organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 8| August 2014| Pages o835-o836

3-(2,4-Di­chloro­phen­­oxy)-1-(4-meth­­oxy­benz­yl)-4-(4-nitro­phen­yl)azetidin-2-one

aIlke Education and Health Foundation, Cappadocia Vocational College, The Medical Imaging Techniques Program, 50420 Mustafapaşa, Ürgüp, Nevşehir, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, College of Sciences, Shiraz University, 71454 Shiraz, Iran, and dDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 24 June 2014; accepted 25 June 2014; online 2 July 2014)

The β-lactam ring of the title compound, C23H18Cl2N2O5, is nearly planar [maximum deviation = 0.019 (2) Å for the N atom] and its mean plane makes dihedral angles of 56.86 (15), 68.83 (15) and 83.75 (15)° with the di­chloro-, nitro- and meth­oxy-substituted benzene rings, respectively. In the crystal, mol­ecules are linked by pairs of C—H⋯O hydrogen bonds, forming inversion dimers with R22(10) loops. The dimers are linked by further C—H⋯O hydrogen bonds, forming sheets lying parallel to (001). The mol­ecular packing is further stabilized by C—H⋯π inter­actions.

Keywords: crystal structure.

Related literature

For general background to β-lactams, see: Schunk & Enders (2000[Schunk, S. & Enders, D. (2000). Org. Lett. 2, 907-910.]); France et al. (2004[France, S., Weatherwax, A., Taggi, A. & Lectka, T. (2004). Acc. Chem. Res. 37, 592-600.]); Pitts & Lectka (2014[Pitts, C. R. & Lectka, T. (2014). Chem. Rev. (Epub ahead of print). PMID: 24555548 [PubMed - as supplied by publisher]]); Arya et al. (2014[Arya, N., Jagdale, A. Y., Patil, T. A., Yeramwar, S. S., Holikatti, S. S., Dwivedi, J., Shishoo, Ch. J. & Jain, K. S. (2014). Eur. J. Med. Chem. 74, 619-656.]); Banik et al. (2003[Banik, I., Becker, F. F. & Banik, B. K. (2003). J. Med. Chem. 46, 12-15.]); Delpiccolo et al. (2003[Delpiccolo, C. M. L., Fraga, M. A. & Mata, E. G. (2003). J. Combin. Chem. 5, 208-210.]); Hodous & Fu (2002[Hodous, B. L. & Fu, G. C. (2002). J. Am. Chem. Soc. 124, 1578-1579.]). For the crystal structures of some β-lactams, see: Akkurt et al. (2011[Akkurt, M., Türktekin, S., Jarrahpour, A., Badrabady, S. A. T. & Büyükgüngör, O. (2011). Acta Cryst. E67, o183.]); Butcher et al. (2011[Butcher, R. J., Akkurt, M., Jarrahpour, A. & Badrabady, S. A. T. (2011). Acta Cryst. E67, o1101-o1102.]).

[Scheme 1]

Experimental

Crystal data
  • C23H18Cl2N2O5

  • Mr = 473.29

  • Monoclinic, P 21 /n

  • a = 5.0716 (5) Å

  • b = 20.9390 (12) Å

  • c = 20.1516 (18) Å

  • β = 96.457 (7)°

  • V = 2126.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 296 K

  • 0.59 × 0.28 × 0.06 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.901, Tmax = 0.972

  • 15060 measured reflections

  • 4179 independent reflections

  • 2123 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.061

  • S = 0.85

  • 4179 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C17–C22 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.98 2.58 3.417 (3) 143
C6—H6⋯O5ii 0.93 2.57 3.328 (3) 139
C12—H12⋯O3iii 0.93 2.57 3.495 (4) 176
C16—H16ACgiv 0.97 2.70 3.649 (3) 166
Symmetry codes: (i) x-1, y, z; (ii) -x, -y, -z; (iii) -x-1, -y+1, -z; (iv) x+1, y, z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The β-lactam (2-azetidinone) ring is the most well known heterocycle to have been studied during the last century (Pitts & Lectka, 2014; France et al., 2004; Arya et al., 2014). The β-lactam framework is the structural element of a large class of broad-spectrum antibiotics such as penicillins, cephalosporins and monobactams (Delpiccolo et al., 2003; Schunk & Enders, 2000; Banik et al., 2003), that effectively combat bacterial infections (Schunk & Enders, 2000). However, the need for new antibiotics has been growing, as a result of the rapid emergence of bacterial strains' resistance to traditional drugs (Hodous & Fu, 2002; Delpiccolo et al., 2003). Therefore, in continuation of our research on the synthesis of β-lactams, we describe herein the synthesis and crystal structure of the title compound.

In the title molecule, Fig. 1, the β-lactam ring (N1/C1–C3) is nearly planar with a maximum deviation of -0.016 (1) Å for atom N1. The mean plane of this four-membered β-lactam ring is twisted from the planes of the dichloro-, nitro- and methoxy substituted benzene rings, making the dihedral angles of 56.86 (15), 68.83 (15) and 83.75 (15)°, respectively. The bond lengths and bond angles are within normal values and are comparable with those reported for similar compounds (Akkurt et al., 2011; Butcher et al., 2011).

In the crystal, molecules are linked by a pair of C—H···O hydrogen bonds forming inversion dimers with R22(10) loops (Table 1 and Fig. 2). The dimers are linked by further C-H···O hydrogen bonds forming sheets lying parallel to (001). The molecular packing is further stabilized by C—H···π interactions (Table 1).

Related literature top

For general background to β-lactams, see: Schunk & Enders (2000); France et al. (2004); Pitts & Lectka (2014); Arya et al. (2014); Banik et al. (2003); Delpiccolo et al. (2003); Hodous & Fu (2002). For the crystal structures of some β-lactams, see: Akkurt et al. (2011); Butcher et al. (2011).

Experimental top

A mixture of N-(4-nitrobenzylidene) (4-methoxyphenyl) methanamine (0.27 g, 1.00 mmol), 2,4-dichlorophenoxyacetic acid (0.34 g, 1.50 mmol), tosyl chloride (0.28 g, 1.50 mmol) and triethylamine (0.25 g, 2.50 mmol) in dry CH2Cl2 was stirred at room temperature overnight. After completion of the reaction, monitored by TLC, the mixture was washed with HCl (1 N), saturated sodium bicarbonate solution, brine, dried over anhydrous Na2SO4 and the solvent was then evaporated under vacuum to afford the crude product. This was purified by recrystallization from EtOAc giving pale yellow prismatic crystals on slow evaporation of the solvent (yield 72%). M.p. 397 - 399 K. Spectroscopic data for the title compound are given in the archived CIF.

Refinement top

All the H atoms were positioned geometrically and refined using a riding model: C—H = 0.93 - 0.98 Å with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1 for details).
3-(2,4-Dichlorophenoxy)-1-(4-methoxybenzyl)-4-(4-nitrophenyl)azetidin-2-one top
Crystal data top
C23H18Cl2N2O5F(000) = 976
Mr = 473.29Dx = 1.478 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 10788 reflections
a = 5.0716 (5) Åθ = 1.4–28.4°
b = 20.9390 (12) ŵ = 0.35 mm1
c = 20.1516 (18) ÅT = 296 K
β = 96.457 (7)°Prism, pale yellow
V = 2126.4 (3) Å30.59 × 0.28 × 0.06 mm
Z = 4
Data collection top
Stoe IPDS 2
diffractometer
4179 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2123 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.062
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 1.4°
ω scansh = 66
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 2525
Tmin = 0.901, Tmax = 0.972l = 2424
15060 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.0162P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.85(Δ/σ)max < 0.001
4179 reflectionsΔρmax = 0.16 e Å3
289 parametersΔρmin = 0.19 e Å3
Crystal data top
C23H18Cl2N2O5V = 2126.4 (3) Å3
Mr = 473.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.0716 (5) ŵ = 0.35 mm1
b = 20.9390 (12) ÅT = 296 K
c = 20.1516 (18) Å0.59 × 0.28 × 0.06 mm
β = 96.457 (7)°
Data collection top
Stoe IPDS 2
diffractometer
4179 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2123 reflections with I > 2σ(I)
Tmin = 0.901, Tmax = 0.972Rint = 0.062
15060 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 0.85Δρmax = 0.16 e Å3
4179 reflectionsΔρmin = 0.19 e Å3
289 parameters
Special details top

Experimental. Spectroscopic data for the title compound:

IR (KBr, cm-1): 1758 (CO β-lactam), 1352, 1520 (NO2). 1H-NMR (CDCl3) δ (p.p.m.): 3.78 (OMe, s, 3H), 3.94 (CH2, d, J =14.6 Hz, 1H), 4.78 (CH2, d, J = 14.6 Hz, 1H), 4.85 (H-4, d, J = 4.8 Hz, 1H), 5.38 (H-3, d, J = 4.8 Hz, 1H), 6.80 (ArH, d, J = 8.7 Hz, 2H), 7.00 (ArH, d, J = 8.8 Hz, 1H), 7.03 (ArH, d, J = 8.7 Hz, 2H), 7.08 (ArH, d, J = 8.8 Hz, 1H), 7.19 (ArH, s, 1H), 7.45 (ArH, d, J = 8.8 Hz, 2H), 8.17 (ArH, d, J = 8.8 Hz, 2H). 13C-NMR (CDCl3) δ (p.p.m.): 44.4 (CH2), 55.3 (OMe) 59.8 (C-4), 82.5 (C-3), 114.3, 116.2, 123.4, 123.8, 125.8, 127.5, 127.7, 129.4, 130.0, 130.1, 140.3, 148.1, 151.1, 159.5 (aromatic carbon), 164.36 (CO β-lactam). MS m/z = 472 [M+].

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.91503 (14)0.22124 (4)0.29769 (3)0.0722 (3)
Cl20.23669 (16)0.35928 (3)0.13099 (3)0.0705 (3)
O10.2489 (4)0.10566 (8)0.01887 (8)0.0716 (7)
O20.0396 (3)0.23885 (7)0.08223 (8)0.0598 (6)
O30.2578 (5)0.50783 (10)0.05297 (12)0.1058 (10)
O40.0490 (5)0.48354 (10)0.11293 (12)0.1037 (10)
O50.9069 (4)0.04073 (8)0.20251 (9)0.0712 (7)
N10.0881 (4)0.15859 (8)0.04739 (9)0.0501 (7)
N20.1189 (6)0.46924 (12)0.07734 (13)0.0730 (11)
C10.0631 (5)0.14198 (12)0.00884 (11)0.0488 (9)
C20.0932 (5)0.18554 (11)0.05155 (11)0.0499 (9)
C30.2519 (5)0.20533 (11)0.01636 (11)0.0493 (8)
C40.2330 (5)0.23048 (11)0.13478 (11)0.0484 (9)
C50.3203 (5)0.17250 (12)0.16032 (11)0.0560 (9)
C60.5282 (5)0.16962 (12)0.21112 (11)0.0559 (10)
C70.6458 (5)0.22470 (13)0.23584 (11)0.0518 (9)
C80.5564 (5)0.28303 (12)0.21190 (11)0.0561 (9)
C90.3495 (5)0.28593 (11)0.16161 (10)0.0493 (9)
C100.2222 (4)0.27389 (11)0.03557 (10)0.0438 (8)
C110.3762 (5)0.31962 (12)0.00929 (12)0.0576 (10)
C120.3445 (6)0.38355 (13)0.02211 (13)0.0638 (11)
C130.1588 (6)0.40110 (12)0.06275 (12)0.0536 (10)
C140.0052 (5)0.35691 (13)0.09064 (12)0.0588 (10)
C150.0372 (5)0.29338 (12)0.07617 (11)0.0547 (9)
C160.0924 (5)0.13434 (12)0.11484 (10)0.0558 (9)
C170.3177 (5)0.08960 (11)0.13711 (11)0.0465 (9)
C180.4539 (5)0.09594 (11)0.19956 (11)0.0526 (9)
C190.6509 (5)0.05349 (12)0.22383 (11)0.0540 (9)
C200.7172 (5)0.00404 (12)0.18411 (13)0.0529 (9)
C210.5827 (6)0.00258 (12)0.12111 (13)0.0647 (10)
C220.3856 (5)0.03948 (12)0.09822 (12)0.0614 (10)
C231.0492 (6)0.03553 (13)0.26693 (14)0.0812 (12)
H20.200000.162100.081100.0600*
H30.438400.192300.019300.0590*
H50.239800.135100.143500.0670*
H60.587600.130300.228300.0670*
H80.635000.320400.229500.0670*
H110.504100.307000.017700.0690*
H120.447200.414100.003500.0770*
H140.118300.369600.118800.0710*
H150.068200.263100.094200.0660*
H16A0.073500.112300.118500.0670*
H16B0.100900.170300.145300.0670*
H180.412600.129800.226400.0630*
H190.737600.058400.266700.0650*
H210.626000.035900.093800.0780*
H220.296500.034000.055700.0740*
H23A1.175600.069700.273500.1210*
H23B1.140600.004700.270800.1210*
H23C0.927800.038000.300100.1210*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0632 (5)0.0887 (5)0.0622 (4)0.0012 (4)0.0041 (3)0.0047 (4)
Cl20.1082 (6)0.0417 (4)0.0589 (4)0.0053 (4)0.0028 (4)0.0010 (3)
O10.0839 (15)0.0666 (12)0.0620 (11)0.0211 (12)0.0019 (10)0.0016 (10)
O20.0835 (13)0.0417 (10)0.0498 (10)0.0014 (9)0.0113 (9)0.0032 (8)
O30.136 (2)0.0596 (14)0.1232 (19)0.0290 (15)0.0202 (16)0.0043 (13)
O40.138 (2)0.0701 (15)0.1078 (18)0.0071 (14)0.0353 (16)0.0130 (13)
O50.0738 (13)0.0555 (11)0.0812 (13)0.0087 (11)0.0044 (10)0.0089 (10)
N10.0607 (14)0.0447 (12)0.0437 (12)0.0053 (11)0.0008 (11)0.0081 (9)
N20.090 (2)0.0609 (19)0.0651 (17)0.0106 (17)0.0044 (14)0.0040 (14)
C10.0589 (19)0.0406 (14)0.0465 (15)0.0059 (14)0.0046 (14)0.0002 (13)
C20.0589 (17)0.0437 (15)0.0474 (14)0.0096 (13)0.0075 (13)0.0017 (12)
C30.0402 (15)0.0532 (15)0.0548 (14)0.0045 (13)0.0068 (12)0.0074 (13)
C40.0645 (17)0.0472 (15)0.0338 (12)0.0010 (14)0.0067 (12)0.0024 (12)
C50.0755 (19)0.0424 (15)0.0492 (15)0.0051 (15)0.0025 (14)0.0012 (12)
C60.072 (2)0.0489 (16)0.0470 (15)0.0060 (15)0.0072 (14)0.0036 (12)
C70.0547 (17)0.0572 (17)0.0439 (14)0.0010 (15)0.0075 (12)0.0019 (13)
C80.0727 (18)0.0465 (16)0.0496 (15)0.0083 (15)0.0087 (13)0.0078 (13)
C90.0691 (18)0.0409 (15)0.0381 (13)0.0018 (14)0.0071 (13)0.0026 (11)
C100.0395 (14)0.0495 (15)0.0419 (13)0.0010 (14)0.0020 (11)0.0058 (12)
C110.0569 (18)0.0614 (18)0.0568 (15)0.0101 (15)0.0164 (13)0.0009 (14)
C120.068 (2)0.0553 (18)0.0683 (18)0.0209 (15)0.0080 (16)0.0036 (14)
C130.0605 (19)0.0469 (17)0.0505 (15)0.0055 (15)0.0067 (14)0.0030 (13)
C140.0599 (19)0.0576 (17)0.0602 (16)0.0011 (16)0.0123 (14)0.0032 (14)
C150.0550 (17)0.0492 (17)0.0611 (15)0.0059 (14)0.0118 (14)0.0051 (13)
C160.0653 (18)0.0551 (16)0.0463 (14)0.0029 (15)0.0034 (12)0.0103 (13)
C170.0563 (17)0.0410 (14)0.0417 (14)0.0041 (13)0.0037 (12)0.0066 (12)
C180.0659 (18)0.0450 (15)0.0460 (15)0.0013 (14)0.0029 (13)0.0012 (12)
C190.0637 (18)0.0499 (16)0.0455 (14)0.0027 (14)0.0061 (13)0.0033 (13)
C200.0568 (17)0.0396 (15)0.0610 (17)0.0043 (14)0.0004 (14)0.0092 (13)
C210.087 (2)0.0469 (15)0.0570 (17)0.0076 (16)0.0059 (15)0.0051 (13)
C220.082 (2)0.0517 (16)0.0470 (15)0.0020 (16)0.0084 (14)0.0000 (13)
C230.070 (2)0.076 (2)0.092 (2)0.0058 (17)0.0155 (17)0.0193 (17)
Geometric parameters (Å, º) top
Cl1—C71.744 (2)C14—C151.375 (4)
Cl2—C91.729 (2)C16—C171.506 (3)
O1—C11.210 (3)C17—C181.372 (3)
O2—C21.410 (3)C17—C221.377 (3)
O2—C41.371 (3)C18—C191.385 (3)
O3—N21.212 (4)C19—C201.374 (4)
O4—N21.211 (4)C20—C211.379 (4)
O5—C201.364 (3)C21—C221.373 (4)
O5—C231.417 (3)C2—H20.9800
N1—C11.341 (3)C3—H30.9800
N1—C31.468 (3)C5—H50.9300
N1—C161.449 (3)C6—H60.9300
N2—C131.475 (4)C8—H80.9300
C1—C21.534 (3)C11—H110.9300
C2—C31.564 (3)C12—H120.9300
C3—C101.499 (3)C14—H140.9300
C4—C51.372 (3)C15—H150.9300
C4—C91.385 (3)C16—H16A0.9700
C5—C61.386 (3)C16—H16B0.9700
C6—C71.367 (4)C18—H180.9300
C7—C81.371 (4)C19—H190.9300
C8—C91.376 (3)C21—H210.9300
C10—C111.379 (3)C22—H220.9300
C10—C151.374 (3)C23—H23A0.9600
C11—C121.376 (4)C23—H23B0.9600
C12—C131.366 (4)C23—H23C0.9600
C13—C141.370 (4)
C2—O2—C4120.15 (17)O5—C20—C19124.8 (2)
C20—O5—C23117.9 (2)O5—C20—C21116.2 (2)
C1—N1—C396.33 (18)C19—C20—C21119.0 (2)
C1—N1—C16130.5 (2)C20—C21—C22120.7 (2)
C3—N1—C16133.13 (19)C17—C22—C21121.2 (2)
O3—N2—O4123.7 (3)O2—C2—H2114.00
O3—N2—C13117.7 (3)C1—C2—H2113.00
O4—N2—C13118.6 (3)C3—C2—H2114.00
O1—C1—N1131.7 (2)N1—C3—H3112.00
O1—C1—C2136.2 (2)C2—C3—H3112.00
N1—C1—C292.14 (19)C10—C3—H3112.00
O2—C2—C1117.7 (2)C4—C5—H5120.00
O2—C2—C3110.33 (18)C6—C5—H5120.00
C1—C2—C385.08 (17)C5—C6—H6120.00
N1—C3—C286.32 (17)C7—C6—H6120.00
N1—C3—C10116.77 (19)C7—C8—H8120.00
C2—C3—C10115.03 (19)C9—C8—H8120.00
O2—C4—C5125.1 (2)C10—C11—H11119.00
O2—C4—C9115.5 (2)C12—C11—H11119.00
C5—C4—C9119.3 (2)C11—C12—H12121.00
C4—C5—C6120.1 (2)C13—C12—H12121.00
C5—C6—C7119.8 (2)C13—C14—H14121.00
Cl1—C7—C6120.0 (2)C15—C14—H14121.00
Cl1—C7—C8119.3 (2)C10—C15—H15119.00
C6—C7—C8120.7 (2)C14—C15—H15119.00
C7—C8—C9119.5 (2)N1—C16—H16A108.00
Cl2—C9—C4119.74 (18)N1—C16—H16B108.00
Cl2—C9—C8119.78 (18)C17—C16—H16A108.00
C4—C9—C8120.5 (2)C17—C16—H16B108.00
C3—C10—C11119.2 (2)H16A—C16—H16B107.00
C3—C10—C15122.2 (2)C17—C18—H18119.00
C11—C10—C15118.5 (2)C19—C18—H18119.00
C10—C11—C12121.4 (2)C18—C19—H19120.00
C11—C12—C13118.5 (3)C20—C19—H19120.00
N2—C13—C12119.9 (2)C20—C21—H21120.00
N2—C13—C14118.3 (2)C22—C21—H21120.00
C12—C13—C14121.8 (2)C17—C22—H22119.00
C13—C14—C15118.7 (2)C21—C22—H22119.00
C10—C15—C14121.2 (2)O5—C23—H23A109.00
N1—C16—C17115.36 (19)O5—C23—H23B109.00
C16—C17—C18120.0 (2)O5—C23—H23C109.00
C16—C17—C22122.3 (2)H23A—C23—H23B110.00
C18—C17—C22117.6 (2)H23A—C23—H23C110.00
C17—C18—C19122.1 (2)H23B—C23—H23C109.00
C18—C19—C20119.5 (2)
C2—O2—C4—C52.3 (3)O2—C4—C5—C6176.2 (2)
C4—O2—C2—C171.2 (3)C5—C4—C9—C82.1 (4)
C4—O2—C2—C3166.47 (19)O2—C4—C9—Cl23.1 (3)
C2—O2—C4—C9179.5 (2)C9—C4—C5—C61.9 (4)
C23—O5—C20—C21180.0 (2)C4—C5—C6—C70.1 (4)
C23—O5—C20—C191.0 (4)C5—C6—C7—Cl1177.73 (19)
C16—N1—C1—C2173.9 (2)C5—C6—C7—C81.4 (4)
C3—N1—C1—O1177.6 (3)C6—C7—C8—C91.2 (4)
C1—N1—C16—C17103.0 (3)Cl1—C7—C8—C9177.94 (18)
C3—N1—C16—C1772.5 (3)C7—C8—C9—Cl2179.75 (19)
C16—N1—C3—C1070.0 (3)C7—C8—C9—C40.5 (4)
C1—N1—C3—C22.85 (19)C3—C10—C15—C14177.0 (2)
C16—N1—C3—C2173.8 (2)C3—C10—C11—C12175.9 (2)
C3—N1—C1—C22.90 (19)C11—C10—C15—C140.1 (3)
C1—N1—C3—C10113.4 (2)C15—C10—C11—C121.1 (4)
C16—N1—C1—O15.7 (5)C10—C11—C12—C131.1 (4)
O4—N2—C13—C140.5 (4)C11—C12—C13—N2179.8 (2)
O3—N2—C13—C121.0 (4)C11—C12—C13—C140.0 (4)
O4—N2—C13—C12179.2 (3)N2—C13—C14—C15178.7 (2)
O3—N2—C13—C14179.2 (3)C12—C13—C14—C151.1 (4)
N1—C1—C2—C32.72 (18)C13—C14—C15—C101.2 (4)
O1—C1—C2—O267.4 (4)N1—C16—C17—C2247.4 (3)
O1—C1—C2—C3177.8 (3)N1—C16—C17—C18136.2 (2)
N1—C1—C2—O2113.1 (2)C16—C17—C22—C21176.6 (2)
C1—C2—C3—N12.49 (16)C18—C17—C22—C210.1 (4)
O2—C2—C3—C102.4 (3)C16—C17—C18—C19175.8 (2)
C1—C2—C3—C10115.4 (2)C22—C17—C18—C190.8 (4)
O2—C2—C3—N1120.25 (19)C17—C18—C19—C201.3 (4)
C2—C3—C10—C1594.1 (3)C18—C19—C20—C210.9 (4)
N1—C3—C10—C154.9 (3)C18—C19—C20—O5179.9 (2)
C2—C3—C10—C1182.7 (3)O5—C20—C21—C22179.1 (2)
N1—C3—C10—C11178.3 (2)C19—C20—C21—C220.0 (4)
C5—C4—C9—Cl2178.70 (19)C20—C21—C22—C170.5 (4)
O2—C4—C9—C8176.2 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C17–C22 benzene ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.982.583.417 (3)143
C6—H6···O5ii0.932.573.328 (3)139
C12—H12···O3iii0.932.573.495 (4)176
C16—H16A···Cgiv0.972.703.649 (3)166
Symmetry codes: (i) x1, y, z; (ii) x, y, z; (iii) x1, y+1, z; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C17–C22 benzene ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.982.583.417 (3)143
C6—H6···O5ii0.932.573.328 (3)139
C12—H12···O3iii0.932.573.495 (4)176
C16—H16A···Cgiv0.972.703.649 (3)166
Symmetry codes: (i) x1, y, z; (ii) x, y, z; (iii) x1, y+1, z; (iv) x+1, y, z.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund). AJ and RH thank the Shiraz University Research Council for financial support.

References

First citationAkkurt, M., Türktekin, S., Jarrahpour, A., Badrabady, S. A. T. & Büyükgüngör, O. (2011). Acta Cryst. E67, o183.  Web of Science CrossRef IUCr Journals Google Scholar
First citationArya, N., Jagdale, A. Y., Patil, T. A., Yeramwar, S. S., Holikatti, S. S., Dwivedi, J., Shishoo, Ch. J. & Jain, K. S. (2014). Eur. J. Med. Chem. 74, 619–656.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBanik, I., Becker, F. F. & Banik, B. K. (2003). J. Med. Chem. 46, 12–15.  Web of Science CrossRef PubMed CAS Google Scholar
First citationButcher, R. J., Akkurt, M., Jarrahpour, A. & Badrabady, S. A. T. (2011). Acta Cryst. E67, o1101–o1102.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDelpiccolo, C. M. L., Fraga, M. A. & Mata, E. G. (2003). J. Combin. Chem. 5, 208–210.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrance, S., Weatherwax, A., Taggi, A. & Lectka, T. (2004). Acc. Chem. Res. 37, 592–600.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHodous, B. L. & Fu, G. C. (2002). J. Am. Chem. Soc. 124, 1578–1579.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPitts, C. R. & Lectka, T. (2014). Chem. Rev. (Epub ahead of print). PMID: 24555548 [PubMed - as supplied by publisher]  Google Scholar
First citationSchunk, S. & Enders, D. (2000). Org. Lett. 2, 907–910.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 8| August 2014| Pages o835-o836
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds