research communications
μ-cyanido-diargentate(I)iron(II)] trans-1,2-bis(pyridin-2-yl)ethylene disolvate]
of a two-dimensional grid-type iron(II) coordination polymer: poly[[diaquatetra-aMaterials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kean 40002, Thailand, bDepartment of Chemistry, Faculty of Science and Technology, Thammasat University, Rangsit Campus, Klong Luang, Pathumthani 12121, Thailand, and cDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
*Correspondence e-mail: sujittra@kku.ac.th
In the title compound, {[Ag2Fe(CN)4(H2O)2]·2C12H10N2}n, the contains one FeII cation, two water molecules, two dicyanidoargentate(I) anions and two uncoordinating 1,2-bis(pyridin-2-yl)ethylene (2,2′-bpe) molecules. Each FeII atom is six-coordinated in a nearly regular octahedral geometry by four N atoms from dicyanidoargentate(I) bridges and two coordinating water molecules. The FeII atoms are bridged by dicyanidoargentate(I) units to give a two-dimensional layer with square-grid spaces. The intergrid spaces with interlayer distance of 6.550 (2) Å are occupied by 2,2′-bpe guest molecules which form O—H⋯N hydrogen bonds to the host layers. This leads to an extended three-dimensional supramolecular architecture. The structure of the title compound is compared with some related compounds containing dicyanidoargentate(I) ligands and N-donor organic co-ligands.
Keywords: metal–organic framework; dicyanoargentate(I); 1,2-bis(pyridin-2-yl)ethylene; crystal structure.
1. Chemical context
Metal–organic frameworks (MOFs) have attracted much attention because of their versatile topologies and dimensions. These structural properties lead to potential interesting applications in the filed of magnetism, sensing, porous materials and catalysis (Biswas et al., 2014; Horike et al., 2008; Sanda et al., 2013). Structural diversity in MOFs can occur as a result of various preparation methods. However, supramolecular chemistry and topologies of MOFs are rather controlled by the nature of the metal ions and the structure of the organic ligands (Yang et al., 2008).
One-, two- and three-dimensional frameworks containing dicyanidoargentate(I) and N-donor linkers such as pyrazine, 4,4′-bpy and 4,4′-bpe [bpy is bipyridineand bpe is 1,2-bis(4-pyridyl)ethylene] ligands have been studied (Soma & Iwamoto, 1996; Munoz et al., 2007; Dong et al., 2003). Whereas 4,4′-bpe appears to be somewhat ubiquitous in cyanido compounds, its cousin 2,2′-bpe is not very often used, which led us to prepare a dicyanidoargentate(I) compound with a 2,2′-bpe ligand. In this communication, we report the synthesis and of a three-dimensional supramolecular framework of {[Ag2Fe(CN)4(H2O)2]·2C12H10N2}n, (I).
2. Structural commentary
The II atom, two dicyanidoargentate(I) ligands, two water molecules and two uncoordinating 2,2′-bpe molecules (Fig. 1). Ag1 and Ag2 are situated on inversion centres. The dicyanidoargentate(I) ligands link FeII atoms into an infinite two-dimensional layer network with a nearly square-grid geometry of 10.66 × 10.64 Å2 (Fig. 2). The FeII ion is six-cooordinated (Table 1) in a nearly regular octahedral geometry by four N atoms from four dicyanidoargentate(I) ligands and two water molecules.
consists of one Fe
|
3. Supramolecular features
Four independent 2,2′-bpe molecules are located between adjacent grid layers of which two are parallel (blue) to the grid layers and two non-parallel (red) (Fig. 3). The interlayer distance is 6.550 (2) Å. The two parallel 2,2′-bpe ligands form hydrogen bonds (Table 2) to the host layer (O1—H2W⋯N5 = 2.07 Å and O2–H4W⋯N6 = 2.09 Å) (Fig. 4a), while the other two arrange themselves across the host layer to form also hydrogen bonds (O1—H1W⋯N7 = 2.14 Å and O2—H3W⋯N8 = 2.15 Å) (Fig. 4b) to the host layers. These hydrogen bonds generate an extended three-dimensional supramolecular framework.
4. Database survey
The two-dimensional structure of (I) was found to be different from other closely related compounds. In the structure of [Cd(imH)4[Ag(CN)2]2]n (imH = imidazole), a one-dimensional chain via bridging dicyanidoargentate(I) is found, while all imidazole molecules act as a terminal ligand (Takayoshi & Toschitake, 1996). In addition, the two-dimensional framework of [Fe(3-Fpy)2[Ag(CN)2]2]n (3-Fpy = 3-fluoropyridine) consists of four cyanide moieties occupying the equatorial positions generating a square grid-type structure similar to that of the title compound, while the axial positions are occupied by two terminal 3-Fpy ligands instead of two water molecules in (I) (Munoz et al., 2007). When the terminal ligands such as imH and 3-Fpy are replaced by N-donor linkers such as pyrazine, 4,4′-bpy and 4,4′-bpe, three-dimensional interpenetrating frameworks are obtained, as in {[Fe(pz)[Ag(CN)2]2].pz}n (pz = pyrazine), [Mn(4,4′-bpy)2[Ag(CN)2]2]n, [Fe(4,4′-bpy)2[Ag(CN)2]2]n and [Fe(bpe)2[Ag(CN)2]2]n (Niel et al., 2002; Dong et al., 2003). The last compound contains bpe bridges, while in the title compound 2,2′-bpe behaves as the organic guest molecules in the lattice. This could be the result of the difference in the N-donor position.
5. Synthesis and crystallization
An aqueous solution (5 ml) of K[Ag(CN)2] (0.0995 g, 0.5 mmol) was added dropwise to an MeOH–H2O mixed solution (1:1 v/v, 10 ml) of (NH4)2[Fe(SO4)2]·6H2O (0.0980 g, 0.25 mmol) and 2,2′-bpe (0.0911 g, 0.5 mmol) at room temperature. After filtration and slow evaporation for 1 d, yellow crystals were obtained.
6. details
Crystal data, data collection and structure . C-bound H atoms were positioned geometrically and included as riding atoms, with aromatic C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). Water H atoms were located in difference Fourier maps and refined isotropically.
details are summarized in Table 3Supporting information
10.1107/S1600536814016250/vn2085sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814016250/vn2085Isup2.hkl
Metal–organic frameworks (MOFs) have attracted much attention because of their versatile topologies and dimensions. These structural properties lead to potential interesting applications in the filed of magnetism, sensing, porous materials and catalysis (Biswas et al., 2014; Horike et al., 2008; Sanda et al., 2013). Structural diversity in MOFs can occur as a result of various preparation methods. However, supramolecular chemistry and topologies of MOFs are rather controlled by the nature of the metal ions and the structure of the organic ligands (Yang et al., 2008). One-, two- and three-dimensional frameworks containing dicyanoargentate(I) and N-donor linker such as pyrazine, 4,4'-bpy and 4,4'-bpe ligands have been studied (Takayoshi & Toschitake, 1996; Munoz et al., 2007; Dong et al., 2003). Whereas 4,4'-bpe appears to be somewhat ubiquitous in cyanocompounds, its cousin 2,2'-bpe is not very often used, which led us to prepare a dicyanoargentate(I) compound with a 2,2'-bpe ligand. In this communication, we report the synthesis and
of a three-dimensional supramolecular framework of {[Fe(H2O)2{Ag(CN)2}2](2,2'-bpe)2}n, (I).The
of [Fe(H2O)2{Ag(CN)2}2](2,2'-bpe)2}n consists of one FeII ion, two dicyanoargentate(I) ligands, two water molecules and two uncoordinated 2,2'-bpe molecules (Fig. 1). Ag1 and Ag2 are situated on inversion centres. Dicyanoargentate(I) ligands link FeII cations into an infinite two-dimensional layer network with a nearly square-grid geometry of 10.66 × 10.64 Å2 (Fig. 2). The FeII ion is six-cooordinated in a nearly regular octahedral geometry by four N atoms from four dicyanoargentate(I) ligands [Fe—N = 2.145 (2)–2.152 (2) Å] and two water molecules [Fe—O = 2.135 (2) and 2.137 (2) Å].Four independent 2,2'-bpe molecules are located between adjacent grid layers of which two are parallel (blue) to the grid layers and two non-parallel (red) (Fig. 3). The interlayer distance is 6.550 (2) Å. The two parallel 2,2'-bpe ligands form hydrogen bonds to the host layer (O1—H2W···N5 = 2.07 Å and O2–H4W···N6 = 2.09 Å) (Fig. 4a), while the other two arrange themselves across the host layer to form also hydrogen bonds (O1—H1W···N7 = 2.14 Å and O2—H3W···N8 = 2.15 Å) (Fig. 4b) to the host layers. These hydrogen bonds generate an extended three-dimensional supramolecular framework.
The two-dimensional structure of (I) was found to be different from other closely related compounds. In the structure of [Cd(imH)4[Ag(CN)2]2]n (imH = imidazole), a one-dimensional chain via bridging dicyanoargentate(I) is found, while all imidazole molecules act as a terminal ligand (Soma & Iwamoto, 1996). In addition, the two-dimensional framework of [Fe(3-Fpy)2[Ag(CN)2]2]n (3-Fpy = 3-fluoropyridine) consists of four cyanide moieties occupying the equatorial positions generating a square grid-type structure similar to that of the title compound, while the axial positions are occupied by two terminal 3-Fpy ligands instead of two water molecules in (I) (Munoz et al., 2007). When the terminal ligands such as imH and 3-Fpy are replaced by N-donor linkers such as pyrazine, 4,4'-bpy and 4,4'-bpe, three-dimensional interpenetrating frameworks are obtained, as in {[Fe(pz)[Ag(CN)2]2].pz}n, [Mn(4,4'-bpy)2[Ag(CN)2]2]n, [Fe(4,4'-bpy)2[Ag(CN)2]2]n and [Fe(bpe)2[Ag(CN)2]2]n (Niel et al., 2002; Dong et al., 2003). The last compound contains bpe bridges, while in the title compound 2,2'-bpe behaves as the organic guest molecules in the lattice. This could be the result of the difference in the N-donor position.
An aqueous solution (5 ml) of K[Ag(CN)2] (0.0995 g, 0.5 mmol) was added dropwise to an MeOH–H2O mixed solution (1:1 v/v, 10 ml) of Fe(SO4)2(NH4)2·6H2O (0.0980 g, 0.25 mmol) and 2,2'-bpe (0.0911 g, 0.5 mmol) at room temperature. After filtration and slow evaporation for 1 d, yellow crystals were obtained.
Crystal data, data collection and structure
details are summarized in Table 1. C-bound H atoms were positioned geometrically, with aromatic C—H = 0.93 Å and included as riding atoms, with Uiso(H) = 1.2Ueq(C) otherwise. Water H atoms were located in difference Fourier maps and refined isotropically.Data collection: SMART (Bruker, 2007); cell
SMART (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. A view of the asymmetric unit in (I), showing displacement ellipsoids at the 50% probability level and the atom-numbering scheme. H atoms have been omitted for clarity. | |
Fig. 2. A view of the square grid of (I) in the ac plane; the 2,2'-bpe molecules have been omitted. [Symmetry codes: (iii) -x+1, -y+2, z; (iv) -x, -y+1, -z+1; (v) -x+1, -y, -z+1.] | |
Fig. 3. 2,2'-Bpe in parallel (blue) and nonparallel (red) fashion between adjacent layers. | |
Fig. 4. A fragment of the three-dimensional supramolecular framework via (N···H—O) hydrogen-bonding interactions between (a) parallel 2,2'-bpe and coordinated water molecules (dashed lines), and (b) nonparallel 2,2'-bpe and coordinated water molecules (dashed lines). [Symmetry codes: (i) x-1, y, z; (ii) x, y+1, z.] |
[Ag2Fe(CN)4(H2O)2]·2C12H10N2 | V = 1535.11 (13) Å3 |
Mr = 776.14 | Z = 2 |
Triclinic, P1 | F(000) = 768 |
Hall symbol: -P 1 | 776.14 |
a = 9.2078 (4) Å | Dx = 1.679 Mg m−3 |
b = 9.8558 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
c = 18.9029 (9) Å | µ = 1.77 mm−1 |
α = 77.667 (1)° | T = 293 K |
β = 77.507 (1)° | Block, yellow |
γ = 67.900 (1)° | 0.43 × 0.11 × 0.09 mm |
Bruker SMART CCD area-detector diffractometer | 7389 independent reflections |
Radiation source: fine-focus sealed tube | 5865 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
phi and ω scans | θmax = 28.0°, θmin = 1.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −12→12 |
Tmin = 0.684, Tmax = 1.000 | k = −13→13 |
21143 measured reflections | l = −24→24 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.073 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0324P)2 + 0.1941P] where P = (Fo2 + 2Fc2)/3 |
7389 reflections | (Δ/σ)max = 0.001 |
389 parameters | Δρmax = 0.32 e Å−3 |
0 restraints | Δρmin = −0.37 e Å−3 |
[Ag2Fe(CN)4(H2O)2]·2C12H10N2 | γ = 67.900 (1)° |
Mr = 776.14 | V = 1535.11 (13) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.2078 (4) Å | Mo Kα radiation |
b = 9.8558 (5) Å | µ = 1.77 mm−1 |
c = 18.9029 (9) Å | T = 293 K |
α = 77.667 (1)° | 0.43 × 0.11 × 0.09 mm |
β = 77.507 (1)° |
Bruker SMART CCD area-detector diffractometer | 7389 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 5865 reflections with I > 2σ(I) |
Tmin = 0.684, Tmax = 1.000 | Rint = 0.024 |
21143 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.073 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.32 e Å−3 |
7389 reflections | Δρmin = −0.37 e Å−3 |
389 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ag3 | −0.235709 (19) | 1.239825 (17) | 0.249406 (10) | 0.06308 (7) | |
Ag2 | 0.0000 | 0.5000 | 0.5000 | 0.05956 (8) | |
Ag1 | 0.5000 | 1.0000 | 0.0000 | 0.06538 (9) | |
Fe | 0.26653 (3) | 0.74083 (2) | 0.251508 (12) | 0.02989 (7) | |
O1 | 0.15978 (19) | 0.64325 (19) | 0.19630 (8) | 0.0437 (3) | |
O2 | 0.3821 (2) | 0.83190 (18) | 0.30581 (9) | 0.0440 (3) | |
N3 | 0.0604 (2) | 0.9394 (2) | 0.25270 (11) | 0.0562 (5) | |
N2 | 0.1689 (2) | 0.64872 (19) | 0.35630 (9) | 0.0476 (4) | |
N1 | 0.3633 (2) | 0.83204 (19) | 0.14683 (9) | 0.0497 (4) | |
N4 | 0.4711 (2) | 0.54179 (18) | 0.24955 (10) | 0.0453 (4) | |
N5 | 0.3585 (2) | 0.37522 (19) | 0.14391 (9) | 0.0472 (4) | |
N6 | 0.6565 (2) | 0.62355 (18) | 0.36001 (9) | 0.0446 (4) | |
N7 | 0.9350 (3) | 0.7412 (3) | 0.09581 (12) | 0.0717 (6) | |
C26 | 0.2054 (3) | 0.1175 (3) | 0.52221 (14) | 0.0675 (7) | |
H26 | 0.1402 | 0.1178 | 0.5673 | 0.081* | |
C3 | −0.0459 (3) | 1.0458 (3) | 0.25155 (14) | 0.0618 (6) | |
C2 | 0.1135 (3) | 0.5943 (2) | 0.40815 (11) | 0.0508 (5) | |
C1 | 0.4140 (3) | 0.8860 (3) | 0.09364 (11) | 0.0541 (5) | |
C4 | 0.5760 (2) | 0.4344 (2) | 0.24875 (12) | 0.0494 (5) | |
C5 | 0.3629 (3) | 0.2536 (3) | 0.19190 (12) | 0.0577 (6) | |
H5 | 0.2794 | 0.2601 | 0.2304 | 0.069* | |
C6 | 0.4827 (3) | 0.1197 (3) | 0.18812 (13) | 0.0653 (7) | |
H6 | 0.4789 | 0.0369 | 0.2220 | 0.078* | |
C7 | 0.6076 (3) | 0.1114 (3) | 0.13335 (13) | 0.0676 (7) | |
H7 | 0.6930 | 0.0232 | 0.1303 | 0.081* | |
C8 | 0.6063 (3) | 0.2340 (2) | 0.08276 (12) | 0.0569 (6) | |
H8 | 0.6908 | 0.2295 | 0.0450 | 0.068* | |
C9 | 0.4787 (2) | 0.3644 (2) | 0.08807 (10) | 0.0422 (4) | |
C10 | 0.4628 (2) | 0.4983 (2) | 0.03421 (11) | 0.0458 (5) | |
H10 | 0.3953 | 0.5880 | 0.0492 | 0.055* | |
C11 | 0.7884 (3) | 0.6068 (2) | 0.31163 (11) | 0.0534 (5) | |
H11 | 0.7929 | 0.6865 | 0.2756 | 0.064* | |
C12 | 0.9174 (3) | 0.4796 (3) | 0.31178 (13) | 0.0596 (6) | |
H12 | 1.0074 | 0.4736 | 0.2771 | 0.072* | |
C13 | 0.9117 (3) | 0.3612 (3) | 0.36401 (13) | 0.0610 (6) | |
H13 | 0.9963 | 0.2719 | 0.3646 | 0.073* | |
C14 | 0.7776 (3) | 0.3769 (2) | 0.41567 (12) | 0.0516 (5) | |
H14 | 0.7718 | 0.2984 | 0.4521 | 0.062* | |
C15 | 0.6523 (2) | 0.5092 (2) | 0.41323 (10) | 0.0405 (4) | |
C16 | 0.5075 (2) | 0.5375 (2) | 0.46672 (11) | 0.0442 (5) | |
H16 | 0.4180 | 0.6149 | 0.4528 | 0.053* | |
C17 | 0.8716 (4) | 0.6370 (3) | 0.10434 (16) | 0.0836 (8) | |
H17 | 0.8639 | 0.5809 | 0.1504 | 0.100* | |
C18 | 0.8173 (4) | 0.6069 (4) | 0.05021 (19) | 0.0864 (9) | |
H18 | 0.7721 | 0.5338 | 0.0590 | 0.104* | |
C19 | 0.8315 (4) | 0.6881 (4) | −0.01761 (19) | 0.0913 (10) | |
H19 | 0.7987 | 0.6689 | −0.0564 | 0.110* | |
C20 | 0.8947 (3) | 0.7982 (3) | −0.02814 (15) | 0.0754 (7) | |
H20 | 0.9050 | 0.8541 | −0.0741 | 0.091* | |
C21 | 0.9428 (3) | 0.8251 (3) | 0.03048 (14) | 0.0603 (6) | |
C22 | 1.0045 (3) | 0.9443 (3) | 0.02706 (13) | 0.0649 (7) | |
H22 | 1.0535 | 0.9411 | 0.0658 | 0.078* | |
C23 | 0.3203 (4) | 0.1815 (3) | 0.50884 (18) | 0.0817 (9) | |
H23 | 0.3330 | 0.2257 | 0.5448 | 0.098* | |
C24 | 0.4143 (4) | 0.1796 (3) | 0.44306 (17) | 0.0782 (8) | |
H24 | 0.4900 | 0.2252 | 0.4321 | 0.094* | |
C25 | 0.3943 (3) | 0.1080 (3) | 0.39311 (15) | 0.0762 (7) | |
H25 | 0.4617 | 0.1032 | 0.3486 | 0.091* | |
N8 | 0.2859 (2) | 0.0455 (2) | 0.40410 (11) | 0.0627 (5) | |
C27 | 0.1880 (3) | 0.0527 (2) | 0.46773 (12) | 0.0534 (5) | |
C28 | 0.0623 (3) | −0.0088 (2) | 0.47413 (12) | 0.0574 (6) | |
H28 | 0.0714 | −0.0651 | 0.4386 | 0.069* | |
H1W | 0.096 (3) | 0.684 (2) | 0.1727 (12) | 0.044 (7)* | |
H2W | 0.211 (3) | 0.574 (3) | 0.1795 (13) | 0.062 (8)* | |
H3W | 0.339 (3) | 0.887 (3) | 0.3313 (13) | 0.053 (8)* | |
H4W | 0.450 (3) | 0.779 (3) | 0.3230 (14) | 0.062 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag3 | 0.04673 (11) | 0.03995 (10) | 0.08458 (15) | 0.01369 (7) | −0.01787 (10) | −0.01697 (9) |
Ag2 | 0.06824 (17) | 0.07681 (18) | 0.03192 (12) | −0.03820 (14) | 0.00292 (11) | 0.00933 (11) |
Ag1 | 0.08051 (19) | 0.07607 (18) | 0.03474 (13) | −0.03990 (15) | 0.00655 (12) | 0.01030 (12) |
Fe | 0.02927 (13) | 0.02553 (12) | 0.02578 (13) | −0.00351 (10) | 0.00002 (10) | −0.00020 (9) |
O1 | 0.0401 (8) | 0.0444 (8) | 0.0442 (8) | −0.0085 (7) | −0.0104 (7) | −0.0089 (7) |
O2 | 0.0484 (9) | 0.0357 (8) | 0.0442 (9) | −0.0082 (7) | −0.0085 (7) | −0.0083 (7) |
N3 | 0.0452 (10) | 0.0412 (10) | 0.0621 (12) | 0.0063 (8) | −0.0073 (9) | −0.0065 (9) |
N2 | 0.0514 (10) | 0.0524 (10) | 0.0336 (9) | −0.0206 (8) | 0.0007 (8) | 0.0023 (7) |
N1 | 0.0570 (11) | 0.0512 (10) | 0.0345 (9) | −0.0208 (8) | 0.0017 (8) | 0.0025 (8) |
N4 | 0.0391 (9) | 0.0361 (8) | 0.0541 (10) | 0.0004 (7) | −0.0125 (8) | −0.0127 (7) |
N5 | 0.0513 (10) | 0.0511 (10) | 0.0395 (9) | −0.0182 (8) | −0.0043 (8) | −0.0090 (8) |
N6 | 0.0517 (10) | 0.0450 (9) | 0.0375 (9) | −0.0177 (8) | −0.0080 (8) | −0.0038 (7) |
N7 | 0.0780 (15) | 0.0757 (15) | 0.0653 (14) | −0.0183 (12) | −0.0273 (12) | −0.0168 (12) |
C26 | 0.0747 (17) | 0.0638 (15) | 0.0627 (16) | −0.0141 (13) | −0.0104 (13) | −0.0247 (12) |
C3 | 0.0515 (13) | 0.0444 (12) | 0.0731 (16) | 0.0079 (10) | −0.0148 (12) | −0.0148 (11) |
C2 | 0.0566 (13) | 0.0598 (13) | 0.0332 (11) | −0.0254 (11) | 0.0003 (9) | 0.0016 (9) |
C1 | 0.0663 (14) | 0.0579 (13) | 0.0349 (11) | −0.0274 (11) | 0.0017 (10) | 0.0015 (10) |
C4 | 0.0424 (11) | 0.0383 (10) | 0.0636 (14) | 0.0011 (9) | −0.0189 (10) | −0.0162 (10) |
C5 | 0.0677 (15) | 0.0672 (15) | 0.0414 (12) | −0.0327 (13) | 0.0031 (11) | −0.0089 (11) |
C6 | 0.103 (2) | 0.0478 (13) | 0.0464 (13) | −0.0329 (14) | −0.0056 (13) | −0.0022 (10) |
C7 | 0.090 (2) | 0.0433 (13) | 0.0573 (15) | −0.0114 (13) | −0.0043 (14) | −0.0107 (11) |
C8 | 0.0627 (14) | 0.0482 (12) | 0.0491 (13) | −0.0138 (11) | 0.0050 (11) | −0.0087 (10) |
C9 | 0.0516 (12) | 0.0421 (10) | 0.0383 (11) | −0.0199 (9) | −0.0060 (9) | −0.0105 (8) |
C10 | 0.0500 (12) | 0.0423 (11) | 0.0462 (11) | −0.0165 (9) | −0.0036 (9) | −0.0108 (9) |
C11 | 0.0642 (14) | 0.0580 (13) | 0.0425 (12) | −0.0310 (12) | −0.0055 (10) | −0.0008 (10) |
C12 | 0.0448 (12) | 0.0818 (17) | 0.0503 (13) | −0.0248 (12) | −0.0002 (10) | −0.0073 (12) |
C13 | 0.0452 (12) | 0.0687 (16) | 0.0562 (14) | −0.0060 (11) | −0.0112 (11) | −0.0042 (12) |
C14 | 0.0489 (12) | 0.0544 (12) | 0.0428 (12) | −0.0122 (10) | −0.0103 (10) | 0.0036 (10) |
C15 | 0.0431 (10) | 0.0472 (11) | 0.0352 (10) | −0.0190 (9) | −0.0102 (8) | −0.0040 (8) |
C16 | 0.0423 (11) | 0.0463 (11) | 0.0430 (11) | −0.0141 (9) | −0.0099 (9) | −0.0034 (9) |
C17 | 0.095 (2) | 0.084 (2) | 0.0752 (19) | −0.0251 (17) | −0.0280 (17) | −0.0129 (16) |
C18 | 0.084 (2) | 0.092 (2) | 0.096 (2) | −0.0307 (17) | −0.0325 (18) | −0.0203 (19) |
C19 | 0.086 (2) | 0.109 (3) | 0.092 (2) | −0.0224 (19) | −0.0425 (19) | −0.034 (2) |
C20 | 0.0716 (17) | 0.089 (2) | 0.0643 (17) | −0.0151 (15) | −0.0242 (14) | −0.0176 (15) |
C21 | 0.0434 (12) | 0.0682 (15) | 0.0641 (15) | −0.0006 (11) | −0.0167 (11) | −0.0247 (13) |
C22 | 0.0491 (13) | 0.0804 (18) | 0.0590 (16) | −0.0037 (13) | −0.0168 (12) | −0.0234 (12) |
C23 | 0.094 (2) | 0.0747 (19) | 0.088 (2) | −0.0216 (17) | −0.0221 (18) | −0.0403 (17) |
C24 | 0.083 (2) | 0.0746 (18) | 0.090 (2) | −0.0330 (16) | −0.0194 (17) | −0.0229 (16) |
C25 | 0.0807 (19) | 0.089 (2) | 0.0634 (17) | −0.0311 (16) | −0.0094 (14) | −0.0180 (14) |
N8 | 0.0666 (13) | 0.0675 (13) | 0.0563 (12) | −0.0171 (11) | −0.0154 (10) | −0.0189 (10) |
C27 | 0.0594 (13) | 0.0383 (11) | 0.0583 (14) | −0.0029 (10) | −0.0216 (11) | −0.0111 (10) |
C28 | 0.0711 (16) | 0.0411 (11) | 0.0533 (14) | −0.0038 (11) | −0.0189 (11) | −0.0124 (10) |
Ag3—C4i | 2.0449 (19) | C8—H8 | 0.9300 |
Ag3—C3 | 2.048 (2) | C9—C10 | 1.465 (3) |
Ag2—C2ii | 2.056 (2) | C10—C10v | 1.326 (4) |
Ag2—C2 | 2.056 (2) | C10—H10 | 0.9300 |
Ag1—C1 | 2.058 (2) | C11—C12 | 1.364 (3) |
Ag1—C1iii | 2.058 (2) | C11—H11 | 0.9300 |
Fe—O1 | 2.1365 (15) | C12—C13 | 1.368 (3) |
Fe—O2 | 2.1392 (16) | C12—H12 | 0.9300 |
Fe—N1 | 2.1440 (17) | C13—C14 | 1.378 (3) |
Fe—N4 | 2.1489 (16) | C13—H13 | 0.9300 |
Fe—N2 | 2.1522 (16) | C14—C15 | 1.377 (3) |
Fe—N3 | 2.1539 (17) | C14—H14 | 0.9300 |
O1—H1W | 0.75 (2) | C15—C16 | 1.462 (3) |
O1—H2W | 0.76 (2) | C16—C16vi | 1.324 (4) |
O2—H3W | 0.74 (2) | C16—H16 | 0.9300 |
O2—H4W | 0.73 (3) | C17—C18 | 1.360 (4) |
N3—C3 | 1.133 (3) | C17—H17 | 0.9300 |
N2—C2 | 1.129 (3) | C18—C19 | 1.367 (4) |
N1—C1 | 1.126 (3) | C18—H18 | 0.9300 |
N4—C4 | 1.133 (2) | C19—C20 | 1.374 (4) |
N5—C5 | 1.333 (3) | C19—H19 | 0.9300 |
N5—C9 | 1.343 (2) | C20—C21 | 1.386 (3) |
N6—C11 | 1.332 (3) | C20—H20 | 0.9300 |
N6—C15 | 1.347 (2) | C21—C22 | 1.471 (4) |
N7—C17 | 1.327 (3) | C22—C22vii | 1.322 (5) |
N7—C21 | 1.336 (3) | C22—H22 | 0.9300 |
C26—C23 | 1.378 (4) | C23—C24 | 1.352 (4) |
C26—C27 | 1.387 (3) | C23—H23 | 0.9300 |
C26—H26 | 0.9300 | C24—C25 | 1.371 (3) |
C4—Ag3iv | 2.0449 (19) | C24—H24 | 0.9300 |
C5—C6 | 1.369 (3) | C25—N8 | 1.318 (3) |
C5—H5 | 0.9300 | C25—H25 | 0.9300 |
C6—C7 | 1.360 (3) | N8—C27 | 1.335 (3) |
C6—H6 | 0.9300 | C27—C28 | 1.469 (3) |
C7—C8 | 1.369 (3) | C28—C28viii | 1.320 (5) |
C7—H7 | 0.9300 | C28—H28 | 0.9300 |
C8—C9 | 1.382 (3) | ||
C4i—Ag3—C3 | 179.00 (8) | C10v—C10—H10 | 117.5 |
C2ii—Ag2—C2 | 180.000 (1) | C9—C10—H10 | 117.5 |
C1—Ag1—C1iii | 180.00 (16) | N6—C11—C12 | 123.8 (2) |
O1—Fe—O2 | 177.77 (6) | N6—C11—H11 | 118.1 |
O1—Fe—N1 | 88.80 (6) | C12—C11—H11 | 118.1 |
O2—Fe—N1 | 90.70 (7) | C11—C12—C13 | 118.7 (2) |
O1—Fe—N4 | 88.18 (7) | C11—C12—H12 | 120.7 |
O2—Fe—N4 | 89.65 (7) | C13—C12—H12 | 120.7 |
N1—Fe—N4 | 90.30 (7) | C12—C13—C14 | 118.5 (2) |
O1—Fe—N2 | 90.90 (6) | C12—C13—H13 | 120.7 |
O2—Fe—N2 | 89.60 (6) | C14—C13—H13 | 120.7 |
N1—Fe—N2 | 179.69 (6) | C15—C14—C13 | 119.9 (2) |
N4—Fe—N2 | 89.68 (7) | C15—C14—H14 | 120.0 |
O1—Fe—N3 | 91.17 (7) | C13—C14—H14 | 120.0 |
O2—Fe—N3 | 91.00 (7) | N6—C15—C14 | 121.16 (19) |
N1—Fe—N3 | 89.61 (7) | N6—C15—C16 | 115.02 (17) |
N4—Fe—N3 | 179.35 (6) | C14—C15—C16 | 123.81 (18) |
N2—Fe—N3 | 90.41 (7) | C16vi—C16—C15 | 125.7 (2) |
Fe—O1—H1W | 126.2 (17) | C16vi—C16—H16 | 117.2 |
Fe—O1—H2W | 119.1 (19) | C15—C16—H16 | 117.2 |
H1W—O1—H2W | 106 (2) | N7—C17—C18 | 124.3 (3) |
Fe—O2—H3W | 123.3 (19) | N7—C17—H17 | 117.9 |
Fe—O2—H4W | 116 (2) | C18—C17—H17 | 117.9 |
H3W—O2—H4W | 106 (3) | C17—C18—C19 | 117.6 (3) |
C3—N3—Fe | 178.0 (2) | C17—C18—H18 | 121.2 |
C2—N2—Fe | 174.23 (18) | C19—C18—H18 | 121.2 |
C1—N1—Fe | 176.22 (19) | C18—C19—C20 | 119.7 (3) |
C4—N4—Fe | 177.91 (19) | C18—C19—H19 | 120.2 |
C5—N5—C9 | 117.53 (19) | C20—C19—H19 | 120.2 |
C11—N6—C15 | 117.80 (18) | C19—C20—C21 | 119.2 (3) |
C17—N7—C21 | 118.4 (2) | C19—C20—H20 | 120.4 |
C23—C26—C27 | 119.3 (3) | C21—C20—H20 | 120.4 |
C23—C26—H26 | 120.4 | N7—C21—C20 | 120.8 (3) |
C27—C26—H26 | 120.4 | N7—C21—C22 | 114.9 (2) |
N3—C3—Ag3 | 179.1 (2) | C20—C21—C22 | 124.3 (3) |
N2—C2—Ag2 | 176.6 (2) | C22vii—C22—C21 | 124.8 (3) |
N1—C1—Ag1 | 175.4 (2) | C22vii—C22—H22 | 117.6 |
N4—C4—Ag3iv | 178.9 (2) | C21—C22—H22 | 117.6 |
N5—C5—C6 | 124.1 (2) | C24—C23—C26 | 119.5 (3) |
N5—C5—H5 | 118.0 | C24—C23—H23 | 120.2 |
C6—C5—H5 | 118.0 | C26—C23—H23 | 120.2 |
C7—C6—C5 | 118.0 (2) | C23—C24—C25 | 117.7 (3) |
C7—C6—H6 | 121.0 | C23—C24—H24 | 121.1 |
C5—C6—H6 | 121.0 | C25—C24—H24 | 121.1 |
C6—C7—C8 | 119.4 (2) | N8—C25—C24 | 124.3 (3) |
C6—C7—H7 | 120.3 | N8—C25—H25 | 117.9 |
C8—C7—H7 | 120.3 | C24—C25—H25 | 117.9 |
C7—C8—C9 | 119.7 (2) | C25—N8—C27 | 118.2 (2) |
C7—C8—H8 | 120.2 | N8—C27—C26 | 120.8 (2) |
C9—C8—H8 | 120.2 | N8—C27—C28 | 115.41 (19) |
N5—C9—C8 | 121.18 (19) | C26—C27—C28 | 123.8 (2) |
N5—C9—C10 | 115.36 (18) | C28viii—C28—C27 | 125.7 (3) |
C8—C9—C10 | 123.46 (19) | C28viii—C28—H28 | 117.2 |
C10v—C10—C9 | 125.1 (2) | C27—C28—H28 | 117.2 |
O1—Fe—N3—C3 | −98 (7) | C7—C8—C9—C10 | −176.4 (2) |
O2—Fe—N3—C3 | 82 (7) | N5—C9—C10—C10v | −158.2 (3) |
N1—Fe—N3—C3 | −9 (7) | C8—C9—C10—C10v | 21.1 (4) |
N4—Fe—N3—C3 | −91 (9) | C15—N6—C11—C12 | 1.8 (3) |
N2—Fe—N3—C3 | 172 (7) | N6—C11—C12—C13 | 0.6 (4) |
O1—Fe—N2—C2 | 6.4 (19) | C11—C12—C13—C14 | −2.0 (4) |
O2—Fe—N2—C2 | −171.4 (19) | C12—C13—C14—C15 | 1.0 (4) |
N1—Fe—N2—C2 | 5 (14) | C11—N6—C15—C14 | −2.8 (3) |
N4—Fe—N2—C2 | −81.7 (19) | C11—N6—C15—C16 | 176.90 (17) |
N3—Fe—N2—C2 | 97.6 (19) | C13—C14—C15—N6 | 1.5 (3) |
O1—Fe—N1—C1 | 153 (3) | C13—C14—C15—C16 | −178.2 (2) |
O2—Fe—N1—C1 | −29 (3) | N6—C15—C16—C16vi | −159.6 (3) |
N4—Fe—N1—C1 | −119 (3) | C14—C15—C16—C16vi | 20.1 (4) |
N2—Fe—N1—C1 | 155 (12) | C21—N7—C17—C18 | 1.7 (4) |
N3—Fe—N1—C1 | 62 (3) | N7—C17—C18—C19 | 1.1 (5) |
O1—Fe—N4—C4 | −34 (5) | C17—C18—C19—C20 | −1.9 (5) |
O2—Fe—N4—C4 | 146 (5) | C18—C19—C20—C21 | 0.0 (5) |
N1—Fe—N4—C4 | −123 (5) | C17—N7—C21—C20 | −3.8 (4) |
N2—Fe—N4—C4 | 57 (5) | C17—N7—C21—C22 | 176.0 (2) |
N3—Fe—N4—C4 | −41 (9) | C19—C20—C21—N7 | 3.0 (4) |
Fe—N3—C3—Ag3 | −52 (20) | C19—C20—C21—C22 | −176.8 (3) |
C4i—Ag3—C3—N3 | −52 (18) | N7—C21—C22—C22vii | −167.0 (3) |
Fe—N2—C2—Ag2 | −54 (5) | C20—C21—C22—C22vii | 12.9 (5) |
C2ii—Ag2—C2—N2 | 95 (100) | C27—C26—C23—C24 | −0.2 (4) |
Fe—N1—C1—Ag1 | −20 (6) | C26—C23—C24—C25 | −2.4 (5) |
C1iii—Ag1—C1—N1 | −164 (100) | C23—C24—C25—N8 | 2.5 (5) |
Fe—N4—C4—Ag3iv | −78 (13) | C24—C25—N8—C27 | 0.4 (4) |
C9—N5—C5—C6 | 0.7 (3) | C25—N8—C27—C26 | −3.2 (3) |
N5—C5—C6—C7 | 2.2 (4) | C25—N8—C27—C28 | 175.4 (2) |
C5—C6—C7—C8 | −2.6 (4) | C23—C26—C27—N8 | 3.2 (4) |
C6—C7—C8—C9 | 0.2 (4) | C23—C26—C27—C28 | −175.4 (2) |
C5—N5—C9—C8 | −3.3 (3) | N8—C27—C28—C28viii | −167.6 (3) |
C5—N5—C9—C10 | 176.02 (18) | C26—C27—C28—C28viii | 11.0 (4) |
C7—C8—C9—N5 | 2.9 (3) |
Symmetry codes: (i) x−1, y+1, z; (ii) −x, −y+1, −z+1; (iii) −x+1, −y+2, −z; (iv) x+1, y−1, z; (v) −x+1, −y+1, −z; (vi) −x+1, −y+1, −z+1; (vii) −x+2, −y+2, −z; (viii) −x, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H2W···N5 | 0.76 (3) | 2.07 (3) | 2.829 (2) | 174 (2) |
O2—H4W···N6 | 0.73 (3) | 2.09 (3) | 2.823 (3) | 174 (3) |
O1—H1W···N7ix | 0.75 (3) | 2.14 (3) | 2.870 (3) | 164 |
O2—H3W···N8x | 0.74 (3) | 2.15 (3) | 2.868 (3) | 162 |
Symmetry codes: (ix) x−1, y, z; (x) x, y+1, z. |
Fe—O1 | 2.1365 (15) | Fe—N4 | 2.1489 (16) |
Fe—O2 | 2.1392 (16) | Fe—N2 | 2.1522 (16) |
Fe—N1 | 2.1440 (17) | Fe—N3 | 2.1539 (17) |
O1—Fe—O2 | 177.77 (6) | N1—Fe—N2 | 179.69 (6) |
O1—Fe—N1 | 88.80 (6) | N4—Fe—N2 | 89.68 (7) |
O2—Fe—N1 | 90.70 (7) | O1—Fe—N3 | 91.17 (7) |
O1—Fe—N4 | 88.18 (7) | O2—Fe—N3 | 91.00 (7) |
O2—Fe—N4 | 89.65 (7) | N1—Fe—N3 | 89.61 (7) |
N1—Fe—N4 | 90.30 (7) | N4—Fe—N3 | 179.35 (6) |
O1—Fe—N2 | 90.90 (6) | N2—Fe—N3 | 90.41 (7) |
O2—Fe—N2 | 89.60 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H2W···N5 | 0.76 (3) | 2.07 (3) | 2.829 (2) | 174 (2) |
O2—H4W···N6 | 0.73 (3) | 2.09 (3) | 2.823 (3) | 174 (3) |
O1—H1W···N7i | 0.75 (3) | 2.14 (3) | 2.870 (3) | 164 |
O2—H3W···N8ii | 0.74 (3) | 2.15 (3) | 2.868 (3) | 162 |
Symmetry codes: (i) x−1, y, z; (ii) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | [Ag2Fe(CN)4(H2O)2]·2C12H10N2 |
Mr | 776.14 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 9.2078 (4), 9.8558 (5), 18.9029 (9) |
α, β, γ (°) | 77.667 (1), 77.507 (1), 67.900 (1) |
V (Å3) | 1535.11 (13) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.77 |
Crystal size (mm) | 0.43 × 0.11 × 0.09 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2007) |
Tmin, Tmax | 0.684, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 21143, 7389, 5865 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.661 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.073, 1.03 |
No. of reflections | 7389 |
No. of parameters | 389 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.32, −0.37 |
Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), publCIF (Westrip, 2010).
Acknowledgements
The authors gratefully acknowledge The Thailand Research Fund (BRG5680009), the Higher Education Research Promotion and National Research University Project of Thailand, through the Advanced Functional Materials Cluster of Khon Kaen University, and the center of Excellence for Innovation in Chemistry (PERCH–CIC), Office of the Higher Education Commission, Ministry of Education, Thailand, for financial support.
References
Biswas, A., Jana, S. S., Sparkes, H. A., Howard, J. A., Alcalde, N. A. & Mohanta, S. (2014). Polyhedron, 74, 57–66. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2007). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dong, W., Wang, Q. L., Si, S. F., Liao, D. Z., Jiang, Z. H., Yan, S. P. & Cheng, P. (2003). Inorg. Chem. Commun. 6, 873–876. Web of Science CSD CrossRef CAS Google Scholar
Horike, S., Dinca, M., Tamaki, K. & Long, J. R. (2008). J. Am. Chem. Soc., 130, 5854–5855. Web of Science CrossRef PubMed CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Munoz, M. C., Gasper, A. B., Galet, A. & Real, J. A. (2007). Inorg. Chem. 46, 8182–8192. Web of Science PubMed CAS Google Scholar
Niel, V., Munoz, M. C., Gasper, A. B., Galet, A., Levchenko, G. & Real, J. A. (2002). Chem. Eur. J. 11, 2446–2453. CrossRef Google Scholar
Sanda, S., Parshamoni, S. & Konar, S. (2013). Cryst. Growth Des. 13, 5442–5449. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Soma, T. & Iwamoto, T. (1996). Inorg. Chem. 35, 1849–1856. CSD CrossRef CAS Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, J., Chen, Y. B., Li, Z. J., Qin, Y. Y. & Yao, Y. G. (2008). Chem. Commun. 19, 2233–2235. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.