
C10—C11—H11120.0N1—C28—H28B109.5
C12—C11—H11120.0C27—C28—H28B109.5
C13—C12—C11119.24 (17)H28A—C28—H28B108.1
C13—C12—C14117.33 (16)N1—C29—C30111.46 (17)
C11—C12—C14123.43 (17)N1—C29—H29A109.3
C12—C13—C8121.06 (17)C30—C29—H29A109.3
C12—C13—H13119.5N1—C29—H29B109.3
C8—C13—H13119.5C30—C29—H29B109.3
O1—C14—N2123.71 (18)H29A—C29—H29B108.0
O1—C14—C12121.12 (18)C31—C30—C29177.3 (2)
N2—C14—C12115.16 (16)C30—C31—C32178.5 (2)
C16—C15—C20119.81 (18)C31—C32—S2113.96 (15)
C16—C15—N2122.85 (19)C31—C32—H32A108.8
C20—C15—N2117.34 (17)S2—C32—H32A108.8
C17—C16—C15119.7 (2)C31—C32—H32B108.8
C17—C16—H16120.2S2—C32—H32B108.8
C15—C16—H16120.2H32A—C32—H32B107.7
C32—S2—C1—C286.2 (2)C13—C12—C14—O118.3 (3)
C32—S2—C1—C695.30 (19)C11—C12—C14—O1160.92 (19)
C6—C1—C2—C31.0 (4)C13—C12—C14—N2160.74 (17)
S2—C1—C2—C3179.6 (2)C11—C12—C14—N220.0 (3)
C1—C2—C3—C40.7 (4)C14—N2—C15—C1617.0 (3)
C2—C3—C4—C51.2 (5)C14—N2—C15—C20163.6 (2)
C3—C4—C5—C60.1 (4)C20—C15—C16—C170.8 (3)
C4—C5—C6—C11.8 (4)N2—C15—C16—C17178.5 (2)
C4—C5—C6—N3176.7 (2)C15—C16—C17—C180.5 (4)
C2—C1—C6—C52.2 (3)C16—C17—C18—C190.2 (4)
S2—C1—C6—C5179.22 (17)C17—C18—C19—C200.6 (4)
C2—C1—C6—N3176.3 (2)C18—C19—C20—C150.3 (3)
S2—C1—C6—N32.2 (3)C18—C19—C20—S1176.77 (19)
C7—N3—C6—C51.6 (4)C16—C15—C20—C190.4 (3)
C7—N3—C6—C1179.9 (2)N2—C15—C20—C19178.96 (19)
C6—N3—C7—O2A15 (2)C16—C15—C20—S1176.02 (17)
C6—N3—C7—O2B9.3 (15)N2—C15—C20—S14.6 (3)
C6—N3—C7—C8180.0 (2)C21—S1—C20—C1972.16 (19)
O2A—C7—C8—C96 (2)C21—S1—C20—C15111.40 (17)
O2B—C7—C8—C917.5 (15)C20—S1—C21—C2266.21 (17)
N3—C7—C8—C9171.90 (19)C27—N4—C24—C2371.5 (2)
O2A—C7—C8—C13173 (2)C25—N4—C24—C23166.44 (17)
O2B—C7—C8—C13162.6 (15)C24—N4—C25—C26177.46 (17)
N3—C7—C8—C137.9 (3)C27—N4—C25—C2659.2 (2)
C13—C8—C9—C102.5 (3)C29—N1—C26—C25176.08 (18)
C7—C8—C9—C10177.4 (2)C28—N1—C26—C2559.8 (2)
C8—C9—C10—C111.2 (3)N4—C25—C26—N160.9 (2)
C9—C10—C11—C120.3 (3)C24—N4—C27—C28178.72 (17)
C10—C11—C12—C130.4 (3)C25—N4—C27—C2858.1 (2)
C10—C11—C12—C14178.84 (18)C29—N1—C28—C27177.58 (17)
C11—C12—C13—C81.0 (3)C26—N1—C28—C2758.2 (2)
C14—C12—C13—C8179.76 (16)N4—C27—C28—N158.1 (2)
C9—C8—C13—C122.4 (3)C26—N1—C29—C30172.24 (18)
C7—C8—C13—C12177.49 (18)C28—N1—C29—C3065.2 (2)
C15—N2—C14—O12.6 (3)C1—S2—C32—C3166.79 (18)
C15—N2—C14—C12178.37 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···S10.83 (2)2.46 (2)2.9621 (18)120 (2)
N3—H3A···S20.83 (2)2.49 (2)2.9905 (19)120 (2)
C21—H21B···O2Ai0.972.573.43 (3)148
C21—H21B···O2Bi0.972.343.230 (11)152
C24—H24A···O1ii0.972.543.505 (3)171
C26—H26B···S2ii0.972.853.632 (2)139
C32—H32B···O1iii0.972.493.146 (3)125
Symmetry codes: (i) x1/2, y1/2, z; (ii) x, y1, z; (iii) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···S10.833 (15)2.46 (2)2.9621 (18)119.8 (18)
N3—H3A···S20.828 (15)2.49 (2)2.9905 (19)120.2 (18)
C21—H21B···O2Ai0.972.573.43 (3)148
C21—H21B···O2Bi0.972.343.230 (11)152
C24—H24A···O1ii0.972.543.505 (3)171
C26—H26B···S2ii0.972.853.632 (2)139
C32—H32B···O1iii0.972.493.146 (3)125
Symmetry codes: (i) x1/2, y1/2, z; (ii) x, y1, z; (iii) x+1, y, z+3/2.
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection.

References

First citationAllen, H. F., Olga, K. & David, G. W. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Asik, S. I. J., Chandrakantha, B., Isloor, A. M. & Shetty, P. (2011). Acta Cryst. E67, o3115.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKavitha, C. N., Yathirajan, H. S., Narayana, B., Gerber, T., van Brecht, B. & Betz, R. (2013). Acta Cryst. E69, o260–o261.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds