research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of trans-di­chlorido­tetra­kis­[1-(2,6-diiso­propyl­phen­yl)-1H-imidazole-κN3]iron(II), trans-di­bromido­tetra­kis­[1-(2,6-diiso­propyl­phen­yl)-1H-imidazole-κN3]iron(II) and trans-di­bromido­tetra­kis­[1-(2,6-diiso­propyl­phen­yl)-1H-imidazole-κN3]iron(II) di­ethyl ether disolvate

aDepartment of Chemistry, University of Fribourg, Av. de Perolles, CH-1700 Fribourg, Switzerland, bBenefri Crystallography Service, University of Neuchâtel, Av. de Bellvaux 51, CH-2000 Neuchâtel, Switzerland, and cInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: titus.jenny@unifr.ch, helen.stoeckli-evans@unine.ch

Edited by M. Weil, Vienna University of Technology, Austria (Received 12 June 2014; accepted 15 June 2014; online 19 July 2014)

The title compounds, [FeCl2(C15H20N2)4], (I), [FeBr2(C15H20N2)4], (II), and [FeBr2(C15H20N2)4]·2C4H10O, (IIb), respectively, all have triclinic symmetry, with (I) and (II) being isotypic. The FeII atoms in each of the structures are located on an inversion center. They have octa­hedral FeX2N4 (X = Cl and Br, respectively) coordination spheres with the FeII atom coordinated by two halide ions in a trans arrangement and by the tertiary N atom of four aryl­imidazole ligands [1-(2,6-diiso­propyl­phen­yl)-1H-imidazole] in the equatorial plane. In the two independent ligands, the benzene and imidazole rings are almost normal to one another, with dihedral angles of 88.19 (15) and 79.26 (14)° in (I), 87.0 (3) and 79.2 (3)° in (II), and 84.71 (11) and 80.58 (13)° in (IIb). The imidazole rings of the two independent ligand mol­ecules are inclined to one another by 70.04 (15), 69.3 (3) and 61.55 (12)° in (I), (II) and (IIb), respectively, while the benzene rings are inclined to one another by 82.83 (13), 83.0 (2) and 88.16 (12)°, respectively. The various dihedral angles involving (IIb) differ slightly from those in (I) and (II), probably due to the close proximity of the diethyl ether solvent mol­ecule. There are a number of C—H⋯halide hydrogen bonds in each mol­ecule involving the CH groups of the imidazole units. In the structures of compounds (I) and (II), mol­ecules are linked via pairs of C—H⋯halogen hydrogen bonds, forming chains along the a axis that enclose R22(12) ring motifs. The chains are linked by C—H⋯π inter­actions, forming sheets parallel to (001). In the structure of compound (IIb), mol­ecules are linked via pairs of C—H⋯halogen hydrogen bonds, forming chains along the b axis, and the diethyl ether solvent mol­ecules are attached to the chains via C—H⋯O hydrogen bonds. The chains are linked by C—H⋯π inter­actions, forming sheets parallel to (001). In (I) and (II), the methyl groups of an isopropyl group are disordered over two positions [occupancy ratio = 0.727 (13):0.273 (13) and 0.5:0.5, respectively]. In (IIb), one of the ethyl groups of the diethyl ether solvent mol­ecule is disordered over two positions (occupancy ratio = 0.5:0.5).

1. Chemical context

The use of organometallic complexes as catalysts is an important development in the field of material chemistry. However, despite this, only a very few of them contain iron(II), except the tridentate di­imine pyridine complex (Small et al., 1998[Small, B. L., Brookhart, M. & Bennett, A. M. A. (1998). J. Am. Chem. Soc. 120, 4049-4050.]; Small & Brookhart, 1998[Small, B. L. & Brookhart, M. (1998). J. Am. Chem. Soc. 120, 7143-7144.]; Britovsek et al., 1998[Britovsek, G. J. P., Gibson, V. C., Kimberley, B. S., Maddox, P. J., McTavish, S. I., Solan, G. A., White, A. J. P. & William, D. J. (1998). Chem. Commun. pp. 849-850.]) used in olefin polymerization. Unfortunately, this model suffers from its lack of tolerance towards the minor changes carried out in its envelope, resulting in a drastic reduction of its catalytic activity. Neutral and cationic complexes of iron(II) chloride and bromide with nitro­gen bases are well known for imidazole, pyridine and pyrazoles (Schröder et al., 2009[Schröder, K., Enthaler, S., Bitterlich, B., Schulz, T., Spannenberg, A., Tse, M. K., Junge, K. & Beller, M. (2009). Chem. Eur. J. 15, 5471-5481.]; Christie et al., 1993[Christie, S., Subramanian, S., Wang, L. & Zaworotko, M. J. (1993). Inorg. Chem. 32, 5415-5417.]). For this reason, we set out to prepare new iron complexes containing more electron-donating and bulky ligands. Only a few analogous bulky aryl­imidazoles have been reported so far (Reisner et al., 2007[Reisner, E., Telser, J. & Lippard, S. J. (2007). Inorg. Chem. 46, 10754-10770.]).

[Scheme 1]

We focused our attention on the use of bis-N-heterocyclic carbene FeII complexes in hydrogenation and polymerization of olefins (Mafua, 2006[Mafua, R. (2006). PhD thesis (No. 1503), University of Fribourg, Switzerland.]). During the preparation of these complexes, several other complexes of FeII and FeIII were isolated, among them the title compounds, (I)[link], (II)[link] and (IIb). Compound (I)[link] was isolated by deprotonation of bis­imidazoliummethyl­ene tetra­chlorido­ferrate(III) (L1 in Fig. 7[link]) with NaH in THF at reflux. When the same reaction was conducted at room temperature, only the starting material was recovered after recrystallization. Compounds (II)[link] and (IIb) were isolated when bis­imidazoliummethyl­ene tetra­bromido­ferrate(III) (L2 in Fig. 7[link]) was reacted with NaH in THF at reflux. The main result in the structure of these compounds is the loss of the bridging methyl­ene group of the starting bis­imidazolium cation. Thus two independent N-1-aryl­imidazolyl groups are formed for each starting bis­imidazolium cation. Additionally, this result demonstrates a possible fragility of methyl­ene-bis­imidazole ligands when used in harsh reaction conditions. The question of the reduction of FeIII to FeII remains to be elucidated.

[Figure 7]
Figure 7
Reaction scheme.

2. Structural commentary

The structures of (I)[link] and (II)[link] are isotypic whereas (IIb) differs due to the presence of solvent diethyl ether mol­ecules. The whole mol­ecule of each compound, (I)[link], (II)[link] and (IIb), is generated by inversion symmetry (Figs. 1[link], 2[link] and 3[link], respectively). The FeII atom, Fe1, is located on an inversion center and has an octa­hedral FeX2N4 (X = Br, Cl) coordination sphere. It is coordinated by the tertiary N atoms of four imidazole ligands [1-(2,6-diiso­propyl­phen­yl)-1H-imidazole], in the equatorial plane, while the axial positions are occupied by the halogen ions. In (I)[link], the axial Fe1—Cl1 bond length is 2.5356 (9) Å, while the equatorial Fe1—N1 and Fe1—N3 bond lengths are 2.188 (2) and 2.161 (2) Å, respectively. In the structures of compounds (II)[link] and (IIb), the Fe—Br1 bond lengths are 2.7040 (5) and 2.7422 (3) Å, respectively. The Fe—N1 and Fe1—N3 bond lengths are 2.190 (3) and 2.161 (3) Å in (II)[link], and 2.1889 (16) and 2.1789 (15) Å in (IIb). In each mol­ecule, all of the imidazole C-bound H atoms are involved in intra­molecular C—H⋯halogen hydrogen bonds (see Tables 1[link], 2[link] and 3[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg3 and Cg4 are the centroids of rings C4–C9 and C19–C24, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cl1i 0.95 2.62 3.257 (3) 125
C2—H2⋯Cl1 0.95 2.92 3.433 (3) 115
C16—H16⋯Cl1 0.95 2.76 3.294 (3) 117
C17—H17⋯Cl1i 0.95 2.82 3.375 (3) 118
C18—H18⋯Cl1ii 0.95 2.70 3.629 (3) 166
C27—H27ACg4iii 0.98 2.79 3.562 (4) 136
C30—H30CCg3iv 0.98 2.92 3.901 (4) 176
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x-1, y, z; (iii) -x+1, -y-1, -z+1; (iv) -x, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg3 and Cg4 are the centroids of rings C4–C9 and C19–C24, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Br1i 0.95 2.71 3.368 (4) 127
C2—H2⋯Br1 0.95 2.91 3.477 (5) 119
C16—H16⋯Br1 0.95 2.81 3.373 (4) 119
C17—H17⋯Br1i 0.95 2.91 3.484 (4) 120
C18—H18⋯Br1ii 0.95 2.77 3.707 (5) 167
C27—H27ACg4iii 0.98 2.92 3.639 (6) 131
C30—H30CCg3iv 0.98 2.88 3.862 (6) 177
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x-1, y, z; (iii) -x+1, -y-1, -z+1; (iv) -x, -y, -z+1.

Table 3
Hydrogen-bond geometry (Å, °) for (IIb)[link]

Cg2 and Cg3 are the centroids of rings N3/N4/C16–C18 and C4–C9, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Br1i 0.95 2.76 3.399 (2) 125
C2—H2⋯Br1 0.95 2.89 3.479 (2) 121
C16—H16⋯Br1 0.95 2.86 3.4119 (18) 118
C17—H17⋯Br1i 0.95 3.02 3.542 (2) 116
C18—H18⋯O1ii 0.95 2.40 3.337 (3) 170
C15—H15ACg3iii 0.98 2.92 3.801 (3) 150
C25—H25⋯Cg2 1.00 2.61 3.413 (2) 137
C26—H26ACg3iv 0.98 2.87 3.682 (3) 140
C34B—H34ECg2v 0.98 2.92 3.627 (9) 130
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+2, -y+2, -z+1; (iii) -x+1, -y+3, -z+1; (iv) -x+1, -y+2, -z+2; (v) x, y, z-4.
[Figure 1]
Figure 1
A view of the mol­ecular structure of complex (I)[link], with atom labelling. Displacement ellipsoids are drawn at the 50% probability level; disordered parts are not shown. H atoms have been omitted for clarity.
[Figure 2]
Figure 2
A view of the mol­ecular structure of complex (II)[link], with atom labelling. Displacement ellipsoids are drawn at the 50% probability level; disordered parts are not shown. H atoms have been omitted for clarity.
[Figure 3]
Figure 3
A view of the mol­ecular structure of complex (IIb), with atom labelling. Displacement ellipsoids are drawn at the 50% probability level; disordered parts are not shown. H atoms have been omitted for clarity.

In the two independent ligands of (I)[link], the benzene rings (C4–C9 and C19–C24) are inclined to their attached imidazole rings (N1/N2/C1–C3 and N3/N4/C16–C18, respectively) by 88.19 (15) and 79.26 (14)°. In (II)[link] and (IIb), the corresponding angles are 87.0 (3) and 79.2 (3)°, and 84.71 (11) and 80.58 (13)°, respectively. The imidazole rings (N1/N2/C1–C3 and N3/N4/C16-C18) of the two independent ligand mol­ecules are inclined to one another by 70.04 (15), 69.3 (3) and 61.55 (12)° in (I)[link], (II)[link] and (IIb), respectively, while the benzene rings (C4–C9 and C19–C24) are inclined to one another by 82.83 (13), 83.0 (2) and 88.16 (12)°, respectively. The various dihedral angles involving (IIb) differ slightly from those in (I)[link] and (II)[link] due to steric hindrance owing to the close proximity of the diethyl ether solvent mol­ecule of crystallization.

3. Supra­molecular features

In the crystal structures of all three compounds, (I)[link], (II)[link] and (IIb), mol­ecules are linked via pairs of C—H⋯halogen hydrogen bonds, forming chains along the a axis [for (I)[link] and (II)] and the b axis, respectively, for (IIb) that enclose R22(12) ring motifs (Figs. 4[link], 5[link] and 6[link], respectively, and Tables 1[link], 2[link] and 3[link], respectively). They are linked by C—H⋯π inter­actions, forming sheets parallel to (001). In the crystal structure of compound (IIb), the diethyl ether solvent mol­ecules are attached to the chains via C—H⋯O hydrogen bonds, and within the chains there are a series of C—H⋯π inter­actions present (Fig. 6[link] and Table 3[link]).

[Figure 4]
Figure 4
A view along the c axis of the crystal packing of compound (I)[link]. Hydrogen bonds are shown as dashed lines (see Table 1[link] for details; H atoms not involved in these inter­actions have been omitted for clarity).
[Figure 5]
Figure 5
A view along the c axis of the crystal packing of compound (II)[link]. Hydrogen bonds and C—H⋯π inter­actions are shown as dashed lines (see Table 2[link] for details; H atoms not involved in these inter­actions have been omitted for clarity).
[Figure 6]
Figure 6
A view along the c axis of the crystal packing of compound (IIb). Hydrogen bonds are shown as dashed lines (see Table 3[link] for details; H atoms not involved in these inter­actions have been omitted for clarity).

4. Database survey

A search of the Cambridge Structural Database (Version 5.35, last update November 2013; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) indicated the presence of five tetra­kis­(N-substituted imidazole) iron halide complexes. Two of these involve iron(II), that is trans-dichlorido­tetra­kis­(5-chloro-1-methyl-1H-imidazole-N-iron(III) chloride hydrate (Schröder et al., 2009[Schröder, K., Enthaler, S., Bitterlich, B., Schulz, T., Spannenberg, A., Tse, M. K., Junge, K. & Beller, M. (2009). Chem. Eur. J. 15, 5471-5481.]) and trans-di­fluoridotetra­kis­(1-methyl­imidazole)­iron(III) tetra­fluorido­borate (Chris­tie et al., 1993[Christie, S., Subramanian, S., Wang, L. & Zaworotko, M. J. (1993). Inorg. Chem. 32, 5415-5417.]). Two compounds containing aryl-substituted imidazoles where found, namely (μ2-oxido)-tetra­chlorido­tetra­kis­(1-phenyl-1H-imidazole-N)diiron(II) and (μ2-oxido)tetra­chlorido­tetra­kis­[1-(2,6-disio­propyl­phen­yl)-1H-imidazole-N]diiron(II) (Schröder et al., 2009[Schröder, K., Enthaler, S., Bitterlich, B., Schulz, T., Spannenberg, A., Tse, M. K., Junge, K. & Beller, M. (2009). Chem. Eur. J. 15, 5471-5481.]). The crystal structure of di­chlorido­tetra­kis­(1-methyl­imidazole-N3)iron(II) has also been reported (Reisner et al., 2007[Reisner, E., Telser, J. & Lippard, S. J. (2007). Inorg. Chem. 46, 10754-10770.]).

5. Synthesis and crystallization

The synthesis of the precursors bis­imidazolium methyl­ene tetra­chlorido- and tetra­bromido­ferrate(III) (L1 and L2, respectively, in Fig. 7[link]) have been reported elsewhere (Mafua, 2006[Mafua, R. (2006). PhD thesis (No. 1503), University of Fribourg, Switzerland.]). Compound (I)[link] was prepared as follows: to a solution of (L1) [0.34 g, 0.5 mmol] in 20 ml of THF was added 0.09 g (2.3 mmol) of NaH 60% and 0.01 g (0.1 mmol) of tBuOK, and the reaction mixture was heated at 340 K for 8 h. The solution was then filtered and the solvent evaporated under vacuum yielding an orange solid. Yellow crystals were obtained by slow diffusion of diethyl ether into a THF solution of the isolated orange solid. UV–vis (THF, 200–800 nm): 364, 290. Compounds (II)[link] and (IIb) were prepared in a similar manner. To a solution of (L2) [0.29 g, 0.5 mmol] in 20 ml of THF was added 0.09 g (2.3 mmol) of NaH 60% and 0.01 g (0.1 mmol) of tBuOK at 273 K, and the reaction mixture was heated at reflux for 8 h. The solution was then filtered and the solvent evaporated under vacuum yielding a yellow–brown solid. Yellow crystals were obtained by slow diffusion of diethyl ether into a THF solution of the isolated yellow–brownish solid. UV–vis (THF, 200–800 nm): 292. Two types of crystals were obtained: yellow plates for (II)[link] and yellow blocks for (IIb).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. In all three compounds, the H atoms were included in calculated positions and treated as riding atoms: C—H = 0.95, 1.00 and 0.98 Å for CH(aromatic), CH and CH3 H atoms, respectively, with Uiso(H) = 1.5Ueq(C-meth­yl) and = 1.2Ueq(C) for other H atoms. In (I)[link] and (II)[link], the methyl groups of an isopropyl group are disordered over two positions [occupancy ratio = 0.727 (13):0.273 (13) in (I)[link] and fixed at 0.5:0.5 for (II)]. In (IIb), one of the ethyl groups of the diethyl ether solvent mol­ecule is disordered over two positions (occupancy ratio fixed at 0.5:0.5).

Table 4
Experimental details

  (I) (II) (IIb)
Crystal data
Chemical formula [FeCl2(C15H20N2)4] [FeBr2(C15H20N2)4] [FeBr2(C15H20N2)4]·2C4H10O
Mr 1040.07 1128.99 1277.22
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 173 173 173
a, b, c (Å) 8.877 (2), 12.628 (3), 13.810 (4) 9.0391 (11), 12.7658 (11), 13.689 (2) 11.6710 (8), 12.4758 (9), 13.5759 (10)
α, β, γ (°) 74.68 (2), 74.48 (2), 83.105 (18) 74.502 (9), 74.481 (12), 84.343 (9) 64.464 (5), 81.515 (6), 88.982 (6)
V3) 1436.6 (7) 1466.0 (3) 1761.8 (2)
Z 1 1 1
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.40 1.66 1.39
Crystal size (mm) 0.25 × 0.20 × 0.15 0.20 × 0.17 × 0.10 0.50 × 0.50 × 0.50
 
Data collection
Diffractometer Stoe IPDS 2 Stoe IPDS 2 Stoe IPDS 2
Absorption correction Multi-scan (MULscanABS in PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Multi-scan (MULscanABS in PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Multi-scan (MULscanABS in PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.])
Tmin, Tmax 0.966, 1.000 0.457, 0.496 0.557, 0.672
No. of measured, independent and observed [I > 2σ(I)] reflections 14618, 5214, 3012 17613, 5312, 3013 15799, 6374, 5714
Rint 0.082 0.118 0.030
(sin θ/λ)max−1) 0.600 0.600 0.600
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.069, 0.80 0.046, 0.081, 0.81 0.031, 0.077, 1.03
No. of reflections 5214 5312 6374
No. of parameters 339 350 378
No. of restraints 4 2 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.19 0.59, −0.64 0.44, −0.37
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2006[Stoe & Cie (2006). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXS97 and SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

The use of organometallic complexes as catalysts is an important development in the field of material chemistry. However, despite this, only a very few of them contain iron(II), except the tridentate di­imine pyridine complex (Small et al., 1998; Small & Brookhart, 1998; Britovsek et al., 1998) used in olefin polymerization. Unfortunately, this model suffers from its lack of tolerance towards the minor changes carried out in its envelope, resulting in a drastic reduction of its catalytic activity. Neutral and cationic complexes of iron(II) chloride and bromide with nitro­gen bases are well known for imidazole, pyridine and pyrazoles (Schröder et al., 2009; Christie et al., 1993). For this reason, we set out to prepare new iron complexes containing more electron-donating and bulky ligands. Only a few analogous bulky aryl­imidazoles have been reported so far (Reisner et al., 2007).

We focused our attention on the use of bis-N-heterocyclic carbene FeII complexes in hydrogenation and polymerization of olefins (Mafua, 2006). During the preparation of these complexes, several other complexes of FeII and FeIII were isolated, among them the title compounds, (I), (II) and (IIb). Compound (I) was isolated by deprotonation of bis­imidazoliummethyl­ene tetra­chloridoferrate(III) (L1 in Fig. 7) with NaH in THF at reflux. When the same reaction was conducted at room temperature, only the starting material was recovered after recrystallization. Compounds (II) and (IIb) were isolated when bis­imidazoliummethyl­ene tetra­bromidoferrate(III) (L2 in Fig. 7) was reacted with NaH in THF at reflux. The main result in the structure of these compounds is the loss of the bridging methyl­ene group of the starting bis­imidazolium cation. Thus two independent N-1-aryl­imidazolyl groups are formed for each starting bis­imidazolium cation. Additionally, this result demonstrates a possible fragility of methyl­ene-bis­imidazole ligands when used in harsh reaction conditions. The question of the reduction of FeIII to FeII remains to be elucidated.

Structural commentary top

The structures of (I) and (II) are isotypic whereas (IIb) differs due to the presence of solvent di­ethyl ether molecules. The whole molecule of each compound, (I), (II) and (IIb), is generated by inversion symmetry (Figs. 1, 2 and 3, respectively). The FeII atom, Fe1, is located on an inversion center and has an o­cta­hedral FeX2N4 (X = Br, Cl) coordination sphere. It is coordinated by the tertiary N atoms of four imidazole ligands [1-(2,6-diiso­propyl­phenyl)-1H-imidazole], in the equatorial plane, while the axial positions are occupied by the halogen ions. In (I), the axial Fe1—Cl1 bond length is 2.5356 (9) Å, while the equatorial Fe1—N1 and Fe1—N3 bond lengths are 2.188 (2) and 2.161 (2) Å, respectively. In the structures of compounds (II) and (IIb), the Fe—Br1 bond lengths are 2.7040 (5) and 2.7422 (3) Å, respectively. The Fe—N1 and Fe1—N3 bond lengths are 2.190 (3) and 2.161 (3) Å in (II), and 2.1889 (16) and 2.1789 (15) Å in (IIb). In each molecule, all of the imidazole C-bound H atoms are involved in intra­molecular C—H···halogen hydrogen bonds (see Tables 1, 2 and 3).

In the two independent ligands of (I), the benzene rings (C4–C9 and C19–C24) are inclined to their attached imidazole rings (N1/N2/C1–C3 and N3/N4/C16–C18, respectively) by 88.19 (15) and 79.26 (14)°. In (II) and (IIb), the corresponding angles are 87.0 (3) and 79.2 (3)°, and 84.71 (11) and 80.58 (13)°, respectively. The imidazole rings (N1/N2/C1–C3 and N3/N4/C16—C18) of the two independent ligand molecules are inclined to one another by 70.04 (15), 69.3 (3) and 61.55 (12)° in (I), (II) and (IIb), respectively, while the benzene rings (C4–C9 and C19–C24) are inclined to one another by 82.83 (13), 83.0 (2) and 88.16 (12)°, respectively. The various dihedral angles involving (IIb) differ slightly from those in (I) and (II) due to steric hindrance owing to the close proximity of the di­ethyl ether solvent molecule of crystallization.

Supra­molecular features top

In the crystal structures of all three compounds, (I), (II) and (IIb), molecules are linked via pairs of C—H···halogen hydrogen bonds, forming chains along the a axis [for (I) and (II)] and the b axis, respectively, for (IIb) that enclose R22(12) ring motifs (Figs. 4, 5 and 6, respectively, and Tables 1, 2 and 3, respectively). They are linked by C—H···π inter­actions, forming sheets parallel to (001). In the crystal structure of compound (IIb), the di­ethyl ether solvent molecules are attached to the chains via C—H···O hydrogen bonds, and within the chains there are a series of C—H···π inter­actions present (Fig. 6 and Table 3).

Database survey top

A search of the Cambridge Structural Database (Version 5.35, last update November 2013; Allen, 2002) indicated the presence of five tetra­kis(N-substituted imidazole) iron halide complexes. Two of these involve iron(II), that is trans-dichlorido­tetra­kis(5-chloro-1-methyl-1H-imidazole-N-iron(III) chloride hydrate (Schröder et al., 2009) and trans-difluorido­tetra­kis(1-methyl­imidazole)­iron(III) tetra­fluoridoborate (Christie et al., 1993). Two compounds containing aryl-substituted imidazoles where found, namely (µ2-oxido)-tetra­chlorido­tetra­kis(1-phenyl-1H-imidazole- N)diiron(II) and (µ2-oxido)tetra­chlorido­tetra­kis[1-(2,6-disio­propyl­phenyl)-1H-imidazole-N]diiron(II) (Schröder et al., 2009). The crystal structure of dichlorido­tetra­kis(1-methyl­imidazole-N3)iron(II) has also been reported (Reisner et al., 2007).

Synthesis and crystallization top

The synthesis of the precursors bis­imidazolium methyl­ene tetra­chlorido- and tetra­bromidoferrate(III) (L1 and L2, respectively, in Fig. 7) have been reported elsewhere (Mafua, 2006). Compound (I) was prepared as follows: to a solution of (L1) [0.34 g, 0.5 mmol] in 20 ml of THF was added 0.09 g (2.3 mmol) of NaH 60% and 0.01 g (0.1 mmol) of tBuOK, and the reaction mixture was heated at 340 K for 8 h. The solution was then filtered and the solvent evaporated under vacuum yielding an orange solid. Yellow crystals were obtained by slow diffusion of di­ethyl ether into a THF solution of the isolated orange solid. UV–vis (THF, 200–800 nm): 364, 290. Compounds (II) and (IIb) were prepared in a similar manner. To a solution of (L2) [0.29 g, 0.5 mmol] in 20 ml of THF was added 0.09 g (2.3 mmol) of NaH 60% and 0.01 g (0.1 mmol) of tBuOK at 273 K, and the reaction mixture was heated at reflux for 8 h. The solution was then filtered and the solvent evaporated under vacuum yielding a yellow–brown solid. Yellow crystals were obtained by slow diffusion of di­ethyl ether into a THF solution of the isolated yellow–brownish solid. UV–vis (THF, 200–800 nm): 292. Two types of crystals were obtained; yellow plates for (II) and yellow blocks for (IIb).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 4. In all three compounds, the H atoms were included in calculated positions and treated as riding atoms: C—H = 0.95, 1.00 and 0.98 Å for CH(aromatic), CH and CH3 H atoms, respectively, with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms. In (I) and (II), the methyl groups of an iso­propyl group are disordered over two positions [occupancy ratio = 0.727 (13):0.273 (13) in (I) and fixed at 0.5:0.5 for (II)]. In (IIb), one of the ethyl groups of the di­ethyl ether solvent molecule is disordered over two positions [occupancy ratio fixed at 0.5:0.5].

Related literature top

For related literature, see: Allen (2002); Britovsek et al. (1998); Christie et al. (1993); Mafua (2006); Reisner et al. (2007); Schröder et al. (2009); Small & Brookhart (1998); Small, Brookhart & Bennett (1998).

Computing details top

For all compounds, data collection: X-AREA (Stoe & Cie, 2006); cell refinement: X-AREA (Stoe & Cie, 2006); data reduction: X-RED32 (Stoe & Cie, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of complex (I), with atom labelling. Displacement ellipsoids are drawn at the 50% probability level; disordered parts are not shown. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of the molecular structure of complex (II), with atom labelling. Displacement ellipsoids are drawn at the 50% probability level; disordered parts are not shown. H atoms have been omitted for clarity.
[Figure 3] Fig. 3. A view of the molecular structure of complex (IIb), with atom labelling. Displacement ellipsoids are drawn at the 50% probability level; disordered parts are not shown. H atoms have been omitted for clarity.
[Figure 4] Fig. 4. A view along the c axis of the crystal packing of compound (I). Hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in these interactions have been omitted for clarity).
[Figure 5] Fig. 5. A view along the c axis of the crystal packing of compound (II). Hydrogen bonds and C—H···π interactions are shown as dashed lines (see Table 2 for details; H atoms not involved in these interactions have been omitted for clarity).
[Figure 6] Fig. 6. A view along the c axis of the crystal packing of compound (IIb). Hydrogen bonds are shown as dashed lines (see Table 3 for details; H atoms not involved in these interactions have been omitted for clarity).
[Figure 7] Fig. 7. Reaction scheme.
(I) trans-Dichloridotetrakis[1-(2,6-diisopropylphenyl)-1H-imidazole-κN3]iron(II) top
Crystal data top
[FeCl2(C15H20N2)4]Z = 1
Mr = 1040.07F(000) = 556
Triclinic, P1Dx = 1.202 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.877 (2) ÅCell parameters from 7147 reflections
b = 12.628 (3) Åθ = 0.1–24.9°
c = 13.810 (4) ŵ = 0.40 mm1
α = 74.68 (2)°T = 173 K
β = 74.48 (2)°Block, colourless
γ = 83.105 (18)°0.25 × 0.20 × 0.15 mm
V = 1436.6 (7) Å3
Data collection top
Stoe IPDS 2
diffractometer
5214 independent reflections
Radiation source: fine-focus sealed tube3012 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.082
ϕ + ω scansθmax = 25.3°, θmin = 1.6°
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2009)
h = 1010
Tmin = 0.966, Tmax = 1.000k = 1515
14618 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 0.80 w = 1/[σ2(Fo2) + (0.0176P)2]
where P = (Fo2 + 2Fc2)/3
5214 reflections(Δ/σ)max = 0.001
339 parametersΔρmax = 0.23 e Å3
4 restraintsΔρmin = 0.19 e Å3
Crystal data top
[FeCl2(C15H20N2)4]γ = 83.105 (18)°
Mr = 1040.07V = 1436.6 (7) Å3
Triclinic, P1Z = 1
a = 8.877 (2) ÅMo Kα radiation
b = 12.628 (3) ŵ = 0.40 mm1
c = 13.810 (4) ÅT = 173 K
α = 74.68 (2)°0.25 × 0.20 × 0.15 mm
β = 74.48 (2)°
Data collection top
Stoe IPDS 2
diffractometer
5214 independent reflections
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2009)
3012 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 1.000Rint = 0.082
14618 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0434 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 0.80Δρmax = 0.23 e Å3
5214 reflectionsΔρmin = 0.19 e Å3
339 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.50000.00000.50000.02088 (16)
Cl10.70366 (8)0.15905 (5)0.50114 (5)0.02791 (18)
N10.5146 (2)0.01056 (16)0.33706 (16)0.0268 (5)
N20.4532 (3)0.06854 (17)0.18661 (15)0.0276 (5)
N30.3206 (2)0.11518 (16)0.53380 (15)0.0242 (5)
N40.2109 (2)0.26733 (16)0.54788 (16)0.0253 (5)
C10.4309 (3)0.0828 (2)0.28262 (19)0.0272 (7)
H10.36260.13860.30810.033*
C20.5931 (3)0.0546 (2)0.2729 (2)0.0353 (7)
H20.66310.11520.29100.042*
C30.5573 (3)0.0208 (2)0.1802 (2)0.0364 (7)
H30.59600.05220.12230.044*
C40.3853 (3)0.1369 (2)0.10628 (19)0.0287 (7)
C50.2450 (3)0.1095 (2)0.09679 (19)0.0326 (7)
C60.1819 (4)0.1781 (2)0.0180 (2)0.0435 (8)
H60.08570.16190.00870.052*
C70.2585 (4)0.2685 (3)0.0459 (2)0.0500 (9)
H70.21580.31340.10010.060*
C80.3955 (4)0.2953 (2)0.0330 (2)0.0474 (8)
H80.44470.35950.07720.057*
C90.4638 (3)0.2302 (2)0.0439 (2)0.0355 (7)
C100.1572 (4)0.0119 (2)0.1701 (2)0.0423 (8)
H10A0.23490.03770.20390.051*0.727 (13)
H10B0.20810.01980.22870.051*0.273 (13)
C11A0.0312 (9)0.0456 (5)0.2559 (6)0.0590 (19)0.727 (13)
H11A0.07790.08350.29330.088*0.727 (13)
H11B0.01860.01990.30390.088*0.727 (13)
H11C0.04750.09510.22620.088*0.727 (13)
C12A0.0892 (13)0.0560 (8)0.1187 (8)0.078 (3)0.727 (13)
H12A0.05380.12470.16870.117*0.727 (13)
H12B0.16940.07280.05980.117*0.727 (13)
H12C0.00020.01460.09440.117*0.727 (13)
C11B0.0112 (19)0.0578 (14)0.2122 (15)0.0590 (19)0.273 (13)
H11D0.06540.08000.15620.088*0.273 (13)
H11E0.00580.12160.23870.088*0.273 (13)
H11F0.06870.00080.26820.088*0.273 (13)
C12B0.159 (4)0.073 (2)0.112 (3)0.078 (3)0.273 (13)
H12D0.12490.03840.04890.117*0.273 (13)
H12E0.08800.13020.15590.117*0.273 (13)
H12F0.26560.10560.09460.117*0.273 (13)
C130.6097 (4)0.2615 (2)0.0631 (2)0.0444 (8)
H130.66310.19230.09580.053*
C140.5694 (4)0.3354 (3)0.1394 (3)0.0716 (11)
H14A0.52360.40630.10750.086*
H14B0.66480.34730.15720.086*
H14C0.49390.30000.20240.086*
C150.7269 (4)0.3182 (3)0.0346 (3)0.0669 (11)
H15A0.74690.27470.08630.080*
H15B0.82510.32470.01740.080*
H15C0.68390.39170.06260.080*
C160.3362 (3)0.2225 (2)0.55469 (18)0.0253 (6)
H160.42570.26390.57260.030*
C170.1766 (3)0.0894 (2)0.5126 (2)0.0301 (7)
H170.13210.01680.49460.036*
C180.1064 (3)0.1826 (2)0.5210 (2)0.0308 (7)
H180.00630.18790.51050.037*
C190.1907 (3)0.38269 (19)0.5634 (2)0.0259 (6)
C200.2662 (3)0.4342 (2)0.4836 (2)0.0309 (7)
C210.2407 (3)0.5445 (2)0.5010 (2)0.0385 (7)
H210.28820.58220.44840.046*
C220.1479 (4)0.6007 (2)0.5928 (2)0.0450 (8)
H220.13140.67620.60270.054*
C230.0796 (3)0.5482 (2)0.6698 (2)0.0381 (7)
H230.01750.58850.73320.046*
C240.0987 (3)0.4372 (2)0.6576 (2)0.0292 (6)
C250.3709 (3)0.3722 (2)0.3836 (2)0.0350 (7)
H250.43320.32310.40230.042*
C260.2778 (4)0.2999 (3)0.3121 (2)0.0568 (10)
H26A0.21380.34540.29310.068*
H26B0.34940.25990.24940.068*
H26C0.20950.24720.34720.068*
C270.4861 (4)0.4467 (3)0.3262 (2)0.0492 (9)
H27C0.56220.40220.26960.059*
H27B0.42970.48850.29790.059*
H27A0.54100.49770.37410.059*
C280.0214 (3)0.3808 (2)0.7438 (2)0.0333 (7)
H280.07140.30920.72740.040*
C290.0445 (4)0.4470 (2)0.8487 (2)0.0455 (8)
H29A0.01480.51350.87100.055*
H29B0.00710.40240.89960.055*
H29C0.15590.46760.84290.055*
C300.1511 (3)0.3555 (3)0.7483 (2)0.0472 (8)
H30C0.19800.31580.80230.057*
H30B0.20340.42440.76440.057*
H30A0.16360.30990.68120.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0218 (4)0.0163 (3)0.0257 (3)0.0025 (3)0.0081 (3)0.0043 (3)
Cl10.0265 (4)0.0220 (4)0.0379 (4)0.0027 (3)0.0120 (3)0.0093 (3)
N10.0268 (14)0.0244 (12)0.0299 (12)0.0021 (10)0.0099 (10)0.0066 (10)
N20.0325 (14)0.0284 (12)0.0217 (12)0.0013 (11)0.0088 (10)0.0047 (10)
N30.0211 (13)0.0185 (12)0.0329 (12)0.0032 (9)0.0086 (10)0.0030 (10)
N40.0213 (13)0.0189 (11)0.0373 (13)0.0039 (10)0.0096 (10)0.0062 (10)
C10.0306 (17)0.0260 (15)0.0248 (15)0.0020 (13)0.0061 (13)0.0080 (12)
C20.0389 (19)0.0299 (16)0.0362 (17)0.0103 (14)0.0113 (14)0.0095 (14)
C30.045 (2)0.0317 (16)0.0340 (17)0.0107 (15)0.0116 (14)0.0141 (13)
C40.0371 (18)0.0250 (15)0.0231 (15)0.0061 (13)0.0082 (13)0.0069 (12)
C50.0391 (19)0.0339 (16)0.0271 (15)0.0023 (14)0.0090 (14)0.0121 (13)
C60.045 (2)0.050 (2)0.0411 (18)0.0104 (16)0.0220 (16)0.0140 (16)
C70.069 (3)0.044 (2)0.0357 (18)0.0143 (18)0.0220 (18)0.0054 (16)
C80.064 (2)0.0342 (18)0.0362 (18)0.0012 (17)0.0106 (17)0.0024 (14)
C90.0412 (19)0.0334 (17)0.0276 (15)0.0013 (14)0.0012 (14)0.0074 (13)
C100.045 (2)0.0419 (18)0.0443 (18)0.0084 (15)0.0189 (16)0.0069 (15)
C11A0.076 (4)0.051 (3)0.041 (4)0.019 (3)0.001 (3)0.006 (3)
C12A0.112 (10)0.050 (4)0.073 (3)0.019 (5)0.008 (7)0.025 (3)
C11B0.076 (4)0.051 (3)0.041 (4)0.019 (3)0.001 (3)0.006 (3)
C12B0.112 (10)0.050 (4)0.073 (3)0.019 (5)0.008 (7)0.025 (3)
C130.046 (2)0.0368 (18)0.0445 (19)0.0098 (15)0.0051 (16)0.0018 (15)
C140.060 (3)0.074 (3)0.089 (3)0.027 (2)0.007 (2)0.035 (2)
C150.059 (3)0.064 (2)0.064 (2)0.014 (2)0.001 (2)0.0027 (19)
C160.0206 (16)0.0251 (15)0.0303 (16)0.0025 (12)0.0099 (13)0.0026 (12)
C170.0248 (16)0.0184 (14)0.0446 (17)0.0005 (12)0.0095 (14)0.0032 (12)
C180.0214 (16)0.0219 (15)0.0510 (18)0.0021 (12)0.0145 (14)0.0077 (13)
C190.0239 (16)0.0168 (13)0.0410 (16)0.0021 (12)0.0127 (13)0.0084 (12)
C200.0285 (17)0.0274 (15)0.0386 (16)0.0017 (12)0.0094 (13)0.0097 (13)
C210.041 (2)0.0302 (17)0.0468 (19)0.0017 (14)0.0055 (16)0.0195 (14)
C220.052 (2)0.0234 (16)0.059 (2)0.0089 (15)0.0063 (18)0.0134 (15)
C230.041 (2)0.0232 (16)0.0449 (18)0.0090 (14)0.0001 (15)0.0074 (14)
C240.0247 (16)0.0211 (14)0.0395 (16)0.0043 (12)0.0061 (13)0.0042 (12)
C250.0353 (18)0.0357 (17)0.0360 (16)0.0063 (13)0.0062 (14)0.0127 (13)
C260.056 (2)0.057 (2)0.046 (2)0.0057 (19)0.0088 (18)0.0019 (17)
C270.042 (2)0.061 (2)0.0399 (19)0.0060 (17)0.0046 (16)0.0137 (17)
C280.0331 (18)0.0251 (15)0.0400 (17)0.0061 (13)0.0031 (14)0.0091 (13)
C290.050 (2)0.0449 (19)0.0418 (18)0.0058 (16)0.0098 (16)0.0114 (15)
C300.044 (2)0.050 (2)0.0468 (19)0.0050 (16)0.0052 (16)0.0186 (16)
Geometric parameters (Å, º) top
Fe1—N32.161 (2)C12B—H12D0.9800
Fe1—N3i2.161 (2)C12B—H12E0.9800
Fe1—N12.188 (2)C12B—H12F0.9800
Fe1—N1i2.188 (2)C13—C151.527 (4)
Fe1—Cl12.5356 (9)C13—C141.532 (4)
Fe1—Cl1i2.5356 (9)C13—H131.0000
N1—C11.313 (3)C14—H14A0.9800
N1—C21.365 (3)C14—H14B0.9800
N2—C11.344 (3)C14—H14C0.9800
N2—C31.376 (3)C15—H15A0.9800
N2—C41.437 (3)C15—H15B0.9800
N3—C161.307 (3)C15—H15C0.9800
N3—C171.369 (3)C16—H160.9500
N4—C161.342 (3)C17—C181.362 (4)
N4—C181.371 (3)C17—H170.9500
N4—C191.441 (3)C18—H180.9500
C1—H10.9500C19—C241.387 (4)
C2—C31.349 (4)C19—C201.403 (4)
C2—H20.9500C20—C211.385 (4)
C3—H30.9500C20—C251.517 (4)
C4—C51.379 (4)C21—C221.377 (4)
C4—C91.399 (4)C21—H210.9500
C5—C61.400 (3)C22—C231.367 (4)
C5—C101.517 (4)C22—H220.9500
C6—C71.370 (4)C23—C241.393 (4)
C6—H60.9500C23—H230.9500
C7—C81.368 (4)C24—C281.512 (4)
C7—H70.9500C25—C261.508 (4)
C8—C91.390 (4)C25—C271.513 (4)
C8—H80.9500C25—H251.0000
C9—C131.505 (4)C26—H26A0.9800
C10—C12B1.489 (17)C26—H26B0.9800
C10—C11A1.509 (6)C26—H26C0.9800
C10—C12A1.509 (8)C27—H27C0.9800
C10—C11B1.553 (14)C27—H27B0.9800
C10—H10A1.0000C27—H27A0.9800
C10—H10B1.0000C28—C301.515 (4)
C11A—H11A0.9800C28—C291.522 (4)
C11A—H11B0.9800C28—H281.0000
C11A—H11C0.9800C29—H29A0.9800
C12A—H12A0.9800C29—H29B0.9800
C12A—H12B0.9800C29—H29C0.9800
C12A—H12C0.9800C30—H30C0.9800
C11B—H11D0.9800C30—H30B0.9800
C11B—H11E0.9800C30—H30A0.9800
C11B—H11F0.9800
N3—Fe1—N3i180.0H12D—C12B—H12E109.5
N3—Fe1—N185.67 (8)C10—C12B—H12F109.5
N3i—Fe1—N194.33 (8)H12D—C12B—H12F109.5
N3—Fe1—N1i94.33 (8)H12E—C12B—H12F109.5
N3i—Fe1—N1i85.67 (8)C9—C13—C15114.4 (3)
N1—Fe1—N1i180.0C9—C13—C14111.1 (3)
N3—Fe1—Cl189.14 (6)C15—C13—C14108.7 (3)
N3i—Fe1—Cl190.86 (6)C9—C13—H13107.5
N1—Fe1—Cl189.63 (6)C15—C13—H13107.5
N1i—Fe1—Cl190.37 (6)C14—C13—H13107.5
N3—Fe1—Cl1i90.86 (6)C13—C14—H14A109.5
N3i—Fe1—Cl1i89.14 (6)C13—C14—H14B109.5
N1—Fe1—Cl1i90.37 (6)H14A—C14—H14B109.5
N1i—Fe1—Cl1i89.63 (6)C13—C14—H14C109.5
Cl1—Fe1—Cl1i180.0H14A—C14—H14C109.5
C1—N1—C2105.1 (2)H14B—C14—H14C109.5
C1—N1—Fe1123.17 (17)C13—C15—H15A109.5
C2—N1—Fe1131.53 (16)C13—C15—H15B109.5
C1—N2—C3106.4 (2)H15A—C15—H15B109.5
C1—N2—C4126.0 (2)C13—C15—H15C109.5
C3—N2—C4127.5 (2)H15A—C15—H15C109.5
C16—N3—C17105.2 (2)H15B—C15—H15C109.5
C16—N3—Fe1127.93 (17)N3—C16—N4112.0 (2)
C17—N3—Fe1125.16 (16)N3—C16—H16124.0
C16—N4—C18107.2 (2)N4—C16—H16124.0
C16—N4—C19126.7 (2)C18—C17—N3110.3 (2)
C18—N4—C19126.1 (2)C18—C17—H17124.9
N1—C1—N2112.1 (2)N3—C17—H17124.9
N1—C1—H1124.0C17—C18—N4105.3 (2)
N2—C1—H1124.0C17—C18—H18127.4
C3—C2—N1110.5 (2)N4—C18—H18127.4
C3—C2—H2124.8C24—C19—C20123.5 (2)
N1—C2—H2124.8C24—C19—N4117.9 (2)
C2—C3—N2105.9 (2)C20—C19—N4118.5 (2)
C2—C3—H3127.0C21—C20—C19116.6 (2)
N2—C3—H3127.0C21—C20—C25121.9 (3)
C5—C4—C9123.6 (2)C19—C20—C25121.6 (2)
C5—C4—N2118.8 (2)C22—C21—C20121.5 (3)
C9—C4—N2117.5 (3)C22—C21—H21119.3
C4—C5—C6117.3 (3)C20—C21—H21119.3
C4—C5—C10122.4 (2)C23—C22—C21120.2 (3)
C6—C5—C10120.3 (3)C23—C22—H22119.9
C7—C6—C5120.2 (3)C21—C22—H22119.9
C7—C6—H6119.9C22—C23—C24121.7 (3)
C5—C6—H6119.9C22—C23—H23119.2
C8—C7—C6121.2 (3)C24—C23—H23119.2
C8—C7—H7119.4C19—C24—C23116.6 (3)
C6—C7—H7119.4C19—C24—C28122.7 (2)
C7—C8—C9121.1 (3)C23—C24—C28120.7 (2)
C7—C8—H8119.4C26—C25—C27109.4 (2)
C9—C8—H8119.4C26—C25—C20112.0 (2)
C8—C9—C4116.5 (3)C27—C25—C20113.2 (2)
C8—C9—C13122.0 (3)C26—C25—H25107.3
C4—C9—C13121.5 (2)C27—C25—H25107.3
C12B—C10—C5109.1 (14)C20—C25—H25107.3
C11A—C10—C5111.8 (3)C25—C26—H26A109.5
C11A—C10—C12A109.9 (4)C25—C26—H26B109.5
C5—C10—C12A114.9 (5)H26A—C26—H26B109.5
C12B—C10—C11B112.4 (13)C25—C26—H26C109.5
C5—C10—C11B105.9 (7)H26A—C26—H26C109.5
C11A—C10—H10A106.6H26B—C26—H26C109.5
C5—C10—H10A106.6C25—C27—H27C109.5
C12A—C10—H10A106.6C25—C27—H27B109.5
C12B—C10—H10B109.8H27C—C27—H27B109.5
C5—C10—H10B109.8C25—C27—H27A109.5
C11B—C10—H10B109.8H27C—C27—H27A109.5
C10—C11A—H11A109.5H27B—C27—H27A109.5
C10—C11A—H11B109.5C24—C28—C30110.7 (2)
H11A—C11A—H11B109.5C24—C28—C29112.6 (2)
C10—C11A—H11C109.5C30—C28—C29110.6 (2)
H11A—C11A—H11C109.5C24—C28—H28107.6
H11B—C11A—H11C109.5C30—C28—H28107.6
C10—C12A—H12A109.5C29—C28—H28107.6
C10—C12A—H12B109.5C28—C29—H29A109.5
H12A—C12A—H12B109.5C28—C29—H29B109.5
C10—C12A—H12C109.5H29A—C29—H29B109.5
H12A—C12A—H12C109.5C28—C29—H29C109.5
H12B—C12A—H12C109.5H29A—C29—H29C109.5
C10—C11B—H11D109.5H29B—C29—H29C109.5
C10—C11B—H11E109.5C28—C30—H30C109.5
H11D—C11B—H11E109.5C28—C30—H30B109.5
C10—C11B—H11F109.5H30C—C30—H30B109.5
H11D—C11B—H11F109.5C28—C30—H30A109.5
H11E—C11B—H11F109.5H30C—C30—H30A109.5
C10—C12B—H12D109.5H30B—C30—H30A109.5
C10—C12B—H12E109.5
C2—N1—C1—N20.9 (3)C8—C9—C13—C1487.8 (3)
Fe1—N1—C1—N2176.06 (17)C4—C9—C13—C1488.7 (3)
C3—N2—C1—N11.0 (3)C17—N3—C16—N40.2 (3)
C4—N2—C1—N1176.7 (2)Fe1—N3—C16—N4165.34 (16)
C1—N1—C2—C30.5 (3)C18—N4—C16—N30.3 (3)
Fe1—N1—C2—C3175.1 (2)C19—N4—C16—N3178.4 (2)
N1—C2—C3—N20.1 (3)C16—N3—C17—C180.0 (3)
C1—N2—C3—C20.6 (3)Fe1—N3—C17—C18166.01 (18)
C4—N2—C3—C2177.1 (3)N3—C17—C18—N40.1 (3)
C1—N2—C4—C592.0 (3)C16—N4—C18—C170.2 (3)
C3—N2—C4—C590.8 (3)C19—N4—C18—C17178.5 (2)
C1—N2—C4—C986.0 (3)C16—N4—C19—C24101.2 (3)
C3—N2—C4—C991.3 (3)C18—N4—C19—C2480.3 (3)
C9—C4—C5—C61.9 (4)C16—N4—C19—C2077.9 (3)
N2—C4—C5—C6179.8 (2)C18—N4—C19—C20100.5 (3)
C9—C4—C5—C10175.9 (3)C24—C19—C20—C212.3 (4)
N2—C4—C5—C101.9 (4)N4—C19—C20—C21178.6 (2)
C4—C5—C6—C70.2 (4)C24—C19—C20—C25177.5 (2)
C10—C5—C6—C7177.6 (3)N4—C19—C20—C251.6 (4)
C5—C6—C7—C81.5 (5)C19—C20—C21—C221.1 (4)
C6—C7—C8—C91.6 (5)C25—C20—C21—C22178.7 (3)
C7—C8—C9—C40.0 (4)C20—C21—C22—C230.6 (5)
C7—C8—C9—C13176.6 (3)C21—C22—C23—C241.2 (5)
C5—C4—C9—C81.8 (4)C20—C19—C24—C231.8 (4)
N2—C4—C9—C8179.7 (2)N4—C19—C24—C23179.2 (2)
C5—C4—C9—C13174.8 (3)C20—C19—C24—C28178.5 (2)
N2—C4—C9—C133.0 (4)N4—C19—C24—C280.6 (4)
C4—C5—C10—C12B112.5 (13)C22—C23—C24—C190.0 (4)
C6—C5—C10—C12B69.8 (14)C22—C23—C24—C28179.8 (3)
C4—C5—C10—C11A96.3 (5)C21—C20—C25—C26102.9 (3)
C6—C5—C10—C11A81.4 (5)C19—C20—C25—C2677.3 (3)
C4—C5—C10—C12A137.6 (5)C21—C20—C25—C2721.3 (4)
C6—C5—C10—C12A44.7 (6)C19—C20—C25—C27158.4 (3)
C4—C5—C10—C11B126.4 (9)C19—C24—C28—C30102.5 (3)
C6—C5—C10—C11B51.4 (9)C23—C24—C28—C3077.3 (3)
C8—C9—C13—C1535.7 (4)C19—C24—C28—C29133.2 (3)
C4—C9—C13—C15147.8 (3)C23—C24—C28—C2947.0 (4)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of rings C4–C9 and C19–C24, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl1i0.952.623.257 (3)125
C2—H2···Cl10.952.923.433 (3)115
C16—H16···Cl10.952.763.294 (3)117
C17—H17···Cl1i0.952.823.375 (3)118
C18—H18···Cl1ii0.952.703.629 (3)166
C27—H27A···Cg4iii0.982.793.562 (4)136
C30—H30C···Cg3iv0.982.923.901 (4)176
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z; (iii) x+1, y1, z+1; (iv) x, y, z+1.
(II) trans-Dibromidotetrakis[1-(2,6-diisopropylphenyl)-1H-imidazole-κN3]iron(II) top
Crystal data top
[FeBr2(C15H20N2)4]Z = 1
Mr = 1128.99F(000) = 592
Triclinic, P1Dx = 1.279 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0391 (11) ÅCell parameters from 7257 reflections
b = 12.7658 (11) Åθ = 0.1–24.9°
c = 13.689 (2) ŵ = 1.66 mm1
α = 74.502 (9)°T = 173 K
β = 74.481 (12)°Plate, yellow
γ = 84.343 (9)°0.20 × 0.17 × 0.10 mm
V = 1466.0 (3) Å3
Data collection top
Stoe IPDS 2
diffractometer
5312 independent reflections
Radiation source: fine-focus sealed tube3013 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.118
ϕ + ω scansθmax = 25.2°, θmin = 1.6°
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2009)
h = 1010
Tmin = 0.457, Tmax = 0.496k = 1515
17613 measured reflectionsl = 1616
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.020P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.81(Δ/σ)max = 0.001
5312 reflectionsΔρmax = 0.59 e Å3
350 parametersΔρmin = 0.64 e Å3
Crystal data top
[FeBr2(C15H20N2)4]γ = 84.343 (9)°
Mr = 1128.99V = 1466.0 (3) Å3
Triclinic, P1Z = 1
a = 9.0391 (11) ÅMo Kα radiation
b = 12.7658 (11) ŵ = 1.66 mm1
c = 13.689 (2) ÅT = 173 K
α = 74.502 (9)°0.20 × 0.17 × 0.10 mm
β = 74.481 (12)°
Data collection top
Stoe IPDS 2
diffractometer
5312 independent reflections
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2009)
3013 reflections with I > 2σ(I)
Tmin = 0.457, Tmax = 0.496Rint = 0.118
17613 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0462 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 0.81Δρmax = 0.59 e Å3
5312 reflectionsΔρmin = 0.64 e Å3
350 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.50000.00000.50000.0194 (2)
Br10.70958 (6)0.16630 (4)0.49630 (4)0.02557 (14)
N10.5093 (4)0.0144 (3)0.3354 (3)0.0234 (8)
N20.4486 (4)0.0707 (3)0.1838 (3)0.0260 (9)
N30.3197 (4)0.1141 (2)0.5363 (3)0.0203 (8)
N40.2095 (4)0.2665 (3)0.5529 (3)0.0238 (8)
C10.4300 (5)0.0853 (3)0.2808 (3)0.0265 (11)
H10.36630.14110.30600.032*
C20.5844 (6)0.0508 (4)0.2709 (4)0.0356 (13)
H20.65170.11060.28900.043*
C30.5470 (5)0.0162 (4)0.1766 (4)0.0362 (12)
H30.58270.04670.11800.043*
C40.3836 (6)0.1393 (4)0.1024 (3)0.0288 (11)
C50.2450 (5)0.1109 (3)0.0933 (3)0.0307 (11)
C60.1847 (6)0.1782 (4)0.0137 (4)0.0427 (13)
H60.09000.16150.00460.051*
C70.2617 (7)0.2686 (4)0.0516 (4)0.0457 (14)
H70.22130.31270.10680.055*
C80.3959 (6)0.2954 (4)0.0377 (4)0.0448 (14)
H80.44590.35920.08280.054*
C90.4613 (5)0.2325 (4)0.0401 (4)0.0337 (12)
C100.1572 (6)0.0135 (4)0.1677 (4)0.0426 (13)
H10A0.23930.01980.20400.051*0.5
H1OB0.21320.03420.21790.051*0.5
C11A0.041 (2)0.0434 (18)0.2621 (10)0.051 (4)0.5
H11A0.09540.07450.30040.061*0.5
H11B0.01100.02220.30870.061*0.5
H11C0.03490.09670.23730.061*0.5
C12A0.153 (2)0.0733 (15)0.1164 (19)0.079 (6)0.5
H12A0.10770.04420.05650.095*0.5
H12B0.09000.13250.16640.095*0.5
H12C0.25730.10120.09200.095*0.5
C11B0.001 (2)0.0529 (19)0.2171 (14)0.100 (9)0.5
H11D0.01130.10880.25180.119*0.5
H11E0.05530.00810.26890.119*0.5
H11F0.05440.08380.16310.119*0.5
C12B0.077 (2)0.0471 (16)0.1146 (18)0.059 (5)0.5
H12D0.04080.11680.16290.070*0.5
H12E0.14870.06030.05120.070*0.5
H12F0.01150.00300.09570.070*0.5
C130.6051 (6)0.2642 (4)0.0597 (4)0.0441 (13)
H130.65360.19640.09590.053*
C140.5652 (7)0.3400 (5)0.1332 (5)0.077 (2)
H14A0.52710.41030.09710.093*
H14B0.65730.35080.15380.093*
H14C0.48570.30750.19570.093*
C150.7247 (7)0.3167 (5)0.0404 (5)0.075 (2)
H15A0.74320.27090.08980.090*
H15B0.82080.32410.02290.090*
H15C0.68630.38870.07230.090*
C160.3330 (5)0.2203 (3)0.5594 (3)0.0246 (10)
H160.41980.26020.57850.030*
C170.1796 (5)0.0909 (3)0.5136 (4)0.0300 (11)
H170.13740.01960.49380.036*
C180.1090 (5)0.1837 (3)0.5234 (3)0.0312 (11)
H180.01130.18990.51230.037*
C190.1856 (5)0.3798 (3)0.5707 (3)0.0255 (10)
C200.2595 (5)0.4331 (3)0.4920 (4)0.0300 (11)
C210.2295 (6)0.5416 (4)0.5106 (4)0.0414 (13)
H210.27510.57950.45830.050*
C220.1343 (6)0.5962 (4)0.6038 (4)0.0485 (15)
H220.11510.67090.61520.058*
C230.0676 (6)0.5425 (4)0.6798 (4)0.0440 (14)
H230.00240.58110.74350.053*
C240.0923 (5)0.4344 (3)0.6665 (4)0.0302 (11)
C250.3678 (6)0.3726 (4)0.3904 (4)0.0387 (12)
H250.43110.32490.40940.046*
C260.2812 (7)0.2998 (5)0.3166 (4)0.0616 (18)
H26A0.21580.34400.29760.074*
H26B0.35430.26130.25330.074*
H26C0.21710.24690.35100.074*
C270.4778 (6)0.4493 (4)0.3360 (4)0.0540 (16)
H27C0.55670.40720.27900.065*
H27B0.42100.49020.30740.065*
H27A0.52680.50000.38650.065*
C280.0166 (5)0.3767 (3)0.7519 (3)0.0320 (11)
H280.06610.30500.73380.038*
C290.0378 (6)0.4406 (4)0.8581 (4)0.0484 (14)
H29A0.02140.50700.88180.058*
H29B0.00170.39610.90860.058*
H29C0.14690.45990.85250.058*
C300.1524 (6)0.3552 (4)0.7565 (4)0.0467 (14)
H30C0.19900.31610.81040.056*
H30B0.20330.42450.77380.056*
H30A0.16440.31110.68840.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0196 (5)0.0193 (5)0.0200 (5)0.0042 (4)0.0058 (4)0.0044 (4)
Br10.0234 (3)0.0243 (3)0.0308 (3)0.0020 (2)0.0083 (2)0.0093 (2)
N10.022 (2)0.026 (2)0.021 (2)0.0000 (16)0.0046 (17)0.0062 (16)
N20.031 (2)0.029 (2)0.018 (2)0.0003 (17)0.0067 (17)0.0041 (16)
N30.018 (2)0.0173 (19)0.024 (2)0.0015 (15)0.0029 (16)0.0046 (15)
N40.021 (2)0.022 (2)0.027 (2)0.0030 (16)0.0038 (17)0.0052 (16)
C10.031 (3)0.026 (3)0.024 (3)0.001 (2)0.007 (2)0.011 (2)
C20.037 (3)0.038 (3)0.030 (3)0.007 (2)0.009 (2)0.008 (2)
C30.044 (3)0.035 (3)0.029 (3)0.012 (2)0.008 (2)0.013 (2)
C40.038 (3)0.029 (3)0.020 (3)0.005 (2)0.007 (2)0.010 (2)
C50.038 (3)0.034 (3)0.021 (3)0.000 (2)0.010 (2)0.007 (2)
C60.042 (3)0.059 (3)0.033 (3)0.007 (3)0.016 (3)0.018 (3)
C70.062 (4)0.044 (3)0.025 (3)0.016 (3)0.014 (3)0.003 (2)
C80.055 (4)0.045 (3)0.025 (3)0.002 (3)0.005 (3)0.002 (2)
C90.035 (3)0.036 (3)0.025 (3)0.003 (2)0.003 (2)0.006 (2)
C100.044 (3)0.047 (3)0.040 (3)0.011 (3)0.016 (3)0.008 (3)
C11A0.076 (10)0.050 (8)0.016 (8)0.017 (7)0.007 (7)0.007 (7)
C12A0.093 (17)0.046 (11)0.081 (12)0.006 (11)0.002 (14)0.005 (9)
C11B0.14 (2)0.065 (11)0.060 (15)0.045 (13)0.042 (13)0.013 (13)
C12B0.068 (13)0.054 (12)0.061 (9)0.006 (8)0.006 (10)0.035 (9)
C130.041 (3)0.047 (3)0.037 (3)0.011 (3)0.003 (3)0.000 (2)
C140.064 (4)0.088 (5)0.088 (5)0.039 (4)0.003 (4)0.045 (4)
C150.055 (4)0.084 (5)0.068 (5)0.020 (4)0.006 (4)0.003 (4)
C160.017 (2)0.031 (3)0.025 (3)0.002 (2)0.007 (2)0.004 (2)
C170.021 (3)0.020 (2)0.043 (3)0.001 (2)0.005 (2)0.002 (2)
C180.028 (3)0.023 (2)0.039 (3)0.001 (2)0.005 (2)0.004 (2)
C190.023 (2)0.018 (2)0.037 (3)0.0024 (19)0.008 (2)0.007 (2)
C200.027 (3)0.026 (3)0.038 (3)0.004 (2)0.005 (2)0.011 (2)
C210.046 (3)0.038 (3)0.040 (3)0.004 (3)0.003 (3)0.020 (3)
C220.055 (4)0.027 (3)0.058 (4)0.008 (3)0.001 (3)0.016 (3)
C230.048 (3)0.026 (3)0.047 (3)0.014 (2)0.011 (3)0.009 (2)
C240.030 (3)0.018 (2)0.040 (3)0.002 (2)0.002 (2)0.010 (2)
C250.039 (3)0.045 (3)0.034 (3)0.007 (2)0.004 (2)0.015 (2)
C260.057 (4)0.069 (4)0.040 (3)0.002 (3)0.003 (3)0.001 (3)
C270.046 (4)0.067 (4)0.038 (3)0.005 (3)0.004 (3)0.011 (3)
C280.037 (3)0.024 (2)0.031 (3)0.004 (2)0.002 (2)0.004 (2)
C290.050 (4)0.053 (3)0.045 (3)0.002 (3)0.013 (3)0.016 (3)
C300.042 (3)0.053 (3)0.042 (3)0.012 (3)0.008 (3)0.014 (3)
Geometric parameters (Å, º) top
Fe1—N3i2.161 (3)C12B—H12D0.9800
Fe1—N32.161 (3)C12B—H12E0.9800
Fe1—N12.190 (3)C12B—H12F0.9800
Fe1—N1i2.190 (3)C13—C141.528 (7)
Fe1—Br12.7040 (5)C13—C151.534 (7)
Fe1—Br1i2.7040 (5)C13—H131.0000
N1—C11.300 (5)C14—H14A0.9800
N1—C21.377 (5)C14—H14B0.9800
N2—C11.354 (5)C14—H14C0.9800
N2—C31.360 (5)C15—H15A0.9800
N2—C41.442 (5)C15—H15B0.9800
N3—C161.309 (5)C15—H15C0.9800
N3—C171.370 (5)C16—H160.9500
N4—C161.346 (5)C17—C181.359 (6)
N4—C181.373 (5)C17—H170.9500
N4—C191.429 (5)C18—H180.9500
C1—H10.9500C19—C241.397 (6)
C2—C31.369 (6)C19—C201.409 (6)
C2—H20.9500C20—C211.381 (6)
C3—H30.9500C20—C251.528 (6)
C4—C51.383 (6)C21—C221.381 (7)
C4—C91.393 (6)C21—H210.9500
C5—C61.396 (6)C22—C231.371 (6)
C5—C101.515 (6)C22—H220.9500
C6—C71.374 (7)C23—C241.376 (6)
C6—H60.9500C23—H230.9500
C7—C81.366 (7)C24—C281.520 (6)
C7—H70.9500C25—C261.509 (7)
C8—C91.384 (6)C25—C271.517 (6)
C8—H80.9500C25—H251.0000
C9—C131.508 (7)C26—H26A0.9800
C10—C12A1.472 (16)C26—H26B0.9800
C10—C11B1.492 (17)C26—H26C0.9800
C10—C12B1.536 (18)C27—H27C0.9800
C10—C11A1.541 (16)C27—H27B0.9800
C10—H10A1.0000C27—H27A0.9800
C10—H1OB1.0000C28—C301.512 (6)
C11A—H11A0.9800C28—C291.517 (6)
C11A—H11B0.9800C28—H281.0000
C11A—H11C0.9800C29—H29A0.9800
C12A—H12A0.9800C29—H29B0.9800
C12A—H12B0.9800C29—H29C0.9800
C12A—H12C0.9800C30—H30C0.9800
C11B—H11D0.9800C30—H30B0.9800
C11B—H11E0.9800C30—H30A0.9800
C11B—H11F0.9800
N3i—Fe1—N3180.0H12D—C12B—H12E109.5
N3i—Fe1—N193.99 (12)C10—C12B—H12F109.5
N3—Fe1—N186.01 (12)H12D—C12B—H12F109.5
N3i—Fe1—N1i86.01 (12)H12E—C12B—H12F109.5
N3—Fe1—N1i93.99 (12)C9—C13—C14110.4 (4)
N1—Fe1—N1i180.0C9—C13—C15113.9 (5)
N3i—Fe1—Br190.60 (8)C14—C13—C15109.7 (5)
N3—Fe1—Br189.40 (8)C9—C13—H13107.5
N1—Fe1—Br189.70 (8)C14—C13—H13107.5
N1i—Fe1—Br190.30 (8)C15—C13—H13107.5
N3i—Fe1—Br1i89.40 (8)C13—C14—H14A109.5
N3—Fe1—Br1i90.60 (8)C13—C14—H14B109.5
N1—Fe1—Br1i90.30 (8)H14A—C14—H14B109.5
N1i—Fe1—Br1i89.70 (8)C13—C14—H14C109.5
Br1—Fe1—Br1i180.0H14A—C14—H14C109.5
C1—N1—C2105.3 (3)H14B—C14—H14C109.5
C1—N1—Fe1124.7 (3)C13—C15—H15A109.5
C2—N1—Fe1129.8 (3)C13—C15—H15B109.5
C1—N2—C3106.8 (4)H15A—C15—H15B109.5
C1—N2—C4125.9 (3)C13—C15—H15C109.5
C3—N2—C4127.2 (4)H15A—C15—H15C109.5
C16—N3—C17104.8 (3)H15B—C15—H15C109.5
C16—N3—Fe1127.3 (3)N3—C16—N4112.2 (4)
C17—N3—Fe1126.0 (3)N3—C16—H16123.9
C16—N4—C18107.1 (3)N4—C16—H16123.9
C16—N4—C19127.6 (3)C18—C17—N3110.8 (4)
C18—N4—C19125.3 (4)C18—C17—H17124.6
N1—C1—N2112.4 (4)N3—C17—H17124.6
N1—C1—H1123.8C17—C18—N4105.1 (4)
N2—C1—H1123.8C17—C18—H18127.5
C3—C2—N1109.5 (4)N4—C18—H18127.5
C3—C2—H2125.3C24—C19—C20122.3 (4)
N1—C2—H2125.3C24—C19—N4118.7 (4)
N2—C3—C2106.0 (4)C20—C19—N4118.9 (4)
N2—C3—H3127.0C21—C20—C19117.2 (4)
C2—C3—H3127.0C21—C20—C25121.7 (4)
C5—C4—C9123.8 (4)C19—C20—C25121.1 (4)
C5—C4—N2118.2 (4)C20—C21—C22121.2 (4)
C9—C4—N2118.0 (4)C20—C21—H21119.4
C4—C5—C6117.1 (4)C22—C21—H21119.4
C4—C5—C10122.5 (4)C23—C22—C21120.0 (5)
C6—C5—C10120.3 (5)C23—C22—H22120.0
C7—C6—C5120.4 (5)C21—C22—H22120.0
C7—C6—H6119.8C22—C23—C24121.9 (5)
C5—C6—H6119.8C22—C23—H23119.1
C8—C7—C6120.5 (5)C24—C23—H23119.1
C8—C7—H7119.7C23—C24—C19117.3 (4)
C6—C7—H7119.7C23—C24—C28120.8 (4)
C7—C8—C9122.0 (5)C19—C24—C28121.9 (4)
C7—C8—H8119.0C26—C25—C27110.5 (4)
C9—C8—H8119.0C26—C25—C20111.9 (4)
C8—C9—C4116.1 (5)C27—C25—C20112.3 (4)
C8—C9—C13122.5 (5)C26—C25—H25107.3
C4—C9—C13121.4 (4)C27—C25—H25107.3
C12A—C10—C5112.6 (10)C20—C25—H25107.3
C11B—C10—C5108.1 (10)C25—C26—H26A109.5
C11B—C10—C12B86.9 (11)C25—C26—H26B109.5
C5—C10—C12B113.7 (10)H26A—C26—H26B109.5
C12A—C10—C11A129.6 (13)C25—C26—H26C109.5
C5—C10—C11A112.4 (9)H26A—C26—H26C109.5
C12A—C10—H10A97.7H26B—C26—H26C109.5
C5—C10—H10A97.7C25—C27—H27C109.5
C11A—C10—H10A97.7C25—C27—H27B109.5
C11B—C10—H1OB115.0H27C—C27—H27B109.5
C5—C10—H1OB115.0C25—C27—H27A109.5
C12B—C10—H1OB115.0H27C—C27—H27A109.5
C10—C11A—H11A109.5H27B—C27—H27A109.5
C10—C11A—H11B109.5C30—C28—C29110.3 (4)
H11A—C11A—H11B109.5C30—C28—C24110.4 (4)
C10—C11A—H11C109.5C29—C28—C24112.0 (4)
H11A—C11A—H11C109.5C30—C28—H28108.0
H11B—C11A—H11C109.5C29—C28—H28108.0
C10—C12A—H12A109.5C24—C28—H28108.0
C10—C12A—H12B109.5C28—C29—H29A109.5
H12A—C12A—H12B109.5C28—C29—H29B109.5
C10—C12A—H12C109.5H29A—C29—H29B109.5
H12A—C12A—H12C109.5C28—C29—H29C109.5
H12B—C12A—H12C109.5H29A—C29—H29C109.5
C10—C11B—H11D109.5H29B—C29—H29C109.5
C10—C11B—H11E109.5C28—C30—H30C109.5
H11D—C11B—H11E109.5C28—C30—H30B109.5
C10—C11B—H11F109.5H30C—C30—H30B109.5
H11D—C11B—H11F109.5C28—C30—H30A109.5
H11E—C11B—H11F109.5H30C—C30—H30A109.5
C10—C12B—H12D109.5H30B—C30—H30A109.5
C10—C12B—H12E109.5
C2—N1—C1—N20.1 (5)C8—C9—C13—C1538.0 (7)
Fe1—N1—C1—N2175.1 (3)C4—C9—C13—C15144.3 (5)
C3—N2—C1—N10.1 (5)C17—N3—C16—N40.1 (5)
C4—N2—C1—N1176.3 (4)Fe1—N3—C16—N4164.9 (3)
C1—N1—C2—C30.0 (5)C18—N4—C16—N30.0 (5)
Fe1—N1—C2—C3174.7 (3)C19—N4—C16—N3178.8 (4)
C1—N2—C3—C20.1 (5)C16—N3—C17—C180.1 (5)
C4—N2—C3—C2176.2 (4)Fe1—N3—C17—C18165.2 (3)
N1—C2—C3—N20.0 (6)N3—C17—C18—N40.1 (5)
C1—N2—C4—C594.1 (5)C16—N4—C18—C170.1 (4)
C3—N2—C4—C590.3 (6)C19—N4—C18—C17178.7 (4)
C1—N2—C4—C983.6 (6)C16—N4—C19—C24100.9 (5)
C3—N2—C4—C992.0 (5)C18—N4—C19—C2480.5 (5)
C9—C4—C5—C62.8 (7)C16—N4—C19—C2077.7 (6)
N2—C4—C5—C6179.7 (4)C18—N4—C19—C20100.9 (5)
C9—C4—C5—C10175.2 (4)C24—C19—C20—C213.6 (7)
N2—C4—C5—C102.3 (6)N4—C19—C20—C21177.9 (4)
C4—C5—C6—C70.2 (6)C24—C19—C20—C25176.6 (4)
C10—C5—C6—C7177.8 (4)N4—C19—C20—C251.9 (6)
C5—C6—C7—C81.8 (7)C19—C20—C21—C221.8 (7)
C6—C7—C8—C91.4 (8)C25—C20—C21—C22178.4 (5)
C7—C8—C9—C41.0 (7)C20—C21—C22—C230.1 (8)
C7—C8—C9—C13176.9 (5)C21—C22—C23—C240.0 (8)
C5—C4—C9—C83.1 (7)C22—C23—C24—C191.7 (8)
N2—C4—C9—C8179.4 (4)C22—C23—C24—C28179.8 (5)
C5—C4—C9—C13174.7 (4)C20—C19—C24—C233.5 (7)
N2—C4—C9—C132.8 (6)N4—C19—C24—C23177.9 (4)
C4—C5—C10—C12A112.3 (9)C20—C19—C24—C28178.3 (4)
C6—C5—C10—C12A69.8 (9)N4—C19—C24—C280.2 (6)
C4—C5—C10—C11B122.2 (9)C21—C20—C25—C26103.5 (5)
C6—C5—C10—C11B55.7 (10)C19—C20—C25—C2676.2 (6)
C4—C5—C10—C12B143.2 (7)C21—C20—C25—C2721.4 (7)
C6—C5—C10—C12B39.0 (8)C19—C20—C25—C27158.8 (4)
C4—C5—C10—C11A91.2 (8)C23—C24—C28—C3074.1 (6)
C6—C5—C10—C11A86.7 (8)C19—C24—C28—C30104.0 (5)
C8—C9—C13—C1486.1 (6)C23—C24—C28—C2949.2 (6)
C4—C9—C13—C1491.6 (6)C19—C24—C28—C29132.7 (5)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of rings C4–C9 and C19–C24, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1···Br1i0.952.713.368 (4)127
C2—H2···Br10.952.913.477 (5)119
C16—H16···Br10.952.813.373 (4)119
C17—H17···Br1i0.952.913.484 (4)120
C18—H18···Br1ii0.952.773.707 (5)167
C27—H27A···Cg4iii0.982.923.639 (6)131
C30—H30C···Cg3iv0.982.883.862 (6)177
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z; (iii) x+1, y1, z+1; (iv) x, y, z+1.
(IIb) trans-Dibromidotetrakis[1-(2,6-diisopropylphenyl)-1H-imidazole-κN3]iron(II) diethyl ether disolvate top
Crystal data top
[FeBr2(C15H20N2)4]·2C4H10OZ = 1
Mr = 1277.22F(000) = 676
Triclinic, P1Dx = 1.204 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.6710 (8) ÅCell parameters from 25508 reflections
b = 12.4758 (9) Åθ = 0.1–24.9°
c = 13.5759 (10) ŵ = 1.39 mm1
α = 64.464 (5)°T = 173 K
β = 81.515 (6)°Block, yellow
γ = 88.982 (6)°0.50 × 0.50 × 0.50 mm
V = 1761.8 (2) Å3
Data collection top
Stoe IPDS 2
diffractometer
6374 independent reflections
Radiation source: fine-focus sealed tube5714 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.030
ϕ + ω scansθmax = 25.3°, θmin = 1.7°
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2009)
h = 1414
Tmin = 0.557, Tmax = 0.672k = 1414
15799 measured reflectionsl = 1516
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0431P)2 + 0.7229P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
6374 reflectionsΔρmax = 0.44 e Å3
378 parametersΔρmin = 0.37 e Å3
Crystal data top
[FeBr2(C15H20N2)4]·2C4H10Oγ = 88.982 (6)°
Mr = 1277.22V = 1761.8 (2) Å3
Triclinic, P1Z = 1
a = 11.6710 (8) ÅMo Kα radiation
b = 12.4758 (9) ŵ = 1.39 mm1
c = 13.5759 (10) ÅT = 173 K
α = 64.464 (5)°0.50 × 0.50 × 0.50 mm
β = 81.515 (6)°
Data collection top
Stoe IPDS 2
diffractometer
6374 independent reflections
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2009)
5714 reflections with I > 2σ(I)
Tmin = 0.557, Tmax = 0.672Rint = 0.030
15799 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.03Δρmax = 0.44 e Å3
6374 reflectionsΔρmin = 0.37 e Å3
378 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.50001.00000.50000.02343 (9)
Br10.37430 (2)0.79434 (2)0.64396 (2)0.02939 (7)
N10.46601 (13)1.07022 (14)0.62346 (13)0.0270 (3)
N20.48075 (14)1.18785 (14)0.70489 (13)0.0278 (3)
N30.65641 (13)0.93155 (14)0.57112 (13)0.0271 (3)
N40.75321 (13)0.80847 (14)0.69892 (13)0.0277 (3)
C10.50151 (17)1.17670 (17)0.60955 (16)0.0285 (4)
H10.53711.23750.54100.034*
C20.42078 (17)1.01038 (18)0.73346 (17)0.0315 (4)
H20.38850.93100.76840.038*
C30.42911 (18)1.08153 (18)0.78454 (17)0.0330 (4)
H30.40421.06190.86040.040*
C40.51202 (18)1.29018 (17)0.72041 (16)0.0293 (4)
C50.61769 (19)1.29155 (18)0.75702 (17)0.0344 (4)
C60.6449 (2)1.3901 (2)0.77407 (19)0.0437 (5)
H60.71541.39400.79980.052*
C70.5708 (3)1.4816 (2)0.75409 (19)0.0491 (6)
H70.59101.54770.76640.059*
C80.4679 (2)1.47935 (19)0.71658 (19)0.0462 (6)
H80.41861.54400.70270.055*
C90.43549 (19)1.38246 (18)0.69876 (17)0.0355 (5)
C100.7014 (2)1.1920 (2)0.7763 (2)0.0439 (5)
H100.65931.12500.77250.053*
C110.8047 (3)1.2317 (3)0.6846 (3)0.0823 (11)
H11A0.84871.29690.68610.099*
H11B0.77761.25890.61310.099*
H11C0.85471.16480.69520.099*
C120.7368 (4)1.1444 (4)0.8904 (3)0.0943 (13)
H12C0.78841.07890.90030.113*
H12B0.66741.11540.94670.113*
H12A0.77731.20810.89760.113*
C130.3209 (2)1.3778 (2)0.6609 (2)0.0454 (5)
H130.32151.31040.63960.054*
C140.2197 (3)1.3530 (3)0.7540 (3)0.0751 (10)
H14A0.21561.41910.77510.090*
H14B0.23131.27920.81800.090*
H14C0.14721.34480.72900.090*
C150.3026 (3)1.4921 (3)0.5592 (2)0.0691 (8)
H15A0.36721.50660.49920.083*
H15B0.29921.55950.57840.083*
H15C0.22971.48310.53510.083*
C160.66540 (16)0.82018 (17)0.64133 (16)0.0271 (4)
H160.61600.75590.65030.033*
C170.74340 (17)0.99506 (18)0.58507 (18)0.0339 (4)
H170.75881.07860.54540.041*
C180.80359 (17)0.92076 (18)0.66367 (18)0.0347 (5)
H180.86730.94170.68920.042*
C190.77470 (17)0.70242 (18)0.79383 (18)0.0336 (4)
C200.7010 (2)0.67551 (19)0.89322 (19)0.0395 (5)
C210.7219 (3)0.5728 (2)0.9846 (2)0.0537 (6)
H210.67340.55071.05370.064*
C220.8125 (3)0.5027 (2)0.9759 (3)0.0635 (8)
H220.82570.43361.03920.076*
C230.8837 (2)0.5320 (2)0.8765 (3)0.0563 (7)
H230.94520.48260.87220.068*
C240.86670 (18)0.6333 (2)0.7823 (2)0.0417 (5)
C250.6018 (2)0.7531 (2)0.90310 (19)0.0436 (5)
H250.60340.82220.82920.052*
C260.6170 (3)0.8022 (3)0.9863 (2)0.0613 (7)
H26A0.61500.73621.05980.074*
H26B0.55400.85460.98830.074*
H26C0.69160.84740.96400.074*
C270.4846 (2)0.6854 (2)0.9333 (2)0.0513 (6)
H27C0.42280.73570.94300.062*
H27B0.48340.61291.00230.062*
H27A0.47240.66390.87400.062*
C280.9445 (2)0.6657 (2)0.6726 (2)0.0525 (7)
H280.91530.73910.61650.063*
C290.9413 (3)0.5689 (3)0.6332 (3)0.0709 (8)
H29A0.96770.49510.68780.085*
H29B0.99240.59360.56230.085*
H29C0.86180.55550.62430.085*
C301.0691 (3)0.6943 (4)0.6787 (4)0.0895 (12)
H30C1.11680.71800.60620.107*
H30B1.10010.62370.73340.107*
H30A1.07060.75950.70060.107*
O10.96877 (19)1.0413 (2)0.2300 (2)0.0818 (7)
C310.9192 (4)1.1111 (4)0.1369 (4)0.1043 (14)
H31A0.86281.16320.15410.125*
H31B0.87771.05990.11330.125*
C321.0118 (4)1.1834 (5)0.0486 (4)0.1199 (18)
H32A1.05441.23150.07370.180*
H32B0.97801.23590.01650.180*
H32C1.06501.13130.02940.180*
C33A0.8915 (7)0.9778 (10)0.3432 (8)0.0846 (13)0.5
H33A0.93590.96720.40330.102*0.5
H33B0.82381.02520.34800.102*0.5
C33B0.8679 (7)0.9729 (10)0.2985 (8)0.0846 (13)0.5
H33D0.82870.93760.25870.102*0.5
H33E0.81321.02410.31900.102*0.5
C34A0.8529 (6)0.8612 (8)0.3533 (7)0.0846 (13)0.5
H34A0.80770.87290.29430.127*0.5
H34B0.80450.81730.42520.127*0.5
H34C0.92070.81580.34690.127*0.5
C34B0.9022 (6)0.8809 (8)0.3956 (7)0.0846 (13)0.5
H34D0.94240.82110.37660.127*0.5
H34E0.83320.84320.45070.127*0.5
H34F0.95430.91520.42600.127*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.02406 (18)0.01970 (18)0.0303 (2)0.00385 (13)0.00785 (14)0.01329 (16)
Br10.02990 (11)0.02252 (10)0.03696 (12)0.00061 (7)0.00611 (7)0.01369 (8)
N10.0280 (8)0.0245 (8)0.0330 (9)0.0040 (6)0.0080 (6)0.0156 (7)
N20.0342 (8)0.0222 (8)0.0294 (8)0.0015 (6)0.0043 (7)0.0135 (7)
N30.0247 (8)0.0249 (8)0.0330 (9)0.0024 (6)0.0068 (6)0.0132 (7)
N40.0250 (8)0.0253 (8)0.0329 (9)0.0037 (6)0.0086 (6)0.0115 (7)
C10.0331 (10)0.0238 (9)0.0314 (10)0.0026 (7)0.0039 (8)0.0149 (8)
C20.0347 (10)0.0243 (10)0.0351 (11)0.0027 (8)0.0043 (8)0.0125 (8)
C30.0412 (11)0.0268 (10)0.0301 (10)0.0038 (8)0.0016 (8)0.0125 (9)
C40.0423 (11)0.0216 (9)0.0262 (10)0.0019 (8)0.0006 (8)0.0135 (8)
C50.0438 (11)0.0286 (10)0.0300 (10)0.0056 (9)0.0018 (9)0.0128 (9)
C60.0598 (14)0.0357 (12)0.0372 (12)0.0131 (10)0.0058 (10)0.0173 (10)
C70.0852 (19)0.0279 (11)0.0364 (12)0.0125 (11)0.0013 (12)0.0179 (10)
C80.0772 (17)0.0226 (10)0.0358 (12)0.0077 (10)0.0014 (11)0.0133 (9)
C90.0493 (12)0.0251 (10)0.0288 (10)0.0055 (9)0.0004 (9)0.0109 (9)
C100.0427 (12)0.0370 (12)0.0562 (14)0.0005 (10)0.0146 (11)0.0219 (11)
C110.0598 (18)0.062 (2)0.117 (3)0.0044 (15)0.0155 (18)0.040 (2)
C120.121 (3)0.090 (3)0.086 (3)0.050 (2)0.059 (2)0.039 (2)
C130.0495 (13)0.0399 (13)0.0452 (13)0.0150 (10)0.0078 (10)0.0173 (11)
C140.0509 (16)0.098 (3)0.0563 (17)0.0181 (16)0.0052 (13)0.0164 (17)
C150.082 (2)0.068 (2)0.0461 (16)0.0163 (16)0.0181 (14)0.0116 (14)
C160.0258 (9)0.0245 (9)0.0340 (10)0.0034 (7)0.0076 (7)0.0145 (8)
C170.0312 (10)0.0255 (10)0.0435 (12)0.0023 (8)0.0101 (9)0.0119 (9)
C180.0289 (10)0.0306 (11)0.0454 (12)0.0002 (8)0.0137 (9)0.0146 (9)
C190.0340 (10)0.0260 (10)0.0394 (11)0.0025 (8)0.0165 (9)0.0095 (9)
C200.0491 (13)0.0320 (11)0.0372 (12)0.0002 (9)0.0137 (10)0.0124 (10)
C210.0744 (18)0.0425 (14)0.0386 (13)0.0002 (12)0.0210 (12)0.0084 (11)
C220.081 (2)0.0366 (14)0.0631 (18)0.0086 (13)0.0413 (16)0.0030 (13)
C230.0499 (14)0.0365 (13)0.078 (2)0.0128 (11)0.0308 (14)0.0146 (13)
C240.0311 (11)0.0319 (11)0.0608 (15)0.0057 (9)0.0182 (10)0.0155 (11)
C250.0570 (14)0.0409 (13)0.0316 (11)0.0053 (10)0.0056 (10)0.0148 (10)
C260.0748 (19)0.0630 (18)0.0591 (17)0.0011 (14)0.0097 (14)0.0386 (15)
C270.0556 (15)0.0568 (16)0.0425 (13)0.0037 (12)0.0070 (11)0.0226 (12)
C280.0308 (11)0.0390 (13)0.0796 (19)0.0078 (9)0.0025 (11)0.0203 (13)
C290.0612 (18)0.069 (2)0.086 (2)0.0062 (15)0.0008 (16)0.0394 (18)
C300.0403 (15)0.092 (3)0.152 (4)0.0108 (15)0.0059 (18)0.073 (3)
O10.0574 (12)0.0860 (17)0.0837 (16)0.0012 (11)0.0191 (11)0.0169 (13)
C310.083 (3)0.112 (3)0.122 (4)0.000 (2)0.048 (3)0.045 (3)
C320.107 (3)0.132 (4)0.089 (3)0.028 (3)0.033 (3)0.012 (3)
C33A0.053 (2)0.094 (3)0.100 (4)0.003 (2)0.001 (2)0.040 (3)
C33B0.053 (2)0.094 (3)0.100 (4)0.003 (2)0.001 (2)0.040 (3)
C34A0.053 (2)0.094 (3)0.100 (4)0.003 (2)0.001 (2)0.040 (3)
C34B0.053 (2)0.094 (3)0.100 (4)0.003 (2)0.001 (2)0.040 (3)
Geometric parameters (Å, º) top
Fe1—N3i2.1789 (15)C18—H180.9500
Fe1—N32.1789 (15)C19—C201.397 (3)
Fe1—N12.1889 (16)C19—C241.399 (3)
Fe1—N1i2.1889 (16)C20—C211.396 (3)
Fe1—Br12.7422 (3)C20—C251.523 (3)
Fe1—Br1i2.7422 (3)C21—C221.384 (4)
N1—C11.324 (2)C21—H210.9500
N1—C21.373 (3)C22—C231.378 (4)
N2—C11.347 (2)C22—H220.9500
N2—C31.375 (3)C23—C241.395 (3)
N2—C41.442 (2)C23—H230.9500
N3—C161.316 (2)C24—C281.516 (4)
N3—C171.382 (2)C25—C271.527 (4)
N4—C161.347 (2)C25—C261.530 (3)
N4—C181.380 (3)C25—H251.0000
N4—C191.445 (3)C26—H26A0.9800
C1—H10.9500C26—H26B0.9800
C2—C31.354 (3)C26—H26C0.9800
C2—H20.9500C27—H27C0.9800
C3—H30.9500C27—H27B0.9800
C4—C51.399 (3)C27—H27A0.9800
C4—C91.400 (3)C28—C291.521 (4)
C5—C61.395 (3)C28—C301.526 (4)
C5—C101.522 (3)C28—H281.0000
C6—C71.376 (4)C29—H29A0.9800
C6—H60.9500C29—H29B0.9800
C7—C81.376 (4)C29—H29C0.9800
C7—H70.9500C30—H30C0.9800
C8—C91.399 (3)C30—H30B0.9800
C8—H80.9500C30—H30A0.9800
C9—C131.512 (3)O1—C311.393 (5)
C10—C111.516 (4)O1—C33B1.416 (9)
C10—C121.519 (4)O1—C33A1.539 (9)
C10—H101.0000C31—C321.462 (6)
C11—H11A0.9800C31—H31A0.9900
C11—H11B0.9800C31—H31B0.9900
C11—H11C0.9800C32—H32A0.9800
C12—H12C0.9800C32—H32B0.9800
C12—H12B0.9800C32—H32C0.9800
C12—H12A0.9800C33A—C34A1.473 (14)
C13—C141.525 (4)C33A—H33A0.9900
C13—C151.538 (4)C33A—H33B0.9900
C13—H131.0000C33B—C34B1.433 (14)
C14—H14A0.9800C33B—H33D0.9900
C14—H14B0.9800C33B—H33E0.9900
C14—H14C0.9800C34A—H34A0.9800
C15—H15A0.9800C34A—H34B0.9800
C15—H15B0.9800C34A—H34C0.9800
C15—H15C0.9800C34B—H34D0.9800
C16—H160.9500C34B—H34E0.9800
C17—C181.355 (3)C34B—H34F0.9800
C17—H170.9500
N3i—Fe1—N3180.00 (3)C17—C18—N4105.81 (17)
N3i—Fe1—N193.88 (6)C17—C18—H18127.1
N3—Fe1—N186.12 (6)N4—C18—H18127.1
N3i—Fe1—N1i86.12 (6)C20—C19—C24123.7 (2)
N3—Fe1—N1i93.88 (6)C20—C19—N4116.99 (18)
N1—Fe1—N1i180.00 (6)C24—C19—N4119.3 (2)
N3i—Fe1—Br188.74 (4)C21—C20—C19116.8 (2)
N3—Fe1—Br191.26 (4)C21—C20—C25120.8 (2)
N1—Fe1—Br189.88 (4)C19—C20—C25122.40 (19)
N1i—Fe1—Br190.12 (4)C22—C21—C20120.9 (3)
N3i—Fe1—Br1i91.26 (4)C22—C21—H21119.6
N3—Fe1—Br1i88.74 (4)C20—C21—H21119.6
N1—Fe1—Br1i90.12 (4)C23—C22—C21120.8 (2)
N1i—Fe1—Br1i89.88 (4)C23—C22—H22119.6
Br1—Fe1—Br1i180.0C21—C22—H22119.6
C1—N1—C2105.58 (16)C22—C23—C24120.9 (2)
C1—N1—Fe1125.49 (13)C22—C23—H23119.6
C2—N1—Fe1128.27 (13)C24—C23—H23119.6
C1—N2—C3106.83 (16)C23—C24—C19116.9 (2)
C1—N2—C4126.10 (16)C23—C24—C28121.1 (2)
C3—N2—C4127.01 (16)C19—C24—C28122.0 (2)
C16—N3—C17105.29 (16)C20—C25—C27111.2 (2)
C16—N3—Fe1123.77 (12)C20—C25—C26111.3 (2)
C17—N3—Fe1127.33 (13)C27—C25—C26110.9 (2)
C16—N4—C18107.06 (16)C20—C25—H25107.7
C16—N4—C19125.48 (16)C27—C25—H25107.7
C18—N4—C19126.45 (16)C26—C25—H25107.7
N1—C1—N2111.41 (17)C25—C26—H26A109.5
N1—C1—H1124.3C25—C26—H26B109.5
N2—C1—H1124.3H26A—C26—H26B109.5
C3—C2—N1109.73 (17)C25—C26—H26C109.5
C3—C2—H2125.1H26A—C26—H26C109.5
N1—C2—H2125.1H26B—C26—H26C109.5
C2—C3—N2106.44 (18)C25—C27—H27C109.5
C2—C3—H3126.8C25—C27—H27B109.5
N2—C3—H3126.8H27C—C27—H27B109.5
C5—C4—C9123.38 (18)C25—C27—H27A109.5
C5—C4—N2117.93 (17)H27C—C27—H27A109.5
C9—C4—N2118.68 (18)H27B—C27—H27A109.5
C6—C5—C4117.0 (2)C24—C28—C29112.2 (2)
C6—C5—C10120.6 (2)C24—C28—C30111.2 (3)
C4—C5—C10122.40 (18)C29—C28—C30110.2 (2)
C7—C6—C5120.8 (2)C24—C28—H28107.7
C7—C6—H6119.6C29—C28—H28107.7
C5—C6—H6119.6C30—C28—H28107.7
C6—C7—C8121.4 (2)C28—C29—H29A109.5
C6—C7—H7119.3C28—C29—H29B109.5
C8—C7—H7119.3H29A—C29—H29B109.5
C7—C8—C9120.5 (2)C28—C29—H29C109.5
C7—C8—H8119.8H29A—C29—H29C109.5
C9—C8—H8119.8H29B—C29—H29C109.5
C8—C9—C4117.0 (2)C28—C30—H30C109.5
C8—C9—C13120.7 (2)C28—C30—H30B109.5
C4—C9—C13122.26 (19)H30C—C30—H30B109.5
C11—C10—C12112.6 (3)C28—C30—H30A109.5
C11—C10—C5110.5 (2)H30C—C30—H30A109.5
C12—C10—C5112.1 (2)H30B—C30—H30A109.5
C11—C10—H10107.1C31—O1—C33B98.5 (4)
C12—C10—H10107.1C31—O1—C33A120.0 (4)
C5—C10—H10107.1O1—C31—C32108.4 (3)
C10—C11—H11A109.5O1—C31—H31A110.0
C10—C11—H11B109.5C32—C31—H31A110.0
H11A—C11—H11B109.5O1—C31—H31B110.0
C10—C11—H11C109.5C32—C31—H31B110.0
H11A—C11—H11C109.5H31A—C31—H31B108.4
H11B—C11—H11C109.5C31—C32—H32A109.5
C10—C12—H12C109.5C31—C32—H32B109.5
C10—C12—H12B109.5H32A—C32—H32B109.5
H12C—C12—H12B109.5C31—C32—H32C109.5
C10—C12—H12A109.5H32A—C32—H32C109.5
H12C—C12—H12A109.5H32B—C32—H32C109.5
H12B—C12—H12A109.5C34A—C33A—O1107.1 (7)
C9—C13—C14111.1 (2)C34A—C33A—H33A110.3
C9—C13—C15112.4 (2)O1—C33A—H33A110.3
C14—C13—C15110.0 (2)C34A—C33A—H33B110.3
C9—C13—H13107.7O1—C33A—H33B110.3
C14—C13—H13107.7H33A—C33A—H33B108.5
C15—C13—H13107.7O1—C33B—C34B108.2 (6)
C13—C14—H14A109.5O1—C33B—H33D110.1
C13—C14—H14B109.5C34B—C33B—H33D110.1
H14A—C14—H14B109.5O1—C33B—H33E110.1
C13—C14—H14C109.5C34B—C33B—H33E110.1
H14A—C14—H14C109.5H33D—C33B—H33E108.4
H14B—C14—H14C109.5C33A—C34A—H34A109.5
C13—C15—H15A109.5C33A—C34A—H34B109.5
C13—C15—H15B109.5H34A—C34A—H34B109.5
H15A—C15—H15B109.5C33A—C34A—H34C109.5
C13—C15—H15C109.5H34A—C34A—H34C109.5
H15A—C15—H15C109.5H34B—C34A—H34C109.5
H15B—C15—H15C109.5C33B—C34B—H34D109.5
N3—C16—N4111.78 (16)C33B—C34B—H34E109.5
N3—C16—H16124.1H34D—C34B—H34E109.5
N4—C16—H16124.1C33B—C34B—H34F109.5
C18—C17—N3110.06 (18)H34D—C34B—H34F109.5
C18—C17—H17125.0H34E—C34B—H34F109.5
N3—C17—H17125.0
C2—N1—C1—N20.3 (2)C19—N4—C16—N3169.57 (18)
Fe1—N1—C1—N2171.58 (12)C16—N3—C17—C180.0 (2)
C3—N2—C1—N10.2 (2)Fe1—N3—C17—C18158.93 (15)
C4—N2—C1—N1177.60 (17)N3—C17—C18—N40.3 (2)
C1—N1—C2—C30.2 (2)C16—N4—C18—C170.5 (2)
Fe1—N1—C2—C3171.21 (14)C19—N4—C18—C17169.40 (19)
N1—C2—C3—N20.1 (2)C16—N4—C19—C2074.2 (3)
C1—N2—C3—C20.1 (2)C18—N4—C19—C2092.7 (2)
C4—N2—C3—C2177.42 (19)C16—N4—C19—C24106.0 (2)
C1—N2—C4—C593.7 (2)C18—N4—C19—C2487.0 (3)
C3—N2—C4—C583.2 (3)C24—C19—C20—C210.4 (3)
C1—N2—C4—C986.6 (2)N4—C19—C20—C21179.86 (19)
C3—N2—C4—C996.5 (2)C24—C19—C20—C25179.7 (2)
C9—C4—C5—C61.2 (3)N4—C19—C20—C250.0 (3)
N2—C4—C5—C6178.47 (18)C19—C20—C21—C220.6 (4)
C9—C4—C5—C10177.9 (2)C25—C20—C21—C22179.5 (2)
N2—C4—C5—C102.4 (3)C20—C21—C22—C230.5 (4)
C4—C5—C6—C70.8 (3)C21—C22—C23—C240.3 (4)
C10—C5—C6—C7178.4 (2)C22—C23—C24—C190.1 (4)
C5—C6—C7—C80.1 (4)C22—C23—C24—C28179.8 (2)
C6—C7—C8—C90.6 (4)C20—C19—C24—C230.2 (3)
C7—C8—C9—C40.2 (3)N4—C19—C24—C23179.87 (19)
C7—C8—C9—C13178.1 (2)C20—C19—C24—C28179.9 (2)
C5—C4—C9—C80.8 (3)N4—C19—C24—C280.4 (3)
N2—C4—C9—C8178.94 (18)C21—C20—C25—C2763.4 (3)
C5—C4—C9—C13179.07 (19)C19—C20—C25—C27116.5 (2)
N2—C4—C9—C130.6 (3)C21—C20—C25—C2660.8 (3)
C6—C5—C10—C1173.6 (3)C19—C20—C25—C26119.3 (2)
C4—C5—C10—C11105.5 (3)C23—C24—C28—C2959.7 (3)
C6—C5—C10—C1252.9 (3)C19—C24—C28—C29120.0 (3)
C4—C5—C10—C12128.0 (3)C23—C24—C28—C3064.2 (3)
C8—C9—C13—C1472.8 (3)C19—C24—C28—C30116.1 (3)
C4—C9—C13—C14105.4 (3)C33B—O1—C31—C32174.6 (6)
C8—C9—C13—C1551.0 (3)C33A—O1—C31—C32165.9 (6)
C4—C9—C13—C15130.8 (2)C31—O1—C33A—C34A88.5 (8)
C17—N3—C16—N40.3 (2)C33B—O1—C33A—C34A44.2 (12)
Fe1—N3—C16—N4160.22 (12)C31—O1—C33B—C34B171.7 (7)
C18—N4—C16—N30.5 (2)C33A—O1—C33B—C34B46.0 (12)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of rings N3/N4/C16–C18 and C4–C9, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1···Br1i0.952.763.399 (2)125
C2—H2···Br10.952.893.479 (2)121
C16—H16···Br10.952.863.4119 (18)118
C17—H17···Br1i0.953.023.542 (2)116
C18—H18···O1ii0.952.403.337 (3)170
C15—H15A···Cg3iii0.982.923.801 (3)150
C25—H25···Cg21.002.613.413 (2)137
C26—H26A···Cg3iv0.982.873.682 (3)140
C34B—H34E···Cg2v0.982.923.627 (9)130
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+2, z+1; (iii) x+1, y+3, z+1; (iv) x+1, y+2, z+2; (v) x, y, z4.
Hydrogen-bond geometry (Å, º) for (I) top
Cg3 and Cg4 are the centroids of rings C4–C9 and C19–C24, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl1i0.952.623.257 (3)125
C2—H2···Cl10.952.923.433 (3)115
C16—H16···Cl10.952.763.294 (3)117
C17—H17···Cl1i0.952.823.375 (3)118
C18—H18···Cl1ii0.952.703.629 (3)166
C27—H27A···Cg4iii0.982.793.562 (4)136
C30—H30C···Cg3iv0.982.923.901 (4)176
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z; (iii) x+1, y1, z+1; (iv) x, y, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
Cg3 and Cg4 are the centroids of rings C4–C9 and C19–C24, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1···Br1i0.952.713.368 (4)127
C2—H2···Br10.952.913.477 (5)119
C16—H16···Br10.952.813.373 (4)119
C17—H17···Br1i0.952.913.484 (4)120
C18—H18···Br1ii0.952.773.707 (5)167
C27—H27A···Cg4iii0.982.923.639 (6)131
C30—H30C···Cg3iv0.982.883.862 (6)177
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z; (iii) x+1, y1, z+1; (iv) x, y, z+1.
Hydrogen-bond geometry (Å, º) for (IIb) top
Cg2 and Cg3 are the centroids of rings N3/N4/C16–C18 and C4–C9, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1···Br1i0.952.763.399 (2)125
C2—H2···Br10.952.893.479 (2)121
C16—H16···Br10.952.863.4119 (18)118
C17—H17···Br1i0.953.023.542 (2)116
C18—H18···O1ii0.952.403.337 (3)170
C15—H15A···Cg3iii0.982.923.801 (3)150
C25—H25···Cg21.002.613.413 (2)137
C26—H26A···Cg3iv0.982.873.682 (3)140
C34B—H34E···Cg2v0.982.923.627 (9)130
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+2, z+1; (iii) x+1, y+3, z+1; (iv) x+1, y+2, z+2; (v) x, y, z4.

Experimental details

(I)(II)(IIb)
Crystal data
Chemical formula[FeCl2(C15H20N2)4][FeBr2(C15H20N2)4][FeBr2(C15H20N2)4]·2C4H10O
Mr1040.071128.991277.22
Crystal system, space groupTriclinic, P1Triclinic, P1Triclinic, P1
Temperature (K)173173173
a, b, c (Å)8.877 (2), 12.628 (3), 13.810 (4)9.0391 (11), 12.7658 (11), 13.689 (2)11.6710 (8), 12.4758 (9), 13.5759 (10)
α, β, γ (°)74.68 (2), 74.48 (2), 83.105 (18)74.502 (9), 74.481 (12), 84.343 (9)64.464 (5), 81.515 (6), 88.982 (6)
V3)1436.6 (7)1466.0 (3)1761.8 (2)
Z111
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.401.661.39
Crystal size (mm)0.25 × 0.20 × 0.150.20 × 0.17 × 0.100.50 × 0.50 × 0.50
Data collection
DiffractometerStoe IPDS 2
diffractometer
Stoe IPDS 2
diffractometer
Stoe IPDS 2
diffractometer
Absorption correctionMulti-scan
(MULscanABS in PLATON; Spek, 2009)
Multi-scan
(MULscanABS in PLATON; Spek, 2009)
Multi-scan
(MULscanABS in PLATON; Spek, 2009)
Tmin, Tmax0.966, 1.0000.457, 0.4960.557, 0.672
No. of measured, independent and
observed [I > 2σ(I)] reflections
14618, 5214, 3012 17613, 5312, 3013 15799, 6374, 5714
Rint0.0820.1180.030
(sin θ/λ)max1)0.6000.6000.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.069, 0.80 0.046, 0.081, 0.81 0.031, 0.077, 1.03
No. of reflections521453126374
No. of parameters339350378
No. of restraints420
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.190.59, 0.640.44, 0.37

Computer programs: X-AREA (Stoe & Cie, 2006), X-RED32 (Stoe & Cie, 2006), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008), SHELXL2013 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

 

Footnotes

This work is part of the PhD thesis (No. 1503, University of Fribourg, 2006) of RM.

Present address: Engineering Faculty, Chemistry Department, University A. Neto, Luanda, Angola.

§Present address: Center for X-ray Analytics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland.

Acknowledgements

Financial support from the Swiss National Science Foundation and the University of Fribourg is gratefully acknowledged.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBritovsek, G. J. P., Gibson, V. C., Kimberley, B. S., Maddox, P. J., McTavish, S. I., Solan, G. A., White, A. J. P. & William, D. J. (1998). Chem. Commun. pp. 849–850.  Web of Science CSD CrossRef Google Scholar
First citationChristie, S., Subramanian, S., Wang, L. & Zaworotko, M. J. (1993). Inorg. Chem. 32, 5415–5417.  CSD CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMafua, R. (2006). PhD thesis (No. 1503), University of Fribourg, Switzerland.  Google Scholar
First citationReisner, E., Telser, J. & Lippard, S. J. (2007). Inorg. Chem. 46, 10754–10770.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSchröder, K., Enthaler, S., Bitterlich, B., Schulz, T., Spannenberg, A., Tse, M. K., Junge, K. & Beller, M. (2009). Chem. Eur. J. 15, 5471–5481.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmall, B. L. & Brookhart, M. (1998). J. Am. Chem. Soc. 120, 7143–7144.  Web of Science CrossRef CAS Google Scholar
First citationSmall, B. L., Brookhart, M. & Bennett, A. M. A. (1998). J. Am. Chem. Soc. 120, 4049–4050.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2006). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds