organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-Chloro-4-oxo-4H-chromene-3-carbaldehyde

aSchool of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
*Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

(Received 24 June 2014; accepted 24 June 2014; online 2 July 2014)

In the title compound, C10H5ClO3, a chlorinated 3-formyl­chromone derivative, all atoms are essentially coplanar (r.m.s. deviation = 0.0592 Å for all non-H atoms), with the largest deviation from the least-squares plane [0.1792 (19) Å] being for the chromone-ring carbonyl O atom. In the crystal, mol­ecules are linked through C—H⋯O hydrogen bonds to form tetrads, which are assembled by stacking inter­actions [centroid–centroid distance between the pyran rings = 3.823 (3) Å] and van der Waals contacts between the Cl atoms [Cl⋯Cl = 3.4483 (16) Å and C—Cl⋯Cl = 171.73 (7)°] into a three-dimensional architecture.

Keywords: crystal structure.

Related literature

For related structures, see: Ishikawa & Motohashi (2013[Ishikawa, Y. & Motohashi, Y. (2013). Acta Cryst. E69, o1416.]); Ishikawa (2014a[Ishikawa, Y. (2014a). Acta Cryst. E70, o514.],b[Ishikawa, Y. (2014b). Acta Cryst. E70, o743.]). For halogen bonding, see: Auffinger et al. (2004[Auffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789-16794.]); Metrangolo et al. (2005[Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386-395.]); Wilcken et al. (2013[Wilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363-1388.]); Sirimulla et al. (2013[Sirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781-2791.]). For halogen–halogen inter­actions, see: Metrangolo & Resnati (2014[Metrangolo, P. & Resnati, G. (2014). IUCrJ, 1, 5-7.]); Mukherjee & Desiraju (2014[Mukherjee, A. & Desiraju, G. R. (2014). IUCrJ, 1, 49-60.]).

[Scheme 1]

Experimental

Crystal data
  • C10H5ClO3

  • Mr = 208.60

  • Triclinic, [P \overline 1]

  • a = 3.823 (2) Å

  • b = 5.973 (3) Å

  • c = 18.386 (8) Å

  • α = 85.99 (4)°

  • β = 87.74 (4)°

  • γ = 86.58 (4)°

  • V = 417.8 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 100 K

  • 0.42 × 0.25 × 0.08 mm

Data collection
  • Rigaku AFC-7R diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.865, Tmax = 0.966

  • 2429 measured reflections

  • 1899 independent reflections

  • 1690 reflections with F2 > 2σ(F2)

  • Rint = 0.050

  • 3 standard reflections every 150 reflections intensity decay: −1.1%

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.104

  • S = 1.10

  • 1899 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H4⋯O2i 0.95 2.34 3.204 (3) 151 (1)
C1—H1⋯O3ii 0.95 2.37 3.209 (3) 148 (1)
Symmetry codes: (i) x+1, y+1, z; (ii) -x+1, -y+1, -z+1.

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999[Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.]); cell refinement: WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software; program(s) used to solve structure: SIR2008 (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Structural commentary top

Halogen bonding and halogen···halogen inter­actions have recently attracted much attention in medicinal chemistry, chemical biology, supra­molecular chemistry and crystal engineering (Auffinger et al., 2004, Metrangolo et al., 2005, Wilcken et al., 2013, Sirimulla et al., 2013, Mukherjee & Desiraju, 2014, Metrangolo & Resnati, 2014). We have recently reported the crystal structures of a dichlorinated 3-formyl­chromone derivative 6,8-di­chloro-4-oxochromene-3-carbaldehyde (Ishikawa & Motohashi, 2013), and monochlorinated 3-formyl­chromone derivatives 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014a) and 8-chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014b). Halogen bonding between the formyl oxygen atom and the chlorine atom at 8-position and type I halogen···halogen inter­action between the chlorine atoms at 6-position are observed in 6,8-di­chloro-4-oxochromene-3-carbaldehyde (Fig·2 A). On the other hand, van der Waals contacts between the formyl oxygen atom and the chlorine atom at 6-position in 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Fig·2 B) and between the formyl oxygen atom and the chlorine atom at 8-position in 8-chloro-4-oxo-4H-chromene-3-carbaldehyde (Fig·2 C) are found. As part of our inter­est in these types of chemical bonding, we herein report the crystal structure of a monochlorinated 3-formyl­chromone derivative 7-chloro-4-oxo-4H-chromene-3-carbaldehyde. The objective of this study is to reveal whether a short contact is found for the chlorine atom at 7-position.

The mean deviation of the least-square planes for the non-hydrogen atoms is 0.0592 Å, and the largest deviation is 0.1792 (19) Å for O3.

In the crystal, the molecules are linked through C–H···O hydrogen bonds among the translation-symmetryi and inversion-symmetry equivalentsii,iii to form tetrads [i: x – 1, y – 1, z, ii: –x, –y, –z + 1, iii: –x + 1, –y + 1, –z + 1], which are assembled by stacking inter­actions [centroid–centroid distance between the pyran rings = 3.823 (3) Å], as shown in Fig. 1.

Van der Waals contacts between the chlorine atoms of inversion-symmetry equivalents are found [Cl1···Cl1iv = 3.4483 (16) Å, C6–Cl1···Cl1iv = 171.73 (7)°, iv: –x + 1, –y + 2, –z + 2], as shown in Fig. 2D. Thus, significant short contact for the chlorine atom at 7-position is not observed. Whereas the characteristic short Cl···O contact is observed in the dichlorinated 3-formyl­chromone (Fig. 2A), such a short contact is not found in the monochlorinated ones (Fig. 2B, C and D). These findings should be helpful to understand inter­actions of halogenated ligands with proteins, and thus invaluable for rational drug design.

Synthesis and crystallization top

To a solution of 4-chloro-2-hy­droxy­aceto­phenone (5.9 mmol) in N,N-di­methyl­formamide (15 ml) was added dropwise POCl3 (14.7 mmol) at 0 °C. After the mixture was stirred for 14 h at room temperature, water (50 ml) was added. The precipitates were collected, washed with water, and dried in vacuo (yield: 85%). 1H NMR (400 MHz, CDCl3): δ = 7.48 (d, 1H, J = 8.8 Hz), 7.57 (s, 1H), 8.24 (d, 1H, J = 8.8 Hz), 8.52 (s, 1H), 10.37 (s, 1H). DART-MS calcd for [C10H5Cl1O3 + H+]: 209.001, found 209.029. Single crystals suitable for X-ray diffraction were obtained from a 1,2-di­chloro­ethane/cyclo­hexane solution of the title compound at room temperature.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The C(sp2)-bound hydrogen atoms were placed in geometrical positions [C—H 0.95 Å, Uiso(H) = 1.2Ueq(C)], and refined using a riding model.

Related literature top

For related structures, see: Ishikawa & Motohashi (2013); Ishikawa (2014a,b). For halogen bonding, see: Auffinger et al. (2004); Metrangolo et al. (2005); Wilcken et al. (2013); Sirimulla et al. (2013). For halogen–halogen interactions, see: Metrangolo & Resnati (2014); Mukherjee & Desiraju (2014).

Computing details top

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software (Rigaku, 1999); data reduction: WinAFC Diffractometer Control Software (Rigaku, 1999); program(s) used to solve structure: SIR2008 (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. A packing view of the title compound, with displacement ellipsoids drawn at the 50% probability level. C—H···O hydrogen bonds are represented by dashed lines.
[Figure 2] Fig. 2. Sphere models of the crystal structures of 6,8-dichloro-4-oxochromene-3-carbaldehyde (A, Ishikawa & Motohashi, 2013), 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (B, Ishikawa, 2014a), 8-chloro-4-oxo-4H-chromene-3-carbaldehyde (C, Ishikawa, 2014b), and the title compound (D).
7-Chloro-4-oxo-4H-chromene-3-carbaldehyde top
Crystal data top
C10H5ClO3Z = 2
Mr = 208.60F(000) = 212.00
Triclinic, P1Dx = 1.658 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 3.823 (2) ÅCell parameters from 25 reflections
b = 5.973 (3) Åθ = 15.2–17.0°
c = 18.386 (8) ŵ = 0.43 mm1
α = 85.99 (4)°T = 100 K
β = 87.74 (4)°Plate, yellow
γ = 86.58 (4)°0.42 × 0.25 × 0.08 mm
V = 417.8 (4) Å3
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.050
ω–2θ scansθmax = 27.5°
Absorption correction: ψ scan
(North et al., 1968)
h = 42
Tmin = 0.865, Tmax = 0.966k = 77
2429 measured reflectionsl = 2323
1899 independent reflections3 standard reflections every 150 reflections
1690 reflections with F2 > 2σ(F2) intensity decay: 1.1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0425P)2 + 0.5019P]
where P = (Fo2 + 2Fc2)/3
1899 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.50 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C10H5ClO3γ = 86.58 (4)°
Mr = 208.60V = 417.8 (4) Å3
Triclinic, P1Z = 2
a = 3.823 (2) ÅMo Kα radiation
b = 5.973 (3) ŵ = 0.43 mm1
c = 18.386 (8) ÅT = 100 K
α = 85.99 (4)°0.42 × 0.25 × 0.08 mm
β = 87.74 (4)°
Data collection top
Rigaku AFC-7R
diffractometer
1690 reflections with F2 > 2σ(F2)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.050
Tmin = 0.865, Tmax = 0.9663 standard reflections every 150 reflections
2429 measured reflections intensity decay: 1.1%
1899 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.10Δρmax = 0.41 e Å3
1899 reflectionsΔρmin = 0.50 e Å3
127 parameters
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.40101 (12)0.80466 (8)0.94032 (2)0.01990 (15)
O10.3743 (4)0.6471 (3)0.67507 (7)0.0171 (3)
O20.1431 (4)0.0675 (3)0.71337 (8)0.0199 (3)
O30.2057 (5)0.2458 (3)0.50473 (8)0.0265 (4)
C10.3077 (5)0.5184 (4)0.62091 (10)0.0162 (4)
C20.1464 (5)0.3212 (4)0.62998 (10)0.0160 (4)
C30.0256 (5)0.2365 (3)0.70234 (10)0.0152 (4)
C40.0441 (5)0.3071 (4)0.83526 (10)0.0159 (4)
C50.1313 (5)0.4379 (4)0.88996 (10)0.0164 (4)
C60.2909 (5)0.6400 (3)0.87083 (10)0.0150 (4)
C70.3697 (5)0.7116 (3)0.79955 (10)0.0153 (4)
C80.1182 (5)0.3730 (3)0.76188 (10)0.0138 (4)
C90.2831 (5)0.5741 (3)0.74571 (10)0.0140 (4)
C100.0936 (6)0.1938 (4)0.56551 (11)0.0201 (4)
H10.37840.56870.57270.0194*
H20.06740.17090.84740.0191*
H30.08400.39190.93970.0197*
H40.47850.84900.78770.0183*
H50.03670.06290.57230.0241*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0221 (3)0.0227 (3)0.0159 (3)0.00304 (17)0.00206 (16)0.00573 (17)
O10.0201 (7)0.0185 (7)0.0129 (7)0.0055 (5)0.0019 (5)0.0007 (5)
O20.0204 (7)0.0195 (7)0.0207 (8)0.0079 (6)0.0003 (6)0.0018 (6)
O30.0359 (9)0.0303 (9)0.0146 (8)0.0111 (7)0.0031 (6)0.0054 (6)
C10.0151 (9)0.0198 (9)0.0139 (9)0.0017 (7)0.0004 (7)0.0019 (7)
C20.0145 (9)0.0181 (9)0.0154 (9)0.0010 (7)0.0012 (7)0.0018 (7)
C30.0108 (8)0.0168 (9)0.0181 (9)0.0001 (7)0.0010 (7)0.0015 (7)
C40.0122 (9)0.0182 (9)0.0171 (9)0.0010 (7)0.0001 (7)0.0011 (7)
C50.0158 (9)0.0179 (9)0.0151 (9)0.0001 (7)0.0010 (7)0.0007 (7)
C60.0134 (9)0.0181 (9)0.0138 (9)0.0002 (7)0.0021 (7)0.0042 (7)
C70.0126 (9)0.0167 (9)0.0167 (9)0.0017 (7)0.0004 (7)0.0016 (7)
C80.0109 (8)0.0152 (9)0.0151 (9)0.0000 (6)0.0005 (7)0.0010 (7)
C90.0121 (8)0.0173 (9)0.0122 (9)0.0005 (7)0.0004 (6)0.0007 (7)
C100.0225 (10)0.0232 (10)0.0154 (10)0.0048 (8)0.0013 (7)0.0036 (8)
Geometric parameters (Å, º) top
Cl1—C61.745 (2)C4—C81.402 (3)
O1—C11.341 (3)C5—C61.402 (3)
O1—C91.379 (3)C6—C71.377 (3)
O2—C31.231 (3)C7—C91.392 (3)
O3—C101.208 (3)C8—C91.398 (3)
C1—C21.359 (3)C1—H10.950
C2—C31.458 (3)C4—H20.950
C2—C101.480 (3)C5—H30.950
C3—C81.476 (3)C7—H40.950
C4—C51.378 (3)C10—H50.950
O1···C32.865 (3)C10···H12.5619
O1···C63.598 (3)H1···H53.4961
O2···C13.577 (3)H2···H32.3320
O2···C42.877 (3)Cl1···H2iii3.1871
O2···C102.895 (3)Cl1···H2iv3.4009
O3···C12.827 (3)Cl1···H3ii3.4824
C1···C73.578 (3)Cl1···H3xi3.0426
C1···C82.759 (3)Cl1···H3xii3.1343
C2···C92.777 (3)O1···H5iii3.3638
C4···C72.809 (3)O2···H4v2.3412
C5···C92.769 (3)O2···H4vi2.9752
C6···C82.769 (3)O3···H1ix2.8238
Cl1···Cl1i3.4483 (16)O3···H1x2.3652
Cl1···C5ii3.578 (3)O3···H5ii3.2929
O1···O2iii3.202 (3)O3···H5viii2.5304
O1···O2iv3.333 (3)C1···H5iii3.5044
O1···C2ii3.540 (3)C2···H1vii3.3800
O1···C3ii3.415 (3)C2···H5ii3.5566
O1···C8ii3.571 (3)C3···H4v3.4647
O2···O1v3.333 (3)C3···H4vi3.1692
O2···O1vi3.202 (3)C4···H2ii3.4575
O2···C2vii3.397 (3)C4···H4vi3.2692
O2···C3vii3.286 (3)C5···H2ii3.4558
O2···C7v3.204 (3)C5···H3xi3.4146
O2···C7vi3.185 (3)C6···H2iii3.3840
O2···C8vii3.393 (3)C6···H3ii3.5349
O2···C9vi3.309 (3)C7···H2iii3.2808
O3···O3viii3.430 (3)C7···H4vii3.4681
O3···O3ix3.332 (3)C8···H4vi3.3537
O3···C1ix3.278 (3)C9···H4vii3.4840
O3···C1x3.209 (3)C10···H1vii3.4338
O3···C10viii3.289 (3)C10···H1ix3.3580
C1···O3ix3.278 (3)C10···H1x3.4611
C1···O3x3.209 (3)C10···H5ii3.3751
C1···C2ii3.356 (3)C10···H5viii3.0735
C1···C3ii3.468 (3)H1···O3ix2.8238
C2···O1vii3.540 (3)H1···O3x2.3652
C2···O2ii3.397 (3)H1···C2ii3.3800
C2···C1vii3.356 (3)H1···C10ii3.4338
C3···O1vii3.415 (3)H1···C10ix3.3580
C3···O2ii3.286 (3)H1···C10x3.4611
C3···C1vii3.468 (3)H1···H1x2.9506
C3···C9vii3.481 (3)H1···H5iii3.2659
C4···C6vii3.467 (3)H1···H5ix3.5735
C4···C7vii3.476 (3)H2···Cl1v3.4009
C5···Cl1vii3.578 (3)H2···Cl1vi3.1871
C5···C6vii3.386 (4)H2···C4vii3.4575
C6···C4ii3.467 (3)H2···C5vii3.4558
C6···C5ii3.386 (4)H2···C6vi3.3840
C7···O2iii3.185 (3)H2···C7vi3.2808
C7···O2iv3.204 (3)H2···H4v2.9597
C7···C4ii3.476 (3)H2···H4vi2.9822
C7···C8ii3.479 (3)H3···Cl1vii3.4824
C8···O1vii3.571 (3)H3···Cl1xi3.0426
C8···O2ii3.393 (3)H3···Cl1xii3.1343
C8···C7vii3.479 (3)H3···C5xi3.4146
C8···C9vii3.360 (3)H3···C6vii3.5349
C9···O2iii3.309 (3)H3···H3xi2.6802
C9···C3ii3.481 (3)H4···O2iii2.9752
C9···C8ii3.360 (3)H4···O2iv2.3412
C10···O3viii3.289 (3)H4···C3iii3.1692
C10···C10viii3.575 (4)H4···C3iv3.4647
Cl1···H32.8121H4···C4iii3.2692
Cl1···H42.8064H4···C7ii3.4681
O1···H42.5238H4···C8iii3.3537
O2···H22.6135H4···C9ii3.4840
O2···H52.6106H4···H2iii2.9822
O3···H12.5045H4···H2iv2.9597
C1···H53.2854H5···O1vi3.3638
C3···H13.2928H5···O3vii3.2929
C3···H22.6818H5···O3viii2.5304
C3···H52.6956H5···C1vi3.5044
C5···H43.2981H5···C2vii3.5566
C6···H23.2536H5···C10vii3.3751
C7···H33.2895H5···C10viii3.0735
C8···H33.2766H5···H1vi3.2659
C8···H43.3034H5···H1ix3.5735
C9···H13.1896H5···H5viii2.8132
C9···H23.2637
C1—O1—C9118.62 (16)C4—C8—C9118.32 (18)
O1—C1—C2124.73 (17)O1—C9—C7115.76 (17)
C1—C2—C3120.42 (18)O1—C9—C8121.83 (18)
C1—C2—C10119.24 (17)C7—C9—C8122.41 (17)
C3—C2—C10120.34 (18)O3—C10—C2124.1 (2)
O2—C3—C2123.38 (18)O1—C1—H1117.638
O2—C3—C8122.38 (17)C2—C1—H1117.633
C2—C3—C8114.24 (17)C5—C4—H2119.644
C5—C4—C8120.70 (18)C8—C4—H2119.653
C4—C5—C6118.78 (17)C4—C5—H3120.611
Cl1—C6—C5118.56 (15)C6—C5—H3120.611
Cl1—C6—C7118.76 (15)C6—C7—H4121.444
C5—C6—C7122.66 (18)C9—C7—H4121.444
C6—C7—C9117.11 (18)O3—C10—H5117.967
C3—C8—C4121.70 (17)C2—C10—H5117.976
C3—C8—C9119.98 (17)
C1—O1—C9—C7177.96 (14)C8—C4—C5—C60.9 (3)
C1—O1—C9—C81.3 (3)C8—C4—C5—H3179.1
C9—O1—C1—C21.8 (3)H2—C4—C5—C6179.1
C9—O1—C1—H1178.2H2—C4—C5—H30.9
O1—C1—C2—C31.1 (3)H2—C4—C8—C30.4
O1—C1—C2—C10179.09 (14)H2—C4—C8—C9179.8
H1—C1—C2—C3178.9C4—C5—C6—Cl1179.93 (14)
H1—C1—C2—C100.9C4—C5—C6—C71.1 (3)
C1—C2—C3—O2174.85 (16)H3—C5—C6—Cl10.1
C1—C2—C3—C84.3 (3)H3—C5—C6—C7178.9
C1—C2—C10—O35.1 (3)Cl1—C6—C7—C9178.98 (11)
C1—C2—C10—H5174.9Cl1—C6—C7—H41.0
C3—C2—C10—O3175.13 (16)C5—C6—C7—C90.2 (3)
C3—C2—C10—H54.9C5—C6—C7—H4179.8
C10—C2—C3—O24.9 (3)C6—C7—C9—O1178.22 (14)
C10—C2—C3—C8175.94 (14)C6—C7—C9—C81.0 (3)
O2—C3—C8—C45.4 (3)H4—C7—C9—O11.8
O2—C3—C8—C9174.38 (15)H4—C7—C9—C8179.0
C2—C3—C8—C4175.44 (14)C3—C8—C9—O12.2 (3)
C2—C3—C8—C94.8 (3)C3—C8—C9—C7178.65 (14)
C5—C4—C8—C3179.64 (15)C4—C8—C9—O1178.01 (14)
C5—C4—C8—C90.1 (3)C4—C8—C9—C71.1 (3)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+1, y, z; (iii) x, y+1, z; (iv) x+1, y+1, z; (v) x1, y1, z; (vi) x, y1, z; (vii) x1, y, z; (viii) x, y, z+1; (ix) x, y+1, z+1; (x) x+1, y+1, z+1; (xi) x, y+1, z+2; (xii) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H4···O2iv0.952.343.204 (3)151 (1)
C1—H1···O3x0.952.373.209 (3)148 (1)
Symmetry codes: (iv) x+1, y+1, z; (x) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H4···O2i0.952.3413.204 (3)150.78 (12)
C1—H1···O3ii0.952.3653.209 (3)147.81 (13)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1.
 

Acknowledgements

The University of Shizuoka is acknowledged for instrumental support.

References

First citationAuffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789–16794.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIshikawa, Y. (2014a). Acta Cryst. E70, o514.  CSD CrossRef IUCr Journals Google Scholar
First citationIshikawa, Y. (2014b). Acta Cryst. E70, o743.  CrossRef IUCr Journals Google Scholar
First citationIshikawa, Y. & Motohashi, Y. (2013). Acta Cryst. E69, o1416.  CSD CrossRef IUCr Journals Google Scholar
First citationMetrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMetrangolo, P. & Resnati, G. (2014). IUCrJ, 1, 5–7.  CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMukherjee, A. & Desiraju, G. R. (2014). IUCrJ, 1, 49–60.  CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781–2791.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363–1388.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds