organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 8| August 2014| Pages o873-o874

3,10,14,21-Tetra­kis(4-meth­­oxy­phen­yl)penta­cyclo­[11.8.0.02,11.04,9.015,20]henicosa-1(21),2,4(9),5,7,10,13,15(20),16,18-decaen-12-one chloro­form monosolvate

aDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 23 June 2014; accepted 15 July 2014; online 23 July 2014)

The asymmetric unit of the title compound, C49H36O6·CHCl3, contains half an organic mol­ecule, the complete mol­ecule being generated by the operation of a crystallographic twofold rotation axis, and half a highly disordered chloro­form mol­ecule. The contribution to the diffraction pattern of the latter was removed using the program SQUEEZE in PLATON [Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Acta Cryst. D65, 148–155]; the unit-cell characteristics take into account the presence of CHCl3. The dihedral angles between the planes of the naphthalene ring system and the meth­oxy­benzene rings are 71.05 (7) (syn to the central C=O group) and 57.27 (6)° (anti to the central C=O group). In the crystal, mol­ecules are linked by C—H⋯O inter­actions, generating C(12) chains running parallel to the b axis.

Related literature

For the uses and biological importance of naphthalene, see: Morikawa & Takahashi (2004[Morikawa, H. & Takahashi, M. (2004). US Patent No. 6800482.]); Rokade & Sayyed (2009[Rokade, Y. B. & Sayyed, R. Z. (2009). Rasayan J. Chem. 2, 972-980.]).

[Scheme 1]

Experimental

Crystal data
  • C49H36O5·CHCl3

  • Mr = 824.15

  • Monoclinic, P 2/n

  • a = 9.7720 (4) Å

  • b = 12.0351 (4) Å

  • c = 17.3162 (6) Å

  • β = 93.947 (1)°

  • V = 2031.68 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 296 K

  • 0.35 × 0.30 × 0.30 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.892, Tmax = 0.934

  • 20614 measured reflections

  • 3474 independent reflections

  • 2664 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.125

  • S = 1.09

  • 3474 reflections

  • 248 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C24—H24c⋯O3i 0.96 2.39 3.199 (3) 141
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Structural commentary top

Naphthalene derivatives have been extensively employed in many fields and some posses important biological and commercial applications such as disinfe­cta­nts, insecticides, plant hormones and rooting agents (Morikawa & Takahashi, 2004). Naphthalene has been identified as new range of potent anti-microbiols effective against wide range of human pathogens (Rokade & Sayyed, 2009).

The title compound, C49H36O6·CHCl3, comprises half the organic molecule in the asymmetric unit, the complete molecule is being generated by two fold rotation, as well as half a disorderd chloro­form molecule. The X-ray analysis confirms the molecular structure and atom connectivity of the compound as illustrated in Fig. 1.

The dihedral angles between naphthalene ring and meth­oxy-substituted benzene rings are 71.05 (7) and 57.27 (6)°, respectively. The dihedral angle betweeen naphthalene and cyclo­penta-2,4-dienone residue is 13.26 (6)°.

In the crystal packing, molecules are linked via bifurcated C24—H24c···O3ii inter­molecular hydrogen bonding, which generates C(12) infinite chains running parallel to the b axis. A view of the supra­molecular chain is shown in Fig. 2.

Synthesis and crystallization top

To a solution of benzo[c]furan (0.20 g, 0.60 mmol) in dry di­chloro­methane (15 ml), indenone (0.24 g, 0.60 mmol) was added and refluxed till the disappearence of colour due to the benzo[c]furan (10 h). To this, PTSA (0.46 g, 2.42 mmol) was added (9 h). The reaction mixture was poured into saturated solution of NaHCO3 (40 ml), extracted with CHCl3 (3 x 15ml) and dried (Na2SO4). Removal of solvent followed by coloumn chromatographic purification (silica gel; 10% ethyl acetate in hexane) afforded the fluorenone derivative as a yellow solid. Single crystals suitable for X-ray diffraction were prepared by slow evapouration of a solution of the title compound in chloro­form at room temperature.

Refinement top

The hydrogen atoms bound to the C atoms are treated as riding atoms, with d(C–H) = 0.93–0.96 Å, and with Uiso(H) = 1.2–1.5Ueq(C). The void in the crystal contains a highly disordered molecule of chloro­form which has beeen removed from the intensity data using the SQUEEZE routine in PLATON [Spek (2009). Acta Cryst. D65, 148–155]. The squeeze results show removal of 58 electrons equivalent of scattering materials each from two regions in the unit cell. This corresponds exactly to the number of electrons present per molecule of chloro­form.

Related literature top

For the uses and biological importance of naphthalene, see: Morikawa & Takahashi (2004); Rokade & Sayyed (2009).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae, et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound (chloroform molecule omitted) showing the atom numbering scheme and displacement ellipsoids drawn at 30% probability level. The symmetry code of the unlabelled atoms is -x + 3/2, y, -z + 1/2.
[Figure 2] Fig. 2. A partial packing packing diagram for the title compound viewed down the c axis, showing C24—H24c···O3ii hydrogen bonds resulting in the formation of C(12) chains running parallel to the b axis. [hydrogen atoms not involved in the hydrogen bonding and chloroform molecules have been omitted for the clarity]. Symmetry code: (ii) x, 1 + y, z.
3,10,14,21-Tetrakis(4-methoxyphenyl)pentacyclo[11.8.0.02,11.04,9.015,20]henicosa-1(21),2,4(9),5,7,10,13,15 (20),16,18-decaen-12-one chloroform monosolvate top
Crystal data top
C49H36O5·CHCl3F(000) = 740
Mr = 824.15Dx = 1.347 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yacCell parameters from 3474 reflections
a = 9.7720 (4) Åθ = 1.7–24.8°
b = 12.0351 (4) ŵ = 0.28 mm1
c = 17.3162 (6) ÅT = 296 K
β = 93.947 (1)°Block, yellow
V = 2031.68 (13) Å30.35 × 0.30 × 0.30 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3474 independent reflections
Radiation source: fine-focus sealed tube2664 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω &ϕ scansθmax = 24.8°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1111
Tmin = 0.892, Tmax = 0.934k = 1414
20614 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0692P)2 + 0.1579P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
3474 reflectionsΔρmax = 0.13 e Å3
248 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0041 (10)
Crystal data top
C49H36O5·CHCl3V = 2031.68 (13) Å3
Mr = 824.15Z = 2
Monoclinic, P2/nMo Kα radiation
a = 9.7720 (4) ŵ = 0.28 mm1
b = 12.0351 (4) ÅT = 296 K
c = 17.3162 (6) Å0.35 × 0.30 × 0.30 mm
β = 93.947 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3474 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2664 reflections with I > 2σ(I)
Tmin = 0.892, Tmax = 0.934Rint = 0.025
20614 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.09Δρmax = 0.13 e Å3
3474 reflectionsΔρmin = 0.15 e Å3
248 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.70322 (14)0.19072 (11)0.01039 (8)0.0743 (4)
O21.07295 (15)1.23830 (11)0.27627 (8)0.0773 (4)
O30.75000.48212 (15)0.25000.0629 (5)
C10.78181 (15)0.71567 (14)0.05173 (8)0.0461 (4)
C20.77909 (16)0.69508 (16)0.02894 (8)0.0524 (4)
H20.75730.62430.04760.063*
C30.80786 (17)0.77710 (16)0.07986 (9)0.0575 (5)
H30.80260.76260.13270.069*
C40.84506 (19)0.88229 (16)0.05267 (9)0.0600 (5)
H40.86800.93710.08730.072*
C50.84809 (18)0.90560 (16)0.02447 (9)0.0564 (4)
H50.87460.97610.04160.068*
C60.81187 (15)0.82512 (14)0.07917 (8)0.0468 (4)
C70.80505 (16)0.85209 (13)0.16025 (8)0.0465 (4)
C80.76176 (15)0.76959 (13)0.20778 (8)0.0449 (4)
C90.75067 (15)0.65740 (13)0.18137 (8)0.0464 (4)
C100.75817 (15)0.62789 (13)0.10526 (8)0.0452 (4)
C110.74288 (16)0.51114 (14)0.07819 (8)0.0471 (4)
C120.61738 (17)0.45959 (15)0.07359 (10)0.0575 (5)
H120.54190.49760.09030.069*
C130.59946 (18)0.35266 (15)0.04487 (11)0.0627 (5)
H130.51320.31970.04240.075*
C140.71000 (18)0.29579 (14)0.02007 (9)0.0534 (4)
C150.83762 (18)0.34534 (16)0.02556 (10)0.0599 (5)
H150.91340.30680.00980.072*
C160.85313 (17)0.45107 (15)0.05413 (10)0.0548 (4)
H160.93980.48330.05750.066*
C170.86294 (16)0.95837 (13)0.19126 (8)0.0463 (4)
C180.97613 (17)0.95292 (14)0.24523 (9)0.0545 (4)
H181.00700.88390.26310.065*
C191.04222 (19)1.04640 (15)0.27230 (10)0.0608 (5)
H191.11771.04050.30780.073*
C200.99703 (18)1.15006 (14)0.24698 (10)0.0554 (4)
C210.88557 (18)1.15873 (15)0.19489 (9)0.0549 (4)
H210.85451.22820.17800.066*
C220.81949 (17)1.06346 (14)0.16761 (9)0.0521 (4)
H220.74371.07010.13240.063*
C230.5727 (3)0.14149 (19)0.02289 (16)0.0952 (7)
H23A0.53220.13300.02570.143*
H23B0.58170.06990.04650.143*
H23C0.51520.18800.05640.143*
C241.0313 (3)1.34544 (17)0.25541 (15)0.0896 (7)
H24A1.03111.35360.20030.134*
H24B1.09351.39830.28010.134*
H24C0.94051.35830.27150.134*
C250.75000.5833 (2)0.25000.0468 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0740 (9)0.0585 (8)0.0895 (10)0.0005 (7)0.0016 (7)0.0103 (7)
O20.0810 (10)0.0622 (9)0.0863 (10)0.0095 (7)0.0112 (7)0.0093 (7)
O30.0864 (13)0.0581 (11)0.0450 (9)0.0000.0103 (8)0.000
C10.0364 (8)0.0661 (11)0.0362 (8)0.0031 (7)0.0044 (6)0.0009 (7)
C20.0466 (9)0.0760 (11)0.0348 (8)0.0049 (8)0.0037 (6)0.0056 (8)
C30.0545 (10)0.0845 (13)0.0337 (8)0.0034 (9)0.0052 (7)0.0020 (8)
C40.0624 (11)0.0786 (13)0.0398 (9)0.0077 (9)0.0087 (7)0.0087 (9)
C50.0576 (10)0.0685 (12)0.0437 (9)0.0113 (8)0.0072 (7)0.0044 (8)
C60.0400 (8)0.0644 (10)0.0362 (8)0.0036 (7)0.0045 (6)0.0022 (7)
C70.0440 (9)0.0581 (10)0.0375 (8)0.0006 (7)0.0041 (6)0.0026 (7)
C80.0458 (9)0.0565 (10)0.0327 (8)0.0012 (7)0.0045 (6)0.0001 (7)
C90.0446 (9)0.0598 (10)0.0354 (8)0.0022 (7)0.0066 (6)0.0002 (7)
C100.0370 (8)0.0613 (10)0.0379 (8)0.0033 (7)0.0073 (6)0.0039 (7)
C110.0462 (9)0.0639 (10)0.0314 (7)0.0036 (7)0.0042 (6)0.0003 (7)
C120.0416 (9)0.0690 (12)0.0627 (11)0.0015 (8)0.0105 (7)0.0104 (9)
C130.0471 (10)0.0662 (12)0.0749 (12)0.0092 (8)0.0048 (8)0.0065 (9)
C140.0564 (10)0.0553 (10)0.0480 (9)0.0004 (8)0.0001 (7)0.0010 (8)
C150.0509 (10)0.0713 (12)0.0579 (10)0.0069 (9)0.0070 (8)0.0058 (9)
C160.0424 (9)0.0687 (12)0.0541 (10)0.0057 (8)0.0080 (7)0.0070 (8)
C170.0456 (9)0.0572 (10)0.0365 (8)0.0026 (7)0.0056 (6)0.0022 (7)
C180.0574 (10)0.0554 (10)0.0498 (9)0.0041 (8)0.0032 (7)0.0042 (8)
C190.0582 (10)0.0671 (12)0.0549 (10)0.0007 (9)0.0119 (8)0.0001 (8)
C200.0553 (10)0.0579 (11)0.0532 (10)0.0032 (8)0.0053 (8)0.0036 (8)
C210.0607 (11)0.0566 (10)0.0483 (9)0.0021 (8)0.0094 (8)0.0072 (8)
C220.0498 (9)0.0648 (11)0.0414 (8)0.0004 (8)0.0009 (7)0.0076 (8)
C230.0904 (17)0.0707 (14)0.123 (2)0.0214 (12)0.0012 (14)0.0209 (13)
C240.1026 (18)0.0595 (13)0.1068 (18)0.0005 (12)0.0071 (13)0.0168 (12)
C250.0465 (12)0.0525 (15)0.0421 (12)0.0000.0088 (9)0.000
Geometric parameters (Å, º) top
O1—C141.370 (2)C12—C131.386 (2)
O1—C231.410 (3)C12—H120.9300
O2—C201.372 (2)C13—C141.373 (2)
O2—C241.392 (2)C13—H130.9300
O3—C251.217 (3)C14—C151.380 (2)
C1—C21.417 (2)C15—C161.370 (2)
C1—C61.424 (2)C15—H150.9300
C1—C101.435 (2)C16—H160.9300
C2—C31.366 (2)C17—C221.387 (2)
C2—H20.9300C17—C181.400 (2)
C3—C41.390 (3)C18—C191.364 (2)
C3—H30.9300C18—H180.9300
C4—C51.363 (2)C19—C201.385 (2)
C4—H40.9300C19—H190.9300
C5—C61.417 (2)C20—C211.369 (2)
C5—H50.9300C21—C221.383 (2)
C6—C71.447 (2)C21—H210.9300
C7—C81.375 (2)C22—H220.9300
C7—C171.484 (2)C23—H23A0.9600
C8—C91.427 (2)C23—H23B0.9600
C8—C8i1.496 (3)C23—H23C0.9600
C9—C101.372 (2)C24—H24A0.9600
C9—C251.486 (2)C24—H24B0.9600
C10—C111.486 (2)C24—H24C0.9600
C11—C121.372 (2)C25—C9i1.486 (2)
C11—C161.385 (2)
C14—O1—C23117.79 (16)O1—C14—C15116.43 (16)
C20—O2—C24118.67 (16)C13—C14—C15119.34 (16)
C2—C1—C6118.69 (14)C16—C15—C14120.23 (16)
C2—C1—C10121.01 (15)C16—C15—H15119.9
C6—C1—C10120.29 (13)C14—C15—H15119.9
C3—C2—C1121.29 (16)C15—C16—C11121.63 (16)
C3—C2—H2119.4C15—C16—H16119.2
C1—C2—H2119.4C11—C16—H16119.2
C2—C3—C4120.01 (15)C22—C17—C18116.85 (15)
C2—C3—H3120.0C22—C17—C7125.30 (14)
C4—C3—H3120.0C18—C17—C7117.72 (14)
C5—C4—C3120.45 (16)C19—C18—C17121.63 (16)
C5—C4—H4119.8C19—C18—H18119.2
C3—C4—H4119.8C17—C18—H18119.2
C4—C5—C6121.66 (17)C18—C19—C20120.08 (15)
C4—C5—H5119.2C18—C19—H19120.0
C6—C5—H5119.2C20—C19—H19120.0
C5—C6—C1117.69 (14)C21—C20—O2124.73 (16)
C5—C6—C7121.72 (15)C21—C20—C19119.94 (16)
C1—C6—C7120.59 (14)O2—C20—C19115.32 (15)
C8—C7—C6117.10 (14)C20—C21—C22119.56 (16)
C8—C7—C17122.09 (13)C20—C21—H21120.2
C6—C7—C17120.16 (14)C22—C21—H21120.2
C7—C8—C9120.74 (13)C21—C22—C17121.93 (15)
C7—C8—C8i131.26 (10)C21—C22—H22119.0
C9—C8—C8i107.44 (8)C17—C22—H22119.0
C10—C9—C8123.01 (14)O1—C23—H23A109.5
C10—C9—C25128.04 (15)O1—C23—H23B109.5
C8—C9—C25108.43 (13)H23A—C23—H23B109.5
C9—C10—C1116.85 (14)O1—C23—H23C109.5
C9—C10—C11122.49 (14)H23A—C23—H23C109.5
C1—C10—C11120.66 (13)H23B—C23—H23C109.5
C12—C11—C16117.21 (16)O2—C24—H24A109.5
C12—C11—C10121.07 (15)O2—C24—H24B109.5
C16—C11—C10121.68 (14)H24A—C24—H24B109.5
C11—C12—C13122.07 (16)O2—C24—H24C109.5
C11—C12—H12119.0H24A—C24—H24C109.5
C13—C12—H12119.0H24B—C24—H24C109.5
C14—C13—C12119.50 (16)O3—C25—C9126.89 (10)
C14—C13—H13120.2O3—C25—C9i126.89 (10)
C12—C13—H13120.2C9—C25—C9i106.22 (19)
O1—C14—C13124.23 (16)
C6—C1—C2—C31.6 (2)C1—C10—C11—C1670.8 (2)
C10—C1—C2—C3176.88 (14)C16—C11—C12—C131.2 (3)
C1—C2—C3—C42.1 (3)C10—C11—C12—C13176.72 (16)
C2—C3—C4—C52.5 (3)C11—C12—C13—C140.0 (3)
C3—C4—C5—C61.0 (3)C23—O1—C14—C135.4 (3)
C4—C5—C6—C14.6 (2)C23—O1—C14—C15174.72 (18)
C4—C5—C6—C7175.27 (16)C12—C13—C14—O1178.90 (16)
C2—C1—C6—C54.9 (2)C12—C13—C14—C151.2 (3)
C10—C1—C6—C5173.64 (14)O1—C14—C15—C16178.89 (16)
C2—C1—C6—C7175.05 (14)C13—C14—C15—C161.2 (3)
C10—C1—C6—C76.4 (2)C14—C15—C16—C110.0 (3)
C5—C6—C7—C8176.60 (15)C12—C11—C16—C151.2 (2)
C1—C6—C7—C83.3 (2)C10—C11—C16—C15176.70 (15)
C5—C6—C7—C1712.5 (2)C8—C7—C17—C22128.22 (17)
C1—C6—C7—C17167.62 (13)C6—C7—C17—C2261.3 (2)
C6—C7—C8—C912.1 (2)C8—C7—C17—C1856.0 (2)
C17—C7—C8—C9158.68 (14)C6—C7—C17—C18114.44 (17)
C6—C7—C8—C8i177.58 (19)C22—C17—C18—C191.2 (3)
C17—C7—C8—C8i11.7 (3)C7—C17—C18—C19174.98 (16)
C7—C8—C9—C1011.7 (2)C17—C18—C19—C200.6 (3)
C8i—C8—C9—C10175.83 (15)C24—O2—C20—C213.5 (3)
C7—C8—C9—C25160.57 (13)C24—O2—C20—C19177.98 (18)
C8i—C8—C9—C2511.85 (19)C18—C19—C20—C210.2 (3)
C8—C9—C10—C11.6 (2)C18—C19—C20—O2178.36 (16)
C25—C9—C10—C1169.11 (12)O2—C20—C21—C22178.03 (16)
C8—C9—C10—C11178.39 (14)C19—C20—C21—C220.4 (3)
C25—C9—C10—C1110.9 (2)C20—C21—C22—C170.2 (3)
C2—C1—C10—C9174.37 (14)C18—C17—C22—C211.0 (2)
C6—C1—C10—C97.2 (2)C7—C17—C22—C21174.84 (15)
C2—C1—C10—C115.6 (2)C10—C9—C25—O33.49 (18)
C6—C1—C10—C11172.82 (13)C8—C9—C25—O3175.31 (7)
C9—C10—C11—C1273.0 (2)C10—C9—C25—C9i176.51 (18)
C1—C10—C11—C12107.00 (18)C8—C9—C25—C9i4.69 (7)
C9—C10—C11—C16109.20 (17)
Symmetry code: (i) x+3/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C24—H24c···O3ii0.962.393.199 (3)141
Symmetry code: (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C24—H24c···O3i0.962.393.199 (3)141
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

SG and KS thank Dr Babu Varghese, Senior Scientific Officer, SAIF, IIT, Madras (India), for the X-ray intensity data collection.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMorikawa, H. & Takahashi, M. (2004). US Patent No. 6800482.  Google Scholar
First citationRokade, Y. B. & Sayyed, R. Z. (2009). Rasayan J. Chem. 2, 972–980.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 8| August 2014| Pages o873-o874
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds