research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 8| August 2014| Pages 107-110

Crystal structure of a two-dimensional grid-type iron(II) coordination polymer: poly[[di­aqua­tetra-μ-cyanido-diargentate(I)iron(II)] trans-1,2-bis­(pyridin-2-yl)ethyl­ene disolvate]

aMaterials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kean 40002, Thailand, bDepartment of Chemistry, Faculty of Science and Technology, Thammasat University, Rangsit Campus, Klong Luang, Pathumthani 12121, Thailand, and cDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
*Correspondence e-mail: sujittra@kku.ac.th

Edited by A. Van der Lee, Université de Montpellier II, France (Received 1 July 2014; accepted 13 July 2014; online 23 July 2014)

In the title compound, {[Ag2Fe(CN)4(H2O)2]·2C12H10N2}n, the asymmetric unit contains one FeII cation, two water mol­ecules, two di­cyanido­argentate(I) anions and two uncoordinating 1,2-bis­(pyridin-2-yl)ethyl­ene (2,2′-bpe) mol­ecules. Each FeII atom is six-coordinated in a nearly regular octa­hedral geometry by four N atoms from di­cyanido­argentate(I) bridges and two coordinating water mol­ecules. The FeII atoms are bridged by di­cyanido­argentate(I) units to give a two-dimensional layer with square-grid spaces. The inter­grid spaces with inter­layer distance of 6.550 (2) Å are occupied by 2,2′-bpe guest mol­ecules which form O—H⋯N hydrogen bonds to the host layers. This leads to an extended three-dimensional supra­molecular architecture. The structure of the title compound is compared with some related compounds containing di­cyanido­argentate(I) ligands and N-donor organic co-ligands.

1. Chemical context

Metal–organic frameworks (MOFs) have attracted much attention because of their versatile topologies and dimensions. These structural properties lead to potential inter­esting applications in the filed of magnetism, sensing, porous mater­ials and catalysis (Biswas et al., 2014[Biswas, A., Jana, S. S., Sparkes, H. A., Howard, J. A., Alcalde, N. A. & Mohanta, S. (2014). Polyhedron, 74, 57-66.]; Horike et al., 2008[Horike, S., Dinca, M., Tamaki, K. & Long, J. R. (2008). J. Am. Chem. Soc., 130, 5854-5855.]; Sanda et al., 2013[Sanda, S., Parshamoni, S. & Konar, S. (2013). Cryst. Growth Des. 13, 5442-5449.]). Structural diversity in MOFs can occur as a result of various preparation methods. However, supra­molecular chemistry and topologies of MOFs are rather controlled by the nature of the metal ions and the structure of the organic ligands (Yang et al., 2008[Yang, J., Chen, Y. B., Li, Z. J., Qin, Y. Y. & Yao, Y. G. (2008). Chem. Commun. 19, 2233-2235.]).

[Scheme 1]

One-, two- and three-dimensional frameworks containing di­cyanido­argentate(I) and N-donor linkers such as pyrazine, 4,4′-bpy and 4,4′-bpe [bpy is bipyridineand bpe is 1,2-bis(4-pyridyl)ethylene] ligands have been studied (Soma & Iwamoto, 1996[Soma, T. & Iwamoto, T. (1996). Inorg. Chem. 35, 1849-1856.]; Munoz et al., 2007[Munoz, M. C., Gasper, A. B., Galet, A. & Real, J. A. (2007). Inorg. Chem. 46, 8182-8192.]; Dong et al., 2003[Dong, W., Wang, Q. L., Si, S. F., Liao, D. Z., Jiang, Z. H., Yan, S. P. & Cheng, P. (2003). Inorg. Chem. Commun. 6, 873-876.]). Whereas 4,4′-bpe appears to be somewhat ubiquitous in cyanido ­compounds, its cousin 2,2′-bpe is not very often used, which led us to prepare a di­cyanido­argentate(I) compound with a 2,2′-bpe ligand. In this communication, we report the synthesis and crystal structure of a three-dimensional supra­molecular framework of {[Ag2Fe(CN)4(H2O)2]·2C12H10N2}n, (I)[link].

2. Structural commentary

The asymmetric unit consists of one FeII atom, two di­cyan­ido­argentate(I) ligands, two water mol­ecules and two uncoord­inating 2,2′-bpe mol­ecules (Fig. 1[link]). Ag1 and Ag2 are situated on inversion centres. The dicyanidoargentate(I) ligands link FeII atoms into an infinite two-dimensional layer network with a nearly square-grid geometry of 10.66 × 10.64 Å2 (Fig. 2[link]). The FeII ion is six-cooordinated (Table 1[link]) in a nearly regular octa­hedral geometry by four N atoms from four di­cyanido­argentate(I) ligands and two water mol­ecules.

Table 1
Selected bond lengths (Å)

Fe—O1 2.1365 (15) Fe—N4 2.1489 (16)
Fe—O2 2.1392 (16) Fe—N2 2.1522 (16)
Fe—N1 2.1440 (17) Fe—N3 2.1539 (17)
[Figure 1]
Figure 1
A view of the asymmetric unit in (I)[link], showing displacement ellipsoids at the 50% probability level and the atom-numbering scheme. H atoms have been omitted for clarity.
[Figure 2]
Figure 2
A view of the square grid of (I)[link] in the ac plane; the 2,2′-bpe mol­ecules have been omitted. [Symmetry codes: (iii) −x + 1, −y + 2, z; (iv) −x, −y + 1, −z + 1; (v) −x + 1, −y, −z + 1.]

3. Supra­molecular features

Four independent 2,2′-bpe mol­ecules are located between adjacent grid layers of which two are parallel (blue) to the grid layers and two non-parallel (red) (Fig. 3[link]). The inter­layer distance is 6.550 (2) Å. The two parallel 2,2′-bpe ligands form hydrogen bonds (Table 2[link]) to the host layer (O1—H2W⋯N5 = 2.07 Å and O2–H4W⋯N6 = 2.09 Å) (Fig. 4[link]a), while the other two arrange themselves across the host layer to form also hydrogen bonds (O1—H1W⋯N7 = 2.14 Å and O2—H3W⋯N8 = 2.15 Å) (Fig. 4[link]b) to the host layers. These hydrogen bonds generate an extended three-dimensional supra­molecular framework.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H2W⋯N5 0.76 (3) 2.07 (3) 2.829 (2) 174 (2)
O2—H4W⋯N6 0.73 (3) 2.09 (3) 2.823 (3) 174 (3)
O1—H1W⋯N7i 0.75 (3) 2.14 (3) 2.870 (3) 164
O2—H3W⋯N8ii 0.74 (3) 2.15 (3) 2.868 (3) 162
Symmetry codes: (i) x-1, y, z; (ii) x, y+1, z.
[Figure 3]
Figure 3
2,2′-Bpe in parallel (blue) and non-parallel (red) fashion between adjacent layers.
[Figure 4]
Figure 4
A fragment of the three-dimensional supra­molecular framework via N⋯H—O hydrogen-bonding inter­actions between (a) parallel 2,2′-bpe and coordinating water mol­ecules (dashed lines), and (b) non-parallel 2,2′-bpe and coordinating water mol­ecules (dashed lines). [Symmetry codes: (i) x − 1, y, z; (ii) x, y + 1, z.]

4. Database survey

The two-dimensional structure of (I)[link] was found to be different from other closely related compounds. In the structure of [Cd(imH)4[Ag(CN)2]2]n (imH = imidazole), a one-dimensional chain via bridging di­cyanido­argentate(I) is found, while all imidazole mol­ecules act as a terminal ligand (Takayoshi & Toschitake, 1996[Soma, T. & Iwamoto, T. (1996). Inorg. Chem. 35, 1849-1856.]). In addition, the two-dimensional framework of [Fe(3-Fpy)2[Ag(CN)2]2]n (3-Fpy = 3-fluoro­pyridine) consists of four cyanide moieties occupying the equatorial positions generating a square grid-type structure similar to that of the title compound, while the axial positions are occupied by two terminal 3-Fpy ligands instead of two water mol­ecules in (I)[link] (Munoz et al., 2007[Munoz, M. C., Gasper, A. B., Galet, A. & Real, J. A. (2007). Inorg. Chem. 46, 8182-8192.]). When the terminal ligands such as imH and 3-Fpy are replaced by N-donor linkers such as pyrazine, 4,4′-bpy and 4,4′-bpe, three-dimensional inter­penetrating frameworks are obtained, as in {[Fe(pz)[Ag(CN)2]2].pz}n (pz = pyrazine), [Mn(4,4′-bpy)2[Ag(CN)2]2]n, [Fe(4,4′-bpy)2[Ag(CN)2]2]n and [Fe(bpe)2[Ag(CN)2]2]n (Niel et al., 2002[Niel, V., Munoz, M. C., Gasper, A. B., Galet, A., Levchenko, G. & Real, J. A. (2002). Chem. Eur. J. 11, 2446-2453.]; Dong et al., 2003[Dong, W., Wang, Q. L., Si, S. F., Liao, D. Z., Jiang, Z. H., Yan, S. P. & Cheng, P. (2003). Inorg. Chem. Commun. 6, 873-876.]). The last compound contains bpe bridges, while in the title compound 2,2′-bpe behaves as the organic guest mol­ecules in the lattice. This could be the result of the difference in the N-donor position.

5. Synthesis and crystallization

An aqueous solution (5 ml) of K[Ag(CN)2] (0.0995 g, 0.5 mmol) was added dropwise to an MeOH–H2O mixed solution (1:1 v/v, 10 ml) of (NH4)2[Fe(SO4)2]·6H2O (0.0980 g, 0.25 mmol) and 2,2′-bpe (0.0911 g, 0.5 mmol) at room temperature. After filtration and slow evaporation for 1 d, yellow crystals were obtained.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C-bound H atoms were positioned geometrically and included as riding atoms, with aromatic C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). Water H atoms were located in difference Fourier maps and refined isotropically.

Table 3
Experimental details

Crystal data
Chemical formula [Ag2Fe(CN)4(H2O)2]·2C12H10N2
Mr 776.14
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 9.2078 (4), 9.8558 (5), 18.9029 (9)
α, β, γ (°) 77.667 (1), 77.507 (1), 67.900 (1)
V3) 1535.11 (13)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.77
Crystal size (mm) 0.43 × 0.11 × 0.09
 
Data collection
Diffractometer Bruker SMART CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.684, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 21143, 7389, 5865
Rint 0.024
(sin θ/λ)max−1) 0.661
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.073, 1.03
No. of reflections 7389
No. of parameters 389
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.37
Computer programs: SMART and SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

Metal–organic frameworks (MOFs) have attracted much attention because of their versatile topologies and dimensions. These structural properties lead to potential inter­esting applications in the filed of magnetism, sensing, porous materials and catalysis (Biswas et al., 2014; Horike et al., 2008; Sanda et al., 2013). Structural diversity in MOFs can occur as a result of various preparation methods. However, supra­molecular chemistry and topologies of MOFs are rather controlled by the nature of the metal ions and the structure of the organic ligands (Yang et al., 2008). One-, two- and three-dimensional frameworks containing di­cyano­argentate(I) and N-donor linker such as pyrazine, 4,4'-bpy and 4,4'-bpe ligands have been studied (Takayoshi & Toschitake, 1996; Munoz et al., 2007; Dong et al., 2003). Whereas 4,4'-bpe appears to be somewhat ubiquitous in cyano­compounds, its cousin 2,2'-bpe is not very often used, which led us to prepare a di­cyano­argentate(I) compound with a 2,2'-bpe ligand. In this communication, we report the synthesis and crystal structure of a three-dimensional supra­molecular framework of {[Fe(H2O)2{Ag(CN)2}2](2,2'-bpe)2}n, (I).

Structural commentary top

The asymmetric unit of [Fe(H2O)2{Ag(CN)2}2](2,2'-bpe)2}n consists of one FeII ion, two di­cyano­argentate(I) ligands, two water molecules and two uncoordinated 2,2'-bpe molecules (Fig. 1). Ag1 and Ag2 are situated on inversion centres. Di­cyano­argentate(I) ligands link FeII cations into an infinite two-dimensional layer network with a nearly square-grid geometry of 10.66 × 10.64 Å2 (Fig. 2). The FeII ion is six-cooordinated in a nearly regular o­cta­hedral geometry by four N atoms from four di­cyano­argentate(I) ligands [Fe—N = 2.145 (2)–2.152 (2) Å] and two water molecules [Fe—O = 2.135 (2) and 2.137 (2) Å].

Supra­molecular features top

Four independent 2,2'-bpe molecules are located between adjacent grid layers of which two are parallel (blue) to the grid layers and two non-parallel (red) (Fig. 3). The inter­layer distance is 6.550 (2) Å. The two parallel 2,2'-bpe ligands form hydrogen bonds to the host layer (O1—H2W···N5 = 2.07 Å and O2–H4W···N6 = 2.09 Å) (Fig. 4a), while the other two arrange themselves across the host layer to form also hydrogen bonds (O1—H1W···N7 = 2.14 Å and O2—H3W···N8 = 2.15 Å) (Fig. 4b) to the host layers. These hydrogen bonds generate an extended three-dimensional supra­molecular framework.

Database survey top

The two-dimensional structure of (I) was found to be different from other closely related compounds. In the structure of [Cd(imH)4[Ag(CN)2]2]n (imH = imidazole), a one-dimensional chain via bridging di­cyano­argentate(I) is found, while all imidazole molecules act as a terminal ligand (Soma & Iwamoto, 1996). In addition, the two-dimensional framework of [Fe(3-Fpy)2[Ag(CN)2]2]n (3-Fpy = 3-fluoro­pyridine) consists of four cyanide moieties occupying the equatorial positions generating a square grid-type structure similar to that of the title compound, while the axial positions are occupied by two terminal 3-Fpy ligands instead of two water molecules in (I) (Munoz et al., 2007). When the terminal ligands such as imH and 3-Fpy are replaced by N-donor linkers such as pyrazine, 4,4'-bpy and 4,4'-bpe, three-dimensional inter­penetrating frameworks are obtained, as in {[Fe(pz)[Ag(CN)2]2].pz}n, [Mn(4,4'-bpy)2[Ag(CN)2]2]n, [Fe(4,4'-bpy)2[Ag(CN)2]2]n and [Fe(bpe)2[Ag(CN)2]2]n (Niel et al., 2002; Dong et al., 2003). The last compound contains bpe bridges, while in the title compound 2,2'-bpe behaves as the organic guest molecules in the lattice. This could be the result of the difference in the N-donor position.

Synthesis and crystallization top

An aqueous solution (5 ml) of K[Ag(CN)2] (0.0995 g, 0.5 mmol) was added dropwise to an MeOH–H2O mixed solution (1:1 v/v, 10 ml) of Fe(SO4)2(NH4)2·6H2O (0.0980 g, 0.25 mmol) and 2,2'-bpe (0.0911 g, 0.5 mmol) at room temperature. After filtration and slow evaporation for 1 d, yellow crystals were obtained.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 1. C-bound H atoms were positioned geometrically, with aromatic C—H = 0.93 Å and included as riding atoms, with Uiso(H) = 1.2Ueq(C) otherwise. Water H atoms were located in difference Fourier maps and refined isotropically.

Related literature top

For related literature, see: Biswas et al. (2014); Dong et al. (2003); Horike et al. (2008); Munoz et al. (2007); Niel et al. (2002); Sanda et al. (2013); Yang et al. (2008).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SMART (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit in (I), showing displacement ellipsoids at the 50% probability level and the atom-numbering scheme. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of the square grid of (I) in the ac plane; the 2,2'-bpe molecules have been omitted. [Symmetry codes: (iii) -x+1, -y+2, z; (iv) -x, -y+1, -z+1; (v) -x+1, -y, -z+1.]
[Figure 3] Fig. 3. 2,2'-Bpe in parallel (blue) and nonparallel (red) fashion between adjacent layers.
[Figure 4] Fig. 4. A fragment of the three-dimensional supramolecular framework via (N···H—O) hydrogen-bonding interactions between (a) parallel 2,2'-bpe and coordinated water molecules (dashed lines), and (b) nonparallel 2,2'-bpe and coordinated water molecules (dashed lines). [Symmetry codes: (i) x-1, y, z; (ii) x, y+1, z.]
Poly[[diaquatetra-µ-cyanido-diargentate(I)iron(II)] bis[trans-1,2-bis(pyridin-2-yl)ethylene]] top
Crystal data top
[Ag2Fe(CN)4(H2O)2]·2C12H10N2V = 1535.11 (13) Å3
Mr = 776.14Z = 2
Triclinic, P1F(000) = 768
Hall symbol: -P 1776.14
a = 9.2078 (4) ÅDx = 1.679 Mg m3
b = 9.8558 (5) ÅMo Kα radiation, λ = 0.71073 Å
c = 18.9029 (9) ŵ = 1.77 mm1
α = 77.667 (1)°T = 293 K
β = 77.507 (1)°Block, yellow
γ = 67.900 (1)°0.43 × 0.11 × 0.09 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
7389 independent reflections
Radiation source: fine-focus sealed tube5865 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
phi and ω scansθmax = 28.0°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1212
Tmin = 0.684, Tmax = 1.000k = 1313
21143 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0324P)2 + 0.1941P]
where P = (Fo2 + 2Fc2)/3
7389 reflections(Δ/σ)max = 0.001
389 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Ag2Fe(CN)4(H2O)2]·2C12H10N2γ = 67.900 (1)°
Mr = 776.14V = 1535.11 (13) Å3
Triclinic, P1Z = 2
a = 9.2078 (4) ÅMo Kα radiation
b = 9.8558 (5) ŵ = 1.77 mm1
c = 18.9029 (9) ÅT = 293 K
α = 77.667 (1)°0.43 × 0.11 × 0.09 mm
β = 77.507 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
7389 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
5865 reflections with I > 2σ(I)
Tmin = 0.684, Tmax = 1.000Rint = 0.024
21143 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.32 e Å3
7389 reflectionsΔρmin = 0.37 e Å3
389 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag30.235709 (19)1.239825 (17)0.249406 (10)0.06308 (7)
Ag20.00000.50000.50000.05956 (8)
Ag10.50001.00000.00000.06538 (9)
Fe0.26653 (3)0.74083 (2)0.251508 (12)0.02989 (7)
O10.15978 (19)0.64325 (19)0.19630 (8)0.0437 (3)
O20.3821 (2)0.83190 (18)0.30581 (9)0.0440 (3)
N30.0604 (2)0.9394 (2)0.25270 (11)0.0562 (5)
N20.1689 (2)0.64872 (19)0.35630 (9)0.0476 (4)
N10.3633 (2)0.83204 (19)0.14683 (9)0.0497 (4)
N40.4711 (2)0.54179 (18)0.24955 (10)0.0453 (4)
N50.3585 (2)0.37522 (19)0.14391 (9)0.0472 (4)
N60.6565 (2)0.62355 (18)0.36001 (9)0.0446 (4)
N70.9350 (3)0.7412 (3)0.09581 (12)0.0717 (6)
C260.2054 (3)0.1175 (3)0.52221 (14)0.0675 (7)
H260.14020.11780.56730.081*
C30.0459 (3)1.0458 (3)0.25155 (14)0.0618 (6)
C20.1135 (3)0.5943 (2)0.40815 (11)0.0508 (5)
C10.4140 (3)0.8860 (3)0.09364 (11)0.0541 (5)
C40.5760 (2)0.4344 (2)0.24875 (12)0.0494 (5)
C50.3629 (3)0.2536 (3)0.19190 (12)0.0577 (6)
H50.27940.26010.23040.069*
C60.4827 (3)0.1197 (3)0.18812 (13)0.0653 (7)
H60.47890.03690.22200.078*
C70.6076 (3)0.1114 (3)0.13335 (13)0.0676 (7)
H70.69300.02320.13030.081*
C80.6063 (3)0.2340 (2)0.08276 (12)0.0569 (6)
H80.69080.22950.04500.068*
C90.4787 (2)0.3644 (2)0.08807 (10)0.0422 (4)
C100.4628 (2)0.4983 (2)0.03421 (11)0.0458 (5)
H100.39530.58800.04920.055*
C110.7884 (3)0.6068 (2)0.31163 (11)0.0534 (5)
H110.79290.68650.27560.064*
C120.9174 (3)0.4796 (3)0.31178 (13)0.0596 (6)
H121.00740.47360.27710.072*
C130.9117 (3)0.3612 (3)0.36401 (13)0.0610 (6)
H130.99630.27190.36460.073*
C140.7776 (3)0.3769 (2)0.41567 (12)0.0516 (5)
H140.77180.29840.45210.062*
C150.6523 (2)0.5092 (2)0.41323 (10)0.0405 (4)
C160.5075 (2)0.5375 (2)0.46672 (11)0.0442 (5)
H160.41800.61490.45280.053*
C170.8716 (4)0.6370 (3)0.10434 (16)0.0836 (8)
H170.86390.58090.15040.100*
C180.8173 (4)0.6069 (4)0.05021 (19)0.0864 (9)
H180.77210.53380.05900.104*
C190.8315 (4)0.6881 (4)0.01761 (19)0.0913 (10)
H190.79870.66890.05640.110*
C200.8947 (3)0.7982 (3)0.02814 (15)0.0754 (7)
H200.90500.85410.07410.091*
C210.9428 (3)0.8251 (3)0.03048 (14)0.0603 (6)
C221.0045 (3)0.9443 (3)0.02706 (13)0.0649 (7)
H221.05350.94110.06580.078*
C230.3203 (4)0.1815 (3)0.50884 (18)0.0817 (9)
H230.33300.22570.54480.098*
C240.4143 (4)0.1796 (3)0.44306 (17)0.0782 (8)
H240.49000.22520.43210.094*
C250.3943 (3)0.1080 (3)0.39311 (15)0.0762 (7)
H250.46170.10320.34860.091*
N80.2859 (2)0.0455 (2)0.40410 (11)0.0627 (5)
C270.1880 (3)0.0527 (2)0.46773 (12)0.0534 (5)
C280.0623 (3)0.0088 (2)0.47413 (12)0.0574 (6)
H280.07140.06510.43860.069*
H1W0.096 (3)0.684 (2)0.1727 (12)0.044 (7)*
H2W0.211 (3)0.574 (3)0.1795 (13)0.062 (8)*
H3W0.339 (3)0.887 (3)0.3313 (13)0.053 (8)*
H4W0.450 (3)0.779 (3)0.3230 (14)0.062 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag30.04673 (11)0.03995 (10)0.08458 (15)0.01369 (7)0.01787 (10)0.01697 (9)
Ag20.06824 (17)0.07681 (18)0.03192 (12)0.03820 (14)0.00292 (11)0.00933 (11)
Ag10.08051 (19)0.07607 (18)0.03474 (13)0.03990 (15)0.00655 (12)0.01030 (12)
Fe0.02927 (13)0.02553 (12)0.02578 (13)0.00351 (10)0.00002 (10)0.00020 (9)
O10.0401 (8)0.0444 (8)0.0442 (8)0.0085 (7)0.0104 (7)0.0089 (7)
O20.0484 (9)0.0357 (8)0.0442 (9)0.0082 (7)0.0085 (7)0.0083 (7)
N30.0452 (10)0.0412 (10)0.0621 (12)0.0063 (8)0.0073 (9)0.0065 (9)
N20.0514 (10)0.0524 (10)0.0336 (9)0.0206 (8)0.0007 (8)0.0023 (7)
N10.0570 (11)0.0512 (10)0.0345 (9)0.0208 (8)0.0017 (8)0.0025 (8)
N40.0391 (9)0.0361 (8)0.0541 (10)0.0004 (7)0.0125 (8)0.0127 (7)
N50.0513 (10)0.0511 (10)0.0395 (9)0.0182 (8)0.0043 (8)0.0090 (8)
N60.0517 (10)0.0450 (9)0.0375 (9)0.0177 (8)0.0080 (8)0.0038 (7)
N70.0780 (15)0.0757 (15)0.0653 (14)0.0183 (12)0.0273 (12)0.0168 (12)
C260.0747 (17)0.0638 (15)0.0627 (16)0.0141 (13)0.0104 (13)0.0247 (12)
C30.0515 (13)0.0444 (12)0.0731 (16)0.0079 (10)0.0148 (12)0.0148 (11)
C20.0566 (13)0.0598 (13)0.0332 (11)0.0254 (11)0.0003 (9)0.0016 (9)
C10.0663 (14)0.0579 (13)0.0349 (11)0.0274 (11)0.0017 (10)0.0015 (10)
C40.0424 (11)0.0383 (10)0.0636 (14)0.0011 (9)0.0189 (10)0.0162 (10)
C50.0677 (15)0.0672 (15)0.0414 (12)0.0327 (13)0.0031 (11)0.0089 (11)
C60.103 (2)0.0478 (13)0.0464 (13)0.0329 (14)0.0056 (13)0.0022 (10)
C70.090 (2)0.0433 (13)0.0573 (15)0.0114 (13)0.0043 (14)0.0107 (11)
C80.0627 (14)0.0482 (12)0.0491 (13)0.0138 (11)0.0050 (11)0.0087 (10)
C90.0516 (12)0.0421 (10)0.0383 (11)0.0199 (9)0.0060 (9)0.0105 (8)
C100.0500 (12)0.0423 (11)0.0462 (11)0.0165 (9)0.0036 (9)0.0108 (9)
C110.0642 (14)0.0580 (13)0.0425 (12)0.0310 (12)0.0055 (10)0.0008 (10)
C120.0448 (12)0.0818 (17)0.0503 (13)0.0248 (12)0.0002 (10)0.0073 (12)
C130.0452 (12)0.0687 (16)0.0562 (14)0.0060 (11)0.0112 (11)0.0042 (12)
C140.0489 (12)0.0544 (12)0.0428 (12)0.0122 (10)0.0103 (10)0.0036 (10)
C150.0431 (10)0.0472 (11)0.0352 (10)0.0190 (9)0.0102 (8)0.0040 (8)
C160.0423 (11)0.0463 (11)0.0430 (11)0.0141 (9)0.0099 (9)0.0034 (9)
C170.095 (2)0.084 (2)0.0752 (19)0.0251 (17)0.0280 (17)0.0129 (16)
C180.084 (2)0.092 (2)0.096 (2)0.0307 (17)0.0325 (18)0.0203 (19)
C190.086 (2)0.109 (3)0.092 (2)0.0224 (19)0.0425 (19)0.034 (2)
C200.0716 (17)0.089 (2)0.0643 (17)0.0151 (15)0.0242 (14)0.0176 (15)
C210.0434 (12)0.0682 (15)0.0641 (15)0.0006 (11)0.0167 (11)0.0247 (13)
C220.0491 (13)0.0804 (18)0.0590 (16)0.0037 (13)0.0168 (12)0.0234 (12)
C230.094 (2)0.0747 (19)0.088 (2)0.0216 (17)0.0221 (18)0.0403 (17)
C240.083 (2)0.0746 (18)0.090 (2)0.0330 (16)0.0194 (17)0.0229 (16)
C250.0807 (19)0.089 (2)0.0634 (17)0.0311 (16)0.0094 (14)0.0180 (14)
N80.0666 (13)0.0675 (13)0.0563 (12)0.0171 (11)0.0154 (10)0.0189 (10)
C270.0594 (13)0.0383 (11)0.0583 (14)0.0029 (10)0.0216 (11)0.0111 (10)
C280.0711 (16)0.0411 (11)0.0533 (14)0.0038 (11)0.0189 (11)0.0124 (10)
Geometric parameters (Å, º) top
Ag3—C4i2.0449 (19)C8—H80.9300
Ag3—C32.048 (2)C9—C101.465 (3)
Ag2—C2ii2.056 (2)C10—C10v1.326 (4)
Ag2—C22.056 (2)C10—H100.9300
Ag1—C12.058 (2)C11—C121.364 (3)
Ag1—C1iii2.058 (2)C11—H110.9300
Fe—O12.1365 (15)C12—C131.368 (3)
Fe—O22.1392 (16)C12—H120.9300
Fe—N12.1440 (17)C13—C141.378 (3)
Fe—N42.1489 (16)C13—H130.9300
Fe—N22.1522 (16)C14—C151.377 (3)
Fe—N32.1539 (17)C14—H140.9300
O1—H1W0.75 (2)C15—C161.462 (3)
O1—H2W0.76 (2)C16—C16vi1.324 (4)
O2—H3W0.74 (2)C16—H160.9300
O2—H4W0.73 (3)C17—C181.360 (4)
N3—C31.133 (3)C17—H170.9300
N2—C21.129 (3)C18—C191.367 (4)
N1—C11.126 (3)C18—H180.9300
N4—C41.133 (2)C19—C201.374 (4)
N5—C51.333 (3)C19—H190.9300
N5—C91.343 (2)C20—C211.386 (3)
N6—C111.332 (3)C20—H200.9300
N6—C151.347 (2)C21—C221.471 (4)
N7—C171.327 (3)C22—C22vii1.322 (5)
N7—C211.336 (3)C22—H220.9300
C26—C231.378 (4)C23—C241.352 (4)
C26—C271.387 (3)C23—H230.9300
C26—H260.9300C24—C251.371 (3)
C4—Ag3iv2.0449 (19)C24—H240.9300
C5—C61.369 (3)C25—N81.318 (3)
C5—H50.9300C25—H250.9300
C6—C71.360 (3)N8—C271.335 (3)
C6—H60.9300C27—C281.469 (3)
C7—C81.369 (3)C28—C28viii1.320 (5)
C7—H70.9300C28—H280.9300
C8—C91.382 (3)
C4i—Ag3—C3179.00 (8)C10v—C10—H10117.5
C2ii—Ag2—C2180.000 (1)C9—C10—H10117.5
C1—Ag1—C1iii180.00 (16)N6—C11—C12123.8 (2)
O1—Fe—O2177.77 (6)N6—C11—H11118.1
O1—Fe—N188.80 (6)C12—C11—H11118.1
O2—Fe—N190.70 (7)C11—C12—C13118.7 (2)
O1—Fe—N488.18 (7)C11—C12—H12120.7
O2—Fe—N489.65 (7)C13—C12—H12120.7
N1—Fe—N490.30 (7)C12—C13—C14118.5 (2)
O1—Fe—N290.90 (6)C12—C13—H13120.7
O2—Fe—N289.60 (6)C14—C13—H13120.7
N1—Fe—N2179.69 (6)C15—C14—C13119.9 (2)
N4—Fe—N289.68 (7)C15—C14—H14120.0
O1—Fe—N391.17 (7)C13—C14—H14120.0
O2—Fe—N391.00 (7)N6—C15—C14121.16 (19)
N1—Fe—N389.61 (7)N6—C15—C16115.02 (17)
N4—Fe—N3179.35 (6)C14—C15—C16123.81 (18)
N2—Fe—N390.41 (7)C16vi—C16—C15125.7 (2)
Fe—O1—H1W126.2 (17)C16vi—C16—H16117.2
Fe—O1—H2W119.1 (19)C15—C16—H16117.2
H1W—O1—H2W106 (2)N7—C17—C18124.3 (3)
Fe—O2—H3W123.3 (19)N7—C17—H17117.9
Fe—O2—H4W116 (2)C18—C17—H17117.9
H3W—O2—H4W106 (3)C17—C18—C19117.6 (3)
C3—N3—Fe178.0 (2)C17—C18—H18121.2
C2—N2—Fe174.23 (18)C19—C18—H18121.2
C1—N1—Fe176.22 (19)C18—C19—C20119.7 (3)
C4—N4—Fe177.91 (19)C18—C19—H19120.2
C5—N5—C9117.53 (19)C20—C19—H19120.2
C11—N6—C15117.80 (18)C19—C20—C21119.2 (3)
C17—N7—C21118.4 (2)C19—C20—H20120.4
C23—C26—C27119.3 (3)C21—C20—H20120.4
C23—C26—H26120.4N7—C21—C20120.8 (3)
C27—C26—H26120.4N7—C21—C22114.9 (2)
N3—C3—Ag3179.1 (2)C20—C21—C22124.3 (3)
N2—C2—Ag2176.6 (2)C22vii—C22—C21124.8 (3)
N1—C1—Ag1175.4 (2)C22vii—C22—H22117.6
N4—C4—Ag3iv178.9 (2)C21—C22—H22117.6
N5—C5—C6124.1 (2)C24—C23—C26119.5 (3)
N5—C5—H5118.0C24—C23—H23120.2
C6—C5—H5118.0C26—C23—H23120.2
C7—C6—C5118.0 (2)C23—C24—C25117.7 (3)
C7—C6—H6121.0C23—C24—H24121.1
C5—C6—H6121.0C25—C24—H24121.1
C6—C7—C8119.4 (2)N8—C25—C24124.3 (3)
C6—C7—H7120.3N8—C25—H25117.9
C8—C7—H7120.3C24—C25—H25117.9
C7—C8—C9119.7 (2)C25—N8—C27118.2 (2)
C7—C8—H8120.2N8—C27—C26120.8 (2)
C9—C8—H8120.2N8—C27—C28115.41 (19)
N5—C9—C8121.18 (19)C26—C27—C28123.8 (2)
N5—C9—C10115.36 (18)C28viii—C28—C27125.7 (3)
C8—C9—C10123.46 (19)C28viii—C28—H28117.2
C10v—C10—C9125.1 (2)C27—C28—H28117.2
O1—Fe—N3—C398 (7)C7—C8—C9—C10176.4 (2)
O2—Fe—N3—C382 (7)N5—C9—C10—C10v158.2 (3)
N1—Fe—N3—C39 (7)C8—C9—C10—C10v21.1 (4)
N4—Fe—N3—C391 (9)C15—N6—C11—C121.8 (3)
N2—Fe—N3—C3172 (7)N6—C11—C12—C130.6 (4)
O1—Fe—N2—C26.4 (19)C11—C12—C13—C142.0 (4)
O2—Fe—N2—C2171.4 (19)C12—C13—C14—C151.0 (4)
N1—Fe—N2—C25 (14)C11—N6—C15—C142.8 (3)
N4—Fe—N2—C281.7 (19)C11—N6—C15—C16176.90 (17)
N3—Fe—N2—C297.6 (19)C13—C14—C15—N61.5 (3)
O1—Fe—N1—C1153 (3)C13—C14—C15—C16178.2 (2)
O2—Fe—N1—C129 (3)N6—C15—C16—C16vi159.6 (3)
N4—Fe—N1—C1119 (3)C14—C15—C16—C16vi20.1 (4)
N2—Fe—N1—C1155 (12)C21—N7—C17—C181.7 (4)
N3—Fe—N1—C162 (3)N7—C17—C18—C191.1 (5)
O1—Fe—N4—C434 (5)C17—C18—C19—C201.9 (5)
O2—Fe—N4—C4146 (5)C18—C19—C20—C210.0 (5)
N1—Fe—N4—C4123 (5)C17—N7—C21—C203.8 (4)
N2—Fe—N4—C457 (5)C17—N7—C21—C22176.0 (2)
N3—Fe—N4—C441 (9)C19—C20—C21—N73.0 (4)
Fe—N3—C3—Ag352 (20)C19—C20—C21—C22176.8 (3)
C4i—Ag3—C3—N352 (18)N7—C21—C22—C22vii167.0 (3)
Fe—N2—C2—Ag254 (5)C20—C21—C22—C22vii12.9 (5)
C2ii—Ag2—C2—N295 (100)C27—C26—C23—C240.2 (4)
Fe—N1—C1—Ag120 (6)C26—C23—C24—C252.4 (5)
C1iii—Ag1—C1—N1164 (100)C23—C24—C25—N82.5 (5)
Fe—N4—C4—Ag3iv78 (13)C24—C25—N8—C270.4 (4)
C9—N5—C5—C60.7 (3)C25—N8—C27—C263.2 (3)
N5—C5—C6—C72.2 (4)C25—N8—C27—C28175.4 (2)
C5—C6—C7—C82.6 (4)C23—C26—C27—N83.2 (4)
C6—C7—C8—C90.2 (4)C23—C26—C27—C28175.4 (2)
C5—N5—C9—C83.3 (3)N8—C27—C28—C28viii167.6 (3)
C5—N5—C9—C10176.02 (18)C26—C27—C28—C28viii11.0 (4)
C7—C8—C9—N52.9 (3)
Symmetry codes: (i) x1, y+1, z; (ii) x, y+1, z+1; (iii) x+1, y+2, z; (iv) x+1, y1, z; (v) x+1, y+1, z; (vi) x+1, y+1, z+1; (vii) x+2, y+2, z; (viii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H2W···N50.76 (3)2.07 (3)2.829 (2)174 (2)
O2—H4W···N60.73 (3)2.09 (3)2.823 (3)174 (3)
O1—H1W···N7ix0.75 (3)2.14 (3)2.870 (3)164
O2—H3W···N8x0.74 (3)2.15 (3)2.868 (3)162
Symmetry codes: (ix) x1, y, z; (x) x, y+1, z.
Selected geometric parameters (Å, º) top
Fe—O12.1365 (15)Fe—N42.1489 (16)
Fe—O22.1392 (16)Fe—N22.1522 (16)
Fe—N12.1440 (17)Fe—N32.1539 (17)
O1—Fe—O2177.77 (6)N1—Fe—N2179.69 (6)
O1—Fe—N188.80 (6)N4—Fe—N289.68 (7)
O2—Fe—N190.70 (7)O1—Fe—N391.17 (7)
O1—Fe—N488.18 (7)O2—Fe—N391.00 (7)
O2—Fe—N489.65 (7)N1—Fe—N389.61 (7)
N1—Fe—N490.30 (7)N4—Fe—N3179.35 (6)
O1—Fe—N290.90 (6)N2—Fe—N390.41 (7)
O2—Fe—N289.60 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H2W···N50.76 (3)2.07 (3)2.829 (2)174 (2)
O2—H4W···N60.73 (3)2.09 (3)2.823 (3)174 (3)
O1—H1W···N7i0.75 (3)2.14 (3)2.870 (3)164
O2—H3W···N8ii0.74 (3)2.15 (3)2.868 (3)162
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ag2Fe(CN)4(H2O)2]·2C12H10N2
Mr776.14
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.2078 (4), 9.8558 (5), 18.9029 (9)
α, β, γ (°)77.667 (1), 77.507 (1), 67.900 (1)
V3)1535.11 (13)
Z2
Radiation typeMo Kα
µ (mm1)1.77
Crystal size (mm)0.43 × 0.11 × 0.09
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.684, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
21143, 7389, 5865
Rint0.024
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.073, 1.03
No. of reflections7389
No. of parameters389
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.37

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), publCIF (Westrip, 2010).

 

Acknowledgements

The authors gratefully acknowledge The Thailand Research Fund (BRG5680009), the Higher Education Research Promotion and National Research University Project of Thailand, through the Advanced Functional Materials Cluster of Khon Kaen University, and the center of Excellence for Innovation in Chemistry (PERCH–CIC), Office of the Higher Education Commission, Ministry of Education, Thailand, for financial support.

References

First citationBiswas, A., Jana, S. S., Sparkes, H. A., Howard, J. A., Alcalde, N. A. & Mohanta, S. (2014). Polyhedron, 74, 57–66.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2007). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDong, W., Wang, Q. L., Si, S. F., Liao, D. Z., Jiang, Z. H., Yan, S. P. & Cheng, P. (2003). Inorg. Chem. Commun. 6, 873–876.  Web of Science CSD CrossRef CAS Google Scholar
First citationHorike, S., Dinca, M., Tamaki, K. & Long, J. R. (2008). J. Am. Chem. Soc., 130, 5854–5855.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMunoz, M. C., Gasper, A. B., Galet, A. & Real, J. A. (2007). Inorg. Chem. 46, 8182–8192.  Web of Science PubMed CAS Google Scholar
First citationNiel, V., Munoz, M. C., Gasper, A. B., Galet, A., Levchenko, G. & Real, J. A. (2002). Chem. Eur. J. 11, 2446–2453.  CrossRef Google Scholar
First citationSanda, S., Parshamoni, S. & Konar, S. (2013). Cryst. Growth Des. 13, 5442–5449.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoma, T. & Iwamoto, T. (1996). Inorg. Chem. 35, 1849–1856.  CSD CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, J., Chen, Y. B., Li, Z. J., Qin, Y. Y. & Yao, Y. G. (2008). Chem. Commun. 19, 2233–2235.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 8| August 2014| Pages 107-110
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds