research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of potassium tri­fluorido­(4-meth­­oxy­phen­yl)borate and potassium tri­fluorido(4-fluoro­phen­yl)borate

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, and bFioCruz-Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos-Far-Manguinhos, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: w.harrison@abdn.ac.uk

Edited by M. Weil, Vienna University of Technology, Austria (Received 16 April 2014; accepted 29 April 2014; online 19 July 2014)

The title compounds, K+·C7H7BF3O, (I), and K+·C6H4BF4, (II), are mol­ecular salts containing para-substituted phenyl­tri­fluorido­borate anions. In each compound, the B atom adopts a distorted tetra­hedral BCF3 geometry. Despite their different compositions and space groups, the irregular KF8 coordination polyhedra of the potassium cations in the structures are almost identical. These polyhedra share faces and edges, generating infinite (010) layers in (I) and infinite (001) layers in (II). In (I), adjacent layers are stacked in an AAA… fashion, whereas in (II), they are stacked in an ABAB… sequence.

1. Chemical context

The phenyl­tri­fluorido­borate anion is an inter­esting inter­mediate species between the well-known tetra­fluorido­borate (BF4) and tetra­phenyl­borate [B(C6H5)4] ions (Conole et al., 1995[Conole, G., Clough, A. & Whiting, A. (1995). Acta Cryst. C51, 1056-1059.]) and may serve as a bulky charge-balancing anion (Quach et al., 2001[Quach, T. D., Batey, R. A. & Lough, A. J. (2001). Acta Cryst. E57, o688-o689.]; Fei et al., 2010[Fei, Z., Zhu, D.-R., Yang, X., Meng, L., Lu, Q., Ang, W. H., Scopelliti, R., Hartinger, C. G. & Dyson, P. J. (2010). Chem. Eur. J. 16, 6473-6481.]). As part of our studies in this area, we now describe the syntheses and structures of the para-substituted phenyl­tri­fluorido­borate salts K+C7H7BF3O (I)[link] and K+C6H4BF4 (II)[link].

[Scheme 1]

2. Structural commentary

Compound (I)[link] comprises one cation and one anion in the asymmetric unit (Fig. 1[link]). In the anion, the C7 atom of the meth­oxy group is close to coplanar with the benzene ring [displacement = 0.048 (2) Å]. The B atom adopts its expected tetra­hedral BF3C geometry (Conole et al., 1995[Conole, G., Clough, A. & Whiting, A. (1995). Acta Cryst. C51, 1056-1059.]) and the C1—B1 bond length of 1.5987 (18) Å is consistent with previous data (Quach et al., 2001[Quach, T. D., Batey, R. A. & Lough, A. J. (2001). Acta Cryst. E57, o688-o689.]). One of the B—F bonds (to F1) in (I)[link] is notably longer than the other two, which might reflect the different modes of coordination of the fluorine atoms to the potassium ions. The F—B—F bond angles (mean = 105.7°) are significantly smaller than the C—B—F angles (mean = 113.0°). F1 is displaced by −1.427 (2) Å from the plane of the benzene ring and F2 and F3 are displaced in the opposite sense, by 0.715 (2) and 0.252 (2) Å, respectively.

[Figure 1]
Figure 1
The asymmetric unit of (I)[link] showing 50% displacement ellipsoids.

The potassium ion in (I)[link] is coordinated by eight fluorine atoms, with one of the K—F bonds substanti­ally longer than the others (Table 1[link]): the next-nearest F atom is over 4 Å distant. The coordination geometry of the K+ ion, which arises from one tridentate, one bidentate and three monodentate BF3 groups, is irregular and highly asymmetric (Fig. 2[link]), with five of the F atoms forming an approximate plane and the other three (arising from one BF3 group) lying to one side. The metal ion is displaced by 1.00 Å from the geometric centroid of the eight F atoms. In terms of the F atoms in (I)[link], F1 bonds to three different metal ions (mean K—F = 2.734 Å), generating a distorted FBK3 tetra­hedron, whereas F2 bonds to two K+ ions (mean K—F = 2.755 Å) in an FBK2 distorted T-shape. If the geometry around F3 is not merely deemed to be irregular, it could be described as an FBK3 trigonal-based pyramid, with the long K—F bond (Table 1[link]) as the apex (mean K—F = 2.963 Å). The extended structure in (I)[link] consists of (010) sheets in which the KF8 polyhedra share faces in the [100] direction and edges in [001]: the shortest K⋯K separation is 4.4523 (4) Å.

Table 1
Selected bond lengths (Å) for (I)[link]

K1—F3i 2.6156 (10) K1—F2iv 2.8885 (8)
K1—F2ii 2.6211 (7) K1—F3iv 3.4886 (9)
K1—F1iii 2.6550 (10) B1—F3 1.4162 (19)
K1—F1iv 2.7568 (10) B1—F2 1.4196 (14)
K1—F3 2.7836 (8) B1—F1 1.4403 (17)
K1—F1 2.7887 (8)    
Symmetry codes: (i) [-x+{\script{3\over 2}}, y, z-{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [-x+{\script{3\over 2}}, y, z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+1, z].
[Figure 2]
Figure 2
The coordination of the potassium ion in (I)[link]. See Table 1[link] for symmetry codes.

The asymmetric unit of compound (II)[link] also consists of an ion-pair (Fig. 3[link]). The geometry of the anion in (II)[link] is very similar to that of the equivalent species in (I)[link]: the C1—B1 bond length is 1.590 (2) Å and the mean F—B—F and C—B—F bond angles are 105.5 and 113.2°, respectively. The displace­ments of F1, F2 and F3 from the benzene-ring plane are −1.386 (2), 0.813 (3) and 0.131 (3) Å, respectively. As seen for (I)[link], the B1—F1 bond in (II)[link] is noticeably longer than the B1—F2 and B1—F3 bonds.

[Figure 3]
Figure 3
The asymmetric unit of (II)[link] showing 50% displacement ellipsoids.

It is notable that the K+ ion in (II)[link] adopts a very similar coordination geometry (Table 2[link]) to the equivalent species in (I)[link], despite the different space groups. Again, a very asymmetric KF8 coordination polyhedron (Fig. 4[link]) arises from one tridentate, one bidentate and three monodentate anions; one K—F bond is much longer than the others and the potassium ion is displaced by 0.98 Å from the geometric centroid of the fluorine atoms.

Table 2
Selected bond lengths (Å) for (II)[link]

K1—F3i 2.6116 (10) K1—F2iv 2.8853 (10)
K1—F2ii 2.6159 (9) K1—F3iv 3.3927 (10)
K1—F1iii 2.6527 (9) B1—F2 1.4166 (17)
K1—F1iv 2.7612 (10) B1—F3 1.4182 (19)
K1—F3 2.7732 (9) B1—F1 1.4393 (18)
K1—F1 2.8050 (9)    
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) x-1, y, z; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iv) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].
[Figure 4]
Figure 4
The coordination of the potassium ion in (II)[link]. See Table 2[link] for symmetry codes.

The extended structure of (II)[link] consists of (001) sheets [rather than (010) sheets, as seen in (I)] of face- and edge-sharing KF8 groups with the same topology as in (I)[link]: the shortest K⋯K separation is 4.4255 (5) Å.

3. Supra­molecular features

In (I)[link] the meth­oxy­phenyl groups lie roughly normal to (010). When the packing is viewed along [101] (Fig. 5[link]), it may be seen that adjacent benzene ring planes are rotated by 90°, which facilitates the formation of a weak edge-to-face intra-sheet C—H⋯π inter­action (Table 3[link]). An intra-sheet C2—H2⋯F2 hydrogen bond also occurs. The only possible inter-sheet inter­action in (I)[link] is an extremely weak C—H⋯O hydrogen bond with an H⋯O separation essentially the same as the van der Waals separation of these species. The layer-stacking sequence for (I)[link] is AAA….

Table 3
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯F2v 0.95 2.50 3.3359 (17) 147
C7—H7a⋯O1vi 0.98 2.72 3.496 (1) 137
C3—H3⋯Cg1v 0.95 2.85 3.7171 (15) 152
Symmetry codes: (v) [-x+{\script{1\over 2}}, y, z-{\script{1\over 2}}]; (vi) [-x+1, -y+2, z-{\script{1\over 2}}].
[Figure 5]
Figure 5
The unit-cell packing in (I)[link] viewed approximately down [101].

When the crystal structure of (II)[link] is viewed down [110] (Fig. 6[link]), adjacent aromatic rings show the same 90° rotation as they do in (I)[link], but the only directional inter­action identified is an intra­layer weak C—H⋯F hydrogen bond (Table 4[link]) and there are no C—H⋯π inter­actions. There are no identified inter-layer inter­actions and the stacking sequence is ABAB….

Table 4
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯F2v 0.95 2.53 3.4099 (19) 154
Symmetry code: (v) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].
[Figure 6]
Figure 6
The unit-cell packing in (II)[link] viewed approximately down [110].

4. Database survey

Compound (I)[link] is closely related to K+.C6H5BF3 (Conole et al., 1995[Conole, G., Clough, A. & Whiting, A. (1995). Acta Cryst. C51, 1056-1059.]), (III). Compounds (I)[link] and (III) have the same space group and a similar unit cell, extended in the b-axis direction for (I)[link] to accommodate the meth­oxy group. The potassium ion in (III) has almost the same KF8 coordination geometry as the equivalent species in (I)[link] and (II)[link] described above. In (III), weak edge-to-face C—H⋯π inter­actions occur between approximately perpendicular aromatic rings, as they do in (I)[link]. As already noted, the C6H5BF3 anion has found use as a bulky charge-balancing species (Quach et al., 2001[Quach, T. D., Batey, R. A. & Lough, A. J. (2001). Acta Cryst. E57, o688-o689.]; Fei et al., 2010[Fei, Z., Zhu, D.-R., Yang, X., Meng, L., Lu, Q., Ang, W. H., Scopelliti, R., Hartinger, C. G. & Dyson, P. J. (2010). Chem. Eur. J. 16, 6473-6481.]).

5. Synthesis and crystallization

(I) and (II)[link] were received as commercial samples from Aldrich and recrystallized from ethanol solution, yielding colourless blocks.

6. Refinement

The H atoms were placed in idealized positions (C—H = 0.95–0.98 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The methyl group in (I)[link] was allowed to rotate, but not to tip, to best fit the electron density.. Experimental details are given in Table 5[link].

Table 5
Experimental details

  (I) (II)
Crystal data
Chemical formula K+·C7H7BF3O K+·C6H4BF4
Mr 214.04 202.00
Crystal system, space group Orthorhombic, Pca21 Orthorhombic, Pbca
Temperature (K) 120 100
a, b, c (Å) 7.1347 (2), 17.2819 (7), 7.3289 (3) 7.1317 (5), 7.3757 (5), 29.129 (2)
V3) 903.66 (6) 1532.22 (18)
Z 4 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.59 0.70
Crystal size (mm) 0.52 × 0.15 × 0.15 0.07 × 0.05 × 0.01
 
Data collection
Diffractometer Rigaku CCD Rigaku CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2012[Bruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.750, 0.917 0.953, 0.993
No. of measured, independent and observed [I > 2σ(I)] reflections 5789, 1833, 1822 9537, 1726, 1435
Rint 0.026 0.037
(sin θ/λ)max−1) 0.649 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.059, 1.10 0.027, 0.065, 1.06
No. of reflections 1833 1726
No. of parameters 120 109
No. of restraints 1 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.20 0.27, −0.23
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 712 Friedel pairs
Absolute structure parameter 0.02 (3)
Computer programs: CrystalClear (Rigaku, 2010[Rigaku (2010). CrystalClear. Rigaku Inc., Tokyo, Japan.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

The phenyl­trifluoridoborate anion is an inter­esting inter­mediate species between the well-known tetra­fluoridoborate (BF4-) and tetra­phenyl­borate [B(C6H5)4-] ions (Conole et al., 1995) and may serve as a bulky charge-balancing anion (Quach et al., 2001; Fei et al., 2010). As part of our studies in this area, we now describe the syntheses and structures of the para-substituted phenyl­trifluoridoborate salts K+C7H7BF3O- (I) and K+C6H4BF4- (II).

Structural commentary top

Compound (I) comprises one cation and one anion in the asymmetric unit (Fig. 1). In the anion, the C7 atom of the meth­oxy group is close to coplanar with the benzene ring [displacement = 0.048 (2) Å]. The B atom adopts its expected tetra­hedral BF3C geometry (Conole et al., 1995) and the C1—B1 bond length of 1.5987 (18) Å is consistent with previous data (Quach et al., 2001). One of the B—F bonds (to F1) in (I) is notably longer than the other two, which might reflect the different modes of coordinations of the fluorine atoms to the potassium ions. The F—B—F bond angles (mean = 105.7°) are significantly smaller than the C—B—F angles (mean = 113.0°). F1 is displaced by -1.427 (2) Å from the plane of the benzene ring and F2 and F3 are displaced in the opposite sense, by 0.715 (2) and 0.252 (2) Å, respectively.

The potassium ion in (I) is coordinated by eight fluorine atoms, with one of the K—F bonds substanti­ally longer than the others (Table 2): the next-nearest F atom is over 4 Å distant. The coordination geometry of the K+ ion, which arises from one tridentate, one bidentate and three monodentate BF3- groups, is irregular and highly asymmetric (Fig. 2), with five of the F atoms forming an approximate plane and the other three (arising from one BF3 group) lying to one side. The metal ion is displaced by 1.00 Å from the geometric centroid of the eight F atoms. In terms of the F atoms in (I), F1 bonds to three different metal ions (mean K—F = 2.734 Å), generating a distorted FBK3 tetra­hedron, whereas F2 bonds to two K+ ions (mean K—F = 2.755 Å) in an FBK2 distorted T-shape. If the geometry around F3 is not merely deemed to be irregular, it could be described as an FBK3 trigonal-based pyramid, with the long K—F bond (Table 1) as the apex (mean K—F = 2.963 Å). The extended structure in (I) consists of (010) sheets in which the KF8 polyhedra share faces in the [100] direction and edges in [001]: the shortest K···K separation is 4.4523 (4) Å.

The asymmetric unit of compound (II) also consists of an ion-pair (Fig. 3). The geometry of the anion in (II) is very similar to that of the equivalent species in (I): the C1—B1 bond length is 1.590 (2) Å and the mean F—B—F and C—B—F bond angles are 105.5 and 113.2°, respectively. The displacements of F1, F2 and F3 from the benzene-ring plane are –1.386 (2), 0.813 (3) and 0.131 (3) Å, respectively. As seen for (I), the B1—F1 bond in (II) is noticeably longer than the B1—F2 and B1—F3 bonds.

It is notable that the K+ ion in (II) adopts a very similar coordination geometry (Table 3) to the equivalent species in (I), despite the different space groups. Again, a very asymmetric KF8 coordination polyhedron (Fig. 4) arises from one tridentate, one bidentate and three monodentate anions; one K—F bond is much longer than the others and the potassium ion is displaced by 0.98 Å from the geometric centroid of the fluorine atoms.

The extended structure of (II) consists of (001) sheets [rather than (010) sheets, as seen in (I)] of face- and edge-sharing KF8 groups with the same topology as in (I): the shortest K···K separation is 4.4255 (5) Å.

Supra­molecular features top

In (I) the meth­oxy­phenyl groups lie roughly normal to (010). When the packing is viewed along [101] (Fig. 5), it may be seen that adjacent benzene ring planes are rotated by 90°, which facilitates the formation of a weak edge-to-face intra-sheet C—H···π inter­action (Table 4). An intra-sheet C2—H2···F2 hydrogen bond also occurs. The only possible inter-sheet inter­action in (I) is an extremely weak C—H···O hydrogen bond with an H···O separation essentially the same as the van der Waals separation of these species. The layer-stacking sequence for (I) is AAA··· .

When the crystal structure of (II) is viewed down [110] (Fig. 6), adjacent aromatic rings show the same 90° rotation as they do in (I), but the only directional inter­action identified is an intra­layer weak C—H···F hydrogen bond (Table 5) and there are no C—H···π inter­actions. There are no identified inter-layer inter­actions and the stacking sequence is ABAB··· .

Database survey top

Compound (I) is closely related to K+.C6H5BF3- (Conole et al., 1995) (III). Compounds (I) and (III) have the same space group and a similar unit cell, extended in the b-axis direction for (I) to accommodate the meth­oxy group. The potassium ion in (III) has almost the same KF8 coordination geometry as the equivalent species in (I) and (II) described above. In (III), weak edge-to-face C—H···π inter­actions occur between approximately perpendicular aromatic rings, as they do in (I). As already noted, the C6H5BF3- anion has found use as a bulky charge-balancing species (Quach et al., 2001; Fei et al., 2010).

Synthesis and crystallization top

(I) and (II) were received as commercial samples from Aldrich and recrystallized from ethanol solution, yielding colourless blocks.

Refinement top

The H atoms were placed in idealized positions (C—H = 0.95–0.98 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The methyl group in (I) was allowed to rotate, but not to tip, to best fit the electron density.

Related literature top

For related literature, see: Conole et al. (1995); Fei et al. (2010); Quach et al. (2001).

Computing details top

For both compounds, data collection: CrystalClear (Rigaku, 2010); cell refinement: CrystalClear (Rigaku, 2010); data reduction: CrystalClear (Rigaku, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) showing 50% displacement ellipsoids.
[Figure 2] Fig. 2. The coordination of the potassium ion in (I). See Table 2 for symmetry codes.
[Figure 3] Fig. 3. The asymmetric unit of (II) showing 50% displacement ellipsoids.
[Figure 4] Fig. 4. The coordination of the potassium ion in (II). See Table 3 for symmetry codes.
[Figure 5] Fig. 5. The unit-cell packing in (I) viewed approximately down [101].
[Figure 6] Fig. 6. The unit-cell packing in (II) viewed approximately down [110].
(I) Potassium trifluorido(4-methoxyphenyl)borate top
Crystal data top
K+·C7H7BF3ODx = 1.573 Mg m3
Mr = 214.04Mo Kα radiation, λ = 0.71075 Å
Orthorhombic, Pca21Cell parameters from 4830 reflections
a = 7.1347 (2) Åθ = 1.2–27.5°
b = 17.2819 (7) ŵ = 0.59 mm1
c = 7.3289 (3) ÅT = 120 K
V = 903.66 (6) Å3Block, colourless
Z = 40.52 × 0.15 × 0.15 mm
F(000) = 432
Data collection top
Rigaku CCD
diffractometer
1833 independent reflections
Radiation source: fine-focus sealed tube1822 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 27.5°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 99
Tmin = 0.750, Tmax = 0.917k = 2220
5789 measured reflectionsl = 89
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.021 w = 1/[σ2(Fo2) + (0.035P)2 + 0.1245P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.059(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.24 e Å3
1833 reflectionsΔρmin = 0.20 e Å3
120 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0115 (14)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 712 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.02 (3)
Crystal data top
K+·C7H7BF3OV = 903.66 (6) Å3
Mr = 214.04Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 7.1347 (2) ŵ = 0.59 mm1
b = 17.2819 (7) ÅT = 120 K
c = 7.3289 (3) Å0.52 × 0.15 × 0.15 mm
Data collection top
Rigaku CCD
diffractometer
1833 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
1822 reflections with I > 2σ(I)
Tmin = 0.750, Tmax = 0.917Rint = 0.026
5789 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.059Δρmax = 0.24 e Å3
S = 1.10Δρmin = 0.20 e Å3
1833 reflectionsAbsolute structure: Flack (1983), 712 Friedel pairs
120 parametersAbsolute structure parameter: 0.02 (3)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.93636 (3)0.577078 (16)0.49116 (4)0.01659 (9)
C10.48663 (17)0.69908 (7)0.3989 (2)0.0159 (3)
C20.36313 (18)0.72309 (8)0.2628 (2)0.0195 (3)
H20.27180.68750.21990.023*
C30.36757 (18)0.79722 (8)0.1867 (2)0.0223 (3)
H30.28130.81140.09380.027*
C40.5004 (2)0.84983 (8)0.2493 (2)0.0208 (3)
C50.62439 (19)0.82828 (8)0.3880 (2)0.0233 (3)
H50.71390.86430.43240.028*
C60.61673 (19)0.75407 (8)0.4608 (2)0.0206 (3)
H60.70180.74020.55490.025*
C70.3970 (3)0.94712 (11)0.0422 (3)0.0393 (5)
H7A0.42781.00000.00440.059*
H7B0.26740.94540.08650.059*
H7C0.41050.91210.06220.059*
B10.48502 (18)0.61227 (8)0.4743 (2)0.0153 (3)
F10.57562 (10)0.55930 (5)0.35081 (13)0.01754 (18)
F20.30347 (10)0.58074 (4)0.50165 (17)0.02096 (19)
F30.58402 (11)0.60460 (5)0.64078 (13)0.02023 (19)
O10.52053 (18)0.92364 (6)0.1842 (2)0.0297 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.01225 (13)0.02391 (15)0.01361 (16)0.00081 (8)0.00031 (12)0.00042 (12)
C10.0132 (5)0.0193 (6)0.0152 (6)0.0009 (5)0.0007 (5)0.0009 (5)
C20.0199 (6)0.0204 (6)0.0183 (7)0.0015 (5)0.0044 (5)0.0014 (6)
C30.0233 (6)0.0229 (6)0.0206 (7)0.0011 (5)0.0043 (5)0.0017 (6)
C40.0234 (6)0.0167 (6)0.0222 (7)0.0007 (5)0.0007 (6)0.0011 (6)
C50.0223 (6)0.0200 (6)0.0277 (8)0.0036 (5)0.0054 (5)0.0028 (6)
C60.0181 (5)0.0211 (6)0.0226 (8)0.0002 (5)0.0046 (5)0.0010 (6)
C70.0421 (9)0.0273 (7)0.0484 (13)0.0011 (7)0.0085 (8)0.0167 (9)
B10.0121 (5)0.0185 (6)0.0153 (7)0.0000 (4)0.0002 (6)0.0008 (6)
F10.0182 (4)0.0196 (4)0.0148 (5)0.0031 (3)0.0025 (3)0.0007 (4)
F20.0129 (3)0.0209 (3)0.0291 (5)0.0015 (2)0.0028 (4)0.0004 (3)
F30.0204 (3)0.0271 (4)0.0132 (5)0.0004 (3)0.0022 (3)0.0025 (4)
O10.0352 (5)0.0176 (5)0.0362 (8)0.0009 (4)0.0037 (6)0.0052 (5)
Geometric parameters (Å, º) top
K1—F3i2.6156 (10)C4—C51.398 (2)
K1—F2ii2.6211 (7)C5—C61.390 (2)
K1—F1iii2.6550 (10)C5—H50.9500
K1—F1iv2.7568 (10)C6—H60.9500
K1—F32.7836 (8)C7—O11.423 (2)
K1—F12.7887 (8)C7—H7A0.9800
K1—F2iv2.8885 (8)C7—H7B0.9800
K1—F3iv3.4886 (9)C7—H7C0.9800
C1—C21.3940 (19)B1—F31.4162 (19)
C1—C61.4036 (18)B1—F21.4196 (14)
C1—B11.5987 (18)B1—F11.4403 (17)
C2—C31.398 (2)B1—K1v3.2930 (14)
C2—K1i3.5183 (15)F1—K1i2.6550 (10)
C2—H20.9500F1—K1v2.7568 (10)
C3—C41.3910 (19)F2—K1vi2.6211 (7)
C3—H30.9500F2—K1v2.8885 (8)
C4—O11.3696 (17)F3—K1iii2.6157 (10)
F3i—K1—F2ii94.59 (3)O1—C4—C5115.78 (13)
F3i—K1—F1iii173.67 (3)C3—C4—C5119.79 (13)
F2ii—K1—F1iii90.34 (3)C6—C5—C4119.99 (13)
F3i—K1—F1iv79.00 (3)C6—C5—H5120.0
F2ii—K1—F1iv70.82 (2)C4—C5—H5120.0
F1iii—K1—F1iv106.45 (2)C5—C6—C1121.78 (14)
F3i—K1—F3107.78 (2)C5—C6—H6119.1
F2ii—K1—F3152.47 (3)C1—C6—H6119.1
F1iii—K1—F366.40 (3)O1—C7—H7A109.5
F1iv—K1—F3128.21 (2)O1—C7—H7B109.5
F3i—K1—F166.83 (3)H7A—C7—H7B109.5
F2ii—K1—F1159.35 (3)O1—C7—H7C109.5
F1iii—K1—F1108.89 (2)H7A—C7—H7C109.5
F1iv—K1—F195.79 (2)H7B—C7—H7C109.5
F3—K1—F147.98 (3)F3—B1—F2107.30 (13)
F3i—K1—F2iv100.35 (3)F3—B1—F1104.95 (10)
F2ii—K1—F2iv110.489 (19)F2—B1—F1104.73 (10)
F1iii—K1—F2iv81.59 (3)F3—B1—C1112.45 (11)
F1iv—K1—F2iv47.24 (3)F2—B1—C1114.56 (11)
F3—K1—F2iv81.63 (2)F1—B1—C1112.10 (12)
F1—K1—F2iv66.60 (3)B1—F1—K1i122.39 (8)
C2—C1—C6116.59 (12)B1—F1—K1v98.47 (7)
C2—C1—B1121.46 (12)K1i—F1—K1v117.24 (3)
C6—C1—B1121.90 (12)B1—F1—K196.46 (7)
C1—C2—C3122.95 (12)K1i—F1—K1112.53 (3)
C1—C2—K1i86.24 (8)K1v—F1—K1106.81 (3)
C3—C2—K1i114.99 (10)B1—F2—K1vi156.48 (8)
C1—C2—H2118.5B1—F2—K1v93.39 (6)
C3—C2—H2118.5K1vi—F2—K1v107.73 (2)
K1i—C2—H268.1B1—F3—K1iii146.64 (8)
C4—C3—C2118.88 (13)B1—F3—K197.29 (7)
C4—C3—H3120.6K1iii—F3—K1113.95 (3)
C2—C3—H3120.6C4—O1—C7117.09 (13)
O1—C4—C3124.43 (14)
C6—C1—C2—C31.2 (2)C2—C1—C6—C51.1 (2)
B1—C1—C2—C3176.35 (14)B1—C1—C6—C5176.46 (14)
C6—C1—C2—K1i118.72 (12)C2—C1—B1—F3164.66 (12)
B1—C1—C2—K1i58.84 (12)C6—C1—B1—F317.90 (18)
C1—C2—C3—C40.2 (2)C2—C1—B1—F241.81 (19)
K1i—C2—C3—C4102.69 (14)C6—C1—B1—F2140.76 (15)
C2—C3—C4—O1179.10 (14)C2—C1—B1—F177.36 (16)
C2—C3—C4—C50.9 (2)C6—C1—B1—F1100.07 (15)
O1—C4—C5—C6178.99 (14)C3—C4—O1—C70.4 (2)
C3—C4—C5—C61.0 (2)C5—C4—O1—C7179.62 (15)
C4—C5—C6—C10.0 (2)
Symmetry codes: (i) x+3/2, y, z1/2; (ii) x+1, y, z; (iii) x+3/2, y, z+1/2; (iv) x+1/2, y+1, z; (v) x1/2, y+1, z; (vi) x1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···F2vii0.952.503.3359 (17)147
C7—H7a···O1viii0.982.723.496 (1)137
C3—H3···Cg1vii0.952.853.7171 (15)152
Symmetry codes: (vii) x+1/2, y, z1/2; (viii) x+1, y+2, z1/2.
(II) Potassium trifluorido(4-fluorophenyl)borate top
Crystal data top
K+·C6H4BF4F(000) = 800
Mr = 202.00Dx = 1.751 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ac 2abCell parameters from 8210 reflections
a = 7.1317 (5) Åθ = 3.2–27.5°
b = 7.3757 (5) ŵ = 0.70 mm1
c = 29.129 (2) ÅT = 100 K
V = 1532.22 (18) Å3Block, colourless
Z = 80.07 × 0.05 × 0.01 mm
Data collection top
Rigaku CCD
diffractometer
1726 independent reflections
Radiation source: fine-focus sealed tube1435 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 98
Tmin = 0.953, Tmax = 0.993k = 97
9537 measured reflectionsl = 3237
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0274P)2 + 0.6658P]
where P = (Fo2 + 2Fc2)/3
1726 reflections(Δ/σ)max = 0.001
109 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
K+·C6H4BF4V = 1532.22 (18) Å3
Mr = 202.00Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.1317 (5) ŵ = 0.70 mm1
b = 7.3757 (5) ÅT = 100 K
c = 29.129 (2) Å0.07 × 0.05 × 0.01 mm
Data collection top
Rigaku CCD
diffractometer
1726 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
1435 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.993Rint = 0.037
9537 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.06Δρmax = 0.27 e Å3
1726 reflectionsΔρmin = 0.23 e Å3
109 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.06924 (4)0.02356 (5)0.205013 (12)0.01668 (10)
C10.5118 (2)0.1023 (2)0.13156 (5)0.0161 (3)
C20.3892 (2)0.0245 (2)0.09978 (6)0.0213 (3)
H20.31300.07450.10910.026*
C30.3750 (2)0.0869 (2)0.05506 (6)0.0245 (4)
H30.29050.03240.03390.029*
C40.4867 (2)0.2301 (2)0.04213 (5)0.0236 (4)
C50.6112 (2)0.3121 (2)0.07145 (6)0.0250 (4)
H50.68710.41050.06160.030*
C60.6226 (2)0.2463 (2)0.11604 (6)0.0207 (3)
H60.70850.30110.13670.025*
B10.5200 (2)0.0373 (2)0.18355 (6)0.0147 (3)
F10.43225 (11)0.16564 (12)0.21396 (3)0.0178 (2)
F20.70288 (11)0.01321 (13)0.20154 (3)0.0210 (2)
F30.42107 (11)0.12680 (12)0.19106 (3)0.0193 (2)
F40.47218 (15)0.29343 (14)0.00157 (3)0.0327 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.01228 (15)0.01386 (17)0.02390 (18)0.00022 (12)0.00079 (12)0.00020 (13)
C10.0143 (6)0.0139 (7)0.0200 (8)0.0019 (6)0.0007 (6)0.0006 (6)
C20.0214 (7)0.0201 (8)0.0225 (8)0.0029 (7)0.0016 (6)0.0002 (7)
C30.0268 (8)0.0256 (9)0.0211 (9)0.0019 (7)0.0056 (7)0.0016 (7)
C40.0306 (9)0.0243 (9)0.0160 (8)0.0046 (7)0.0013 (6)0.0020 (7)
C50.0296 (9)0.0221 (9)0.0234 (9)0.0056 (7)0.0052 (6)0.0014 (7)
C60.0222 (7)0.0189 (8)0.0211 (8)0.0050 (7)0.0007 (6)0.0014 (7)
B10.0116 (7)0.0130 (8)0.0194 (8)0.0014 (6)0.0006 (6)0.0008 (6)
F10.0184 (4)0.0152 (5)0.0198 (5)0.0027 (4)0.0027 (3)0.0012 (4)
F20.0125 (4)0.0295 (5)0.0209 (5)0.0032 (4)0.0024 (3)0.0012 (4)
F30.0205 (4)0.0125 (5)0.0247 (5)0.0017 (4)0.0003 (4)0.0026 (4)
F40.0474 (6)0.0332 (6)0.0174 (5)0.0013 (5)0.0007 (5)0.0061 (4)
Geometric parameters (Å, º) top
K1—F3i2.6116 (10)C4—F41.3597 (18)
K1—F2ii2.6159 (9)C4—C51.373 (2)
K1—F1iii2.6527 (9)C5—C61.389 (2)
K1—F1iv2.7612 (10)C5—H50.9500
K1—F32.7732 (9)C6—H60.9500
K1—F12.8050 (9)B1—F21.4166 (17)
K1—F2iv2.8853 (10)B1—F31.4182 (19)
K1—F3iv3.3927 (10)B1—F11.4393 (18)
C1—C21.397 (2)B1—K1v3.2665 (18)
C1—C61.399 (2)F1—K1i2.6527 (9)
C1—B11.590 (2)F1—K1v2.7612 (9)
C2—C31.385 (2)F2—K1vi2.6159 (9)
C2—H20.9500F2—K1v2.8852 (10)
C3—C41.375 (2)F3—K1iii2.6116 (10)
C3—H30.9500F3—K1v3.3928 (10)
F3i—K1—F2ii92.82 (3)F4—C4—C3118.44 (15)
F3i—K1—F1iii176.44 (3)C5—C4—C3122.87 (16)
F2ii—K1—F1iii88.32 (3)C4—C5—C6117.74 (16)
F3i—K1—F1iv76.56 (3)C4—C5—H5121.1
F2ii—K1—F1iv71.99 (3)C6—C5—H5121.1
F1iii—K1—F1iv107.00 (2)C5—C6—C1122.34 (15)
F3i—K1—F3110.37 (2)C5—C6—H6118.8
F2ii—K1—F3152.42 (3)C1—C6—H6118.8
F1iii—K1—F367.67 (3)F2—B1—F3107.08 (12)
F1iv—K1—F3126.67 (3)F2—B1—F1104.80 (12)
F3i—K1—F167.74 (3)F3—B1—F1104.48 (11)
F2ii—K1—F1159.45 (3)F2—B1—C1115.08 (12)
F1iii—K1—F1111.49 (2)F3—B1—C1112.70 (13)
F1iv—K1—F196.05 (2)F1—B1—C1111.86 (12)
F3—K1—F147.78 (3)F2—B1—K1v61.95 (7)
F3i—K1—F2iv99.45 (3)F3—B1—K1v82.74 (8)
F2ii—K1—F2iv111.45 (2)F1—B1—K1v57.03 (7)
F1iii—K1—F2iv83.24 (3)C1—B1—K1v163.77 (11)
F1iv—K1—F2iv47.18 (2)F2—B1—K1145.97 (10)
F3—K1—F2iv80.14 (3)F3—B1—K157.04 (6)
F1—K1—F2iv67.51 (3)F1—B1—K158.42 (6)
F3i—K1—F3iv118.03 (3)C1—B1—K198.93 (9)
F2ii—K1—F3iv73.38 (3)K1v—B1—K185.12 (4)
F1iii—K1—F3iv65.53 (2)B1—F1—K1i126.56 (8)
F1iv—K1—F3iv41.51 (2)B1—F1—K1v97.04 (8)
F3—K1—F3iv106.37 (3)K1i—F1—K1v117.58 (3)
F1—K1—F3iv109.07 (3)B1—F1—K195.66 (8)
F2iv—K1—F3iv41.62 (2)K1i—F1—K1111.04 (3)
C2—C1—C6116.82 (15)K1v—F1—K1105.32 (3)
C2—C1—B1122.05 (14)B1—F2—K1vi158.46 (9)
C6—C1—B1121.08 (14)B1—F2—K1v92.38 (8)
C3—C2—C1122.18 (15)K1vi—F2—K1v107.01 (3)
C3—C2—H2118.9B1—F3—K1iii148.62 (8)
C1—C2—H2118.9B1—F3—K197.55 (8)
C4—C3—C2118.06 (15)K1iii—F3—K1113.33 (3)
C4—C3—H3121.0B1—F3—K1v72.76 (8)
C2—C3—H3121.0K1iii—F3—K1v100.12 (3)
F4—C4—C5118.69 (15)K1—F3—K1v91.16 (3)
C6—C1—C2—C30.7 (2)C2—C1—C6—C50.8 (2)
B1—C1—C2—C3176.65 (15)B1—C1—C6—C5176.56 (15)
C1—C2—C3—C40.1 (3)C2—C1—B1—F2135.24 (15)
C2—C3—C4—F4179.32 (15)C6—C1—B1—F247.6 (2)
C2—C3—C4—C50.4 (3)C2—C1—B1—F312.0 (2)
F4—C4—C5—C6179.43 (15)C6—C1—B1—F3170.75 (13)
C3—C4—C5—C60.3 (3)C2—C1—B1—F1105.32 (17)
C4—C5—C6—C10.3 (3)C6—C1—B1—F171.88 (18)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1, y, z; (iii) x+1/2, y1/2, z; (iv) x1/2, y, z+1/2; (v) x+1/2, y, z+1/2; (vi) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···F2vii0.952.533.4099 (19)154
Symmetry code: (vii) x+3/2, y+1/2, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaK+·C7H7BF3OK+·C6H4BF4
Mr214.04202.00
Crystal system, space groupOrthorhombic, Pca21Orthorhombic, Pbca
Temperature (K)120100
a, b, c (Å)7.1347 (2), 17.2819 (7), 7.3289 (3)7.1317 (5), 7.3757 (5), 29.129 (2)
V3)903.66 (6)1532.22 (18)
Z48
Radiation typeMo KαMo Kα
µ (mm1)0.590.70
Crystal size (mm)0.52 × 0.15 × 0.150.07 × 0.05 × 0.01
Data collection
DiffractometerRigaku CCD
diffractometer
Rigaku CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2012)
Multi-scan
(SADABS; Bruker, 2012)
Tmin, Tmax0.750, 0.9170.953, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
5789, 1833, 1822 9537, 1726, 1435
Rint0.0260.037
(sin θ/λ)max1)0.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.059, 1.10 0.027, 0.065, 1.06
No. of reflections18331726
No. of parameters120109
No. of restraints10
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.200.27, 0.23
Absolute structureFlack (1983), 712 Friedel pairs?
Absolute structure parameter0.02 (3)?

Computer programs: CrystalClear (Rigaku, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), publCIF (Westrip, 2010).

Selected bond lengths (Å) for (I) top
K1—F3i2.6156 (10)K1—F2iv2.8885 (8)
K1—F2ii2.6211 (7)K1—F3iv3.4886 (9)
K1—F1iii2.6550 (10)B1—F31.4162 (19)
K1—F1iv2.7568 (10)B1—F21.4196 (14)
K1—F32.7836 (8)B1—F11.4403 (17)
K1—F12.7887 (8)
Symmetry codes: (i) x+3/2, y, z1/2; (ii) x+1, y, z; (iii) x+3/2, y, z+1/2; (iv) x+1/2, y+1, z.
Selected bond lengths (Å) for (II) top
K1—F3i2.6116 (10)K1—F2iv2.8853 (10)
K1—F2ii2.6159 (9)K1—F3iv3.3927 (10)
K1—F1iii2.6527 (9)B1—F21.4166 (17)
K1—F1iv2.7612 (10)B1—F31.4182 (19)
K1—F32.7732 (9)B1—F11.4393 (18)
K1—F12.8050 (9)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1, y, z; (iii) x+1/2, y1/2, z; (iv) x1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) for (I) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···F2v0.952.503.3359 (17)147
C7—H7a···O1vi0.982.723.496 (1)137
C3—H3···Cg1v0.952.853.7171 (15)152
Symmetry codes: (v) x+1/2, y, z1/2; (vi) x+1, y+2, z1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C6—H6···F2v0.952.533.4099 (19)154
Symmetry code: (v) x+3/2, y+1/2, z.
 

Acknowledgements

We thank the National Crystallography Service (University of Southampton) for the data collections.

References

First citationBruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationConole, G., Clough, A. & Whiting, A. (1995). Acta Cryst. C51, 1056–1059.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFei, Z., Zhu, D.-R., Yang, X., Meng, L., Lu, Q., Ang, W. H., Scopelliti, R., Hartinger, C. G. & Dyson, P. J. (2010). Chem. Eur. J. 16, 6473–6481.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationQuach, T. D., Batey, R. A. & Lough, A. J. (2001). Acta Cryst. E57, o688–o689.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2010). CrystalClear. Rigaku Inc., Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds