research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a layered coordination polymer based on a 44 net containing Cd2+ ions and 1,5-bis­­(pyridin-4-yl)pentane linkers

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

Edited by M. Weil, Vienna University of Technology, Austria (Received 17 June 2014; accepted 23 June 2014; online 19 July 2014)

The title compound, poly[[di­aqua­bis­[1,5-bis­(pyridin-4-yl)pentane-κ2N:N′]cadmium] bis­(perchlorate) 1,5-bis­(pyridin-4-yl)pentane ethanol mono­solvate], [Cd(C15H18N2)2(H2O)2](ClO4)2·C15H18N2·C2H6O, is a layered coordination polymer built up from highly squashed 44 nets in which the octa­hedral trans-CdO2N4 nodes (Cd site symmetry -1) are linked by the bifunctional ligands, forming infinite (110) sheets. The cationic sheets are charge-balanced by inter­layer perchlorate ions. A free 1,5-bis­(pyridin-4-yl)pentane mol­ecule and an ethanol mol­ecule of crystallization are also found in the inter­sheet region. A number of O—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds help to consolidate the layered structure.

1. Chemical context

The most popular linking ligands in metal-organic frameworks (MOFs) are probably multi-functional carboxyl­ates (Batten et al., 2009[Batten, S. R., Neville, S. M. & Turner, D. R. (2009). In Coordination Polymers: Design, Analysis and Applications. Cambridge: RSC Publishing.]) but other functional groups are also possible. As part of our ongoing studies of flexible bifunctional pyridyl ligands (Plater et al., 2008[Plater, M. J., Gelbrich, T., Hursthouse, M. B. & De Silva, B. M. (2008). CrystEngComm, 10, 125-130.]) as potential MOF linkers, we now describe the synthesis and structure of the title layered coordination polymer, (I)[link], which combines Cd2+ ions and the little-studied ligand 1,5-bis­(pyridin-4-yl)pentane, C15H18N2. The neutral bridging ligand necessitates the presence of perchlorate counter-ions (from the starting metal salt), which exert an important influence on the structure.

[Scheme 1]

2. Structural commentary

The asymmetric unit of (I)[link] contains two Cd2+ ions (both lying on crystallographic inversion centres), three 1,5-bis­(pyridin-4-yl)pentane (C15H18N2; L) molecules, two perchlorate ions, two water mol­ecules and one ethanol mol­ecule (Fig. 1[link]). The cadmium ions, water mol­ecules and two of the L molecules combine to generate an infinite cationic network of compos­ition [Cd(H2O)2L2]2+n.

[Figure 1]
Figure 1
The asymmetric unit of (I)[link] showing 50% displacement ellipsoids.

Both cadmium ions adopt almost regular trans-CdO2N4 octa­hedral coordination geometries (Table 1[link]) arising from two water mol­ecules and four ligands. The mean Cd—O and Cd—N bond lengths are 2.327 and 2.341 Å, respectively. Bond-valence sum (BVS) calculations (Brese & O'Keeffe, 1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]) in valence units for Cd1 and Cd2 yield values of 2.11 and 2.02, respectively, in close agreement with the expected value of 2.00. The octa­hedral angular variances (Robinson et al., 1971[Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567-570.]) for Cd1 and Cd2 are 2.53 and 10.57°2, respectively. Both ligands bridge the Cd1 and Cd2 atoms, resulting in a highly squashed and contorted 44 network (O'Keeffe & Hyde, 1996[O'Keeffe, M. & Hyde, B. G. (1996). Crystal Structures I: Patterns and Symmetry, p. 164. Washington DC: Mineralogical Society of America.]), which propagates in the (110) plane, as shown in Fig. 2[link]: each Cd1 atom is linked to four different Cd2 atoms and vice versa. The shortest Cd1⋯Cd2 separations (via ligands) are 14.4350 (6) and 14.7807 (6) Å. The shortest non-bonded Cd1⋯Cd1 and Cd2⋯Cd2 separations across a squashed 44 square are both 11.0921 (5) Å. It is inter­esting that the shortest metal–metal distances in (I)[link] of 10.0618 (4) and 10.1653 (4) Å for both Cd1 and Cd2 are inter-sheet separations.

Table 1
Selected bond lengths (Å)

Cd1—O1 2.317 (5) Cd2—O2 2.337 (5)
Cd1—N11 2.319 (7) Cd2—N22i 2.333 (6)
Cd1—N21 2.349 (6) Cd2—N12 2.363 (6)
Symmetry code: (i) x-1, y+1, z.
[Figure 2]
Figure 2
Part of an infinite 44 sheet propagating in (110) in the structure of (I)[link]. The Cd1 and Cd2 ions are represented by orange and fuchsia spheres, respectively.

For the N11 ligand mol­ecule, the dihedral angle between the N11 and N12 rings is 77.8 (4)° and the alkyl chain adopts a gaaa (g = gauche, a = anti) conformation (reading from the N11 ring to the N12 ring). Cd1 is displaced by 0.69 (1) Å from the N11 ring plane and Cd2 is displaced by −0.26 (1) Å from the N12 plane. In the N21 ligand mol­ecule, the dihedral angle between the pyridine rings is 75.2 (4)° and the alkyl-chain conformation is aaag (in the sense of the N21 ring to the N22 ring). The displacement of Cd1 from the N21 ring is 0.42 (1) Å and the displacement of Cd2 from the N22 ring is −0.58 (1) Å. The shortest out-and-back pathway from any metal atom to itself encompasses no fewer than 56 atoms (4 metal atoms and 4 × 13 ligand atoms).

The mean Cl—O bond lengths in the perchlorate ions in (I)[link] are 1.446 Å for the Cl1 species and 1.436 Å for the Cl2 species. The third (N31) ligand mol­ecule is not bonded to the metal ions: the dihedral angle between its N31 and N32 rings is 18.3 (5)° and its alkyl chain conformation is ggaa (from N31 to N32; Fig. 3[link]).

[Figure 3]
Figure 3
Part of a layer of perchlorate ions, N31-ligands and ethanol mol­ecules in the structure of (I)[link]. The Oe—H⋯O (e = ethanol) hydrogen bond is shown as a yellow line.

3. Supra­molecular features

In the crystal, the infinite [Cd(H2O)2L2]n sheets propagate in the (110) plane (Fig. 4[link]). There is no inter­penetration of the sheets in this structure. Sandwiched between the cationic sheets are layers of perchlorate ions, free (unbounded) N31-molecules and ethanol solvent mol­ecules. The water mol­ecules attached to the cadmium ions each form one O—H⋯O hydrogen bond to a perchlorate ion and one O—H⋯N hydrogen bond to the free solvent mol­ecule, such that both N31 and N32 accept a hydrogen bond. An intra-layer Oe—H⋯Cl (e = ethanol) hydrogen bond also occurs. A number of C—H⋯O inter­actions are also observed (mean H⋯O = 2.54 Å): see Table 2[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O8ii 0.86 1.96 2.795 (9) 165
O1—H2O⋯N32iii 0.84 1.87 2.705 (10) 175
O2—H3O⋯N31ii 0.86 1.91 2.736 (9) 162
O2—H4O⋯O3iv 0.84 2.20 2.880 (8) 138
O11—H11⋯O6 0.84 2.14 2.910 (11) 152
C1—H1C⋯O5 0.98 2.57 3.493 (12) 157
C101—H101⋯O1 0.95 2.55 3.226 (10) 128
C113—H113⋯O6 0.95 2.56 3.257 (12) 130
C201—H201⋯O10ii 0.95 2.54 3.260 (11) 133
C205—H205⋯O7 0.95 2.55 3.214 (12) 127
C214—H214⋯O2v 0.95 2.52 3.201 (11) 128
C304—H304⋯O3 0.95 2.47 3.420 (11) 174
Symmetry codes: (ii) x, y-1, z; (iii) -x, -y+1, -z; (iv) -x, -y+1, -z+1; (v) -x+1, -y, -z+1.
[Figure 4]
Figure 4
View down [001] of the structure of (I)[link] showing the alternating polymeric [Cd(H2O)2L2]n and perchlorate/solvent molecule layers. The Cd1- and Cd2-centred octa­hedra are shown as orange and fuchsia polyhedra, respectively.

4. Database survey

Only four `hits' for crystal structures containing 1,5-bis(pyridin-4-yl)pentane were obtained from a search of Version 5.31 (last update February 2014) of the Cambridge Structural Database (Allen & Motherwell, 2002[Allen, F. H. & Motherwell, W. D. S. (2002). Acta Cryst. B58, 407-422.]). Three of these are the isostructural family [M(C15H18N2)2(NO3)2]n, (M = Co, Ni, Cu) (Plater et al., 2008[Plater, M. J., Gelbrich, T., Hursthouse, M. B. & De Silva, B. M. (2008). CrystEngComm, 10, 125-130.]), which contain inter­penetrated 65.8 nets, with the nitrate counter-ions directly bonded to the metal ions. In [Cd4(C15H18N2)8(NO3)8]n·2nH2O, (II), (Plater et al., 2000[Plater, M. J., Foreman, M. R. St J., Gelbrich, T., Coles, S. J. & Hursthouse, M. B. (2000). J. Chem. Soc. Dalton Trans. pp. 3065-3073.]), remarkable triply-inter­penetrated 63 nets occur in which the cadmium ions are coordinated by three ligand N atoms and two O,O-bidentate nitrate ions, generating distorted CdN3O4 penta­gonal bipyramids. It may be noted that in (I)[link] and (II) the counter-ions and water mol­ecules have effectively swapped places, resulting in radically different structures.

5. Synthesis and crystallization

1,5-Bis(pyridin-4-yl)pentane (0.1 g, 0. 450 mmol; Plater et al., 2000[Plater, M. J., Foreman, M. R. St J., Gelbrich, T., Coles, S. J. & Hursthouse, M. B. (2000). J. Chem. Soc. Dalton Trans. pp. 3065-3073.]) was dissolved in ethanol (5 ml) and carefully layered onto a solution of Cd(ClO4)2·xH2O (0.137 g, 0.44 mmol) in water (5 ml). The solution was left to stand for two weeks during which time colourless blocks of (I)[link] grew at the layer inter­face. The crystals were harvested and air dried (0.107 g, 45%). IR (KBr disc)/cm−1 ν = 3469 s, 3422 s, 2932 s, 2858 s, 1513 s, 1427 s, 1226 s, 1094 s, 1012 w, 842 w, 800 w, 624 s and 512 w.

6. Refinement

The O-bound H atoms were located in difference maps and refined as riding atoms in their as-found relative positions. The C-bound H atoms were placed geometrically and refined as riding atoms. The H atoms of the methyl group were allowed to rotate, but not to tip, to best fit the electron density. The constraint Uiso(H) = 1.2Ueq(C,O) or 1.5Ueq(methyl C) was applied in all cases. Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [Cd(C15H18N2)2(H2O)2](ClO4)2·C15H18N2·C2H6O
Mr 1072.34
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 120
a, b, c (Å) 10.0618 (3), 10.1653 (3), 27.0304 (11)
α, β, γ (°) 87.163 (1), 85.001 (1), 66.509 (1)
V3) 2525.60 (15)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.60
Crystal size (mm) 0.10 × 0.07 × 0.05
 
Data collection
Diffractometer Nonius KappaCCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.942, 0.971
No. of measured, independent and observed [I > 2σ(I)] reflections 20841, 9645, 6116
Rint 0.135
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.091, 0.221, 1.10
No. of reflections 9645
No. of parameters 608
No. of restraints 24
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.94, −1.34
Computer programs: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter, Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and ATOMS (Dowty, 1998[Dowty, E. (1998). ATOMS. Shape Software, Kingsport, Tennessee, USA.]).

Supporting information


Chemical context top

The most popular linking ligands in metal-organic frameworks (MOFs) are probably multi-functional carboxyl­ates (Batten et al., 2009) but other functional groups are also possible. As part of our ongoing studies of flexible bifunctional pyridyl ligands (Plater et al., 2008) as potential MOF linkers, we now describe the synthesis and structure of the title layered coordination polymer, (I), which combines Cd2+ ions and the little-studied ligand 1,5-bis­(pyridin-4-yl)pentane, C15H18N2. The neutral bridging ligand necessitates the presence of perchlorate counter-ions (from the starting metal salt), which exert an important influence on the structure.

Structural commentary top

The asymmetric unit of (I) contains two Cd2+ ions (both lying on crystallographic inversion centres), three 1,5-bis­(pyridin-4-yl)pentane (C15H18N2; L) ligands, two perchlorate ions, two water molecules and one ethanol molecule (Fig. 1). The cadmium ions, water molecules and two of the ligands combine to generate an infinite cationic network of composition [Cd(H2O)2L2]2+n.

Both cadmium ions adopt almost regular trans-CdO2N4 o­cta­hedral coordination geometries (Table 1) arising from two water molecules and four ligands. The mean Cd—O and Cd—N bond lengths are 2.327 and 2.341 Å, respectively. Bond-valence sum (BVS) calculations (Brese & O'Keeffe, 1991) in valence units for Cd1 and Cd2 yield values of 2.11 and 2.02, respectively, in close agreement with the expected value of 2.00. The o­cta­hedral angular variances (Robinson et al., 1971) for Cd1 and Cd2 are 2.53 and 10.57°2, respectively. Both ligands bridge the Cd1 and Cd2 atoms, resulting in a highly squashed and contorted 44 network (O'Keeffe & Hyde, 1996), which propagates in the (110) plane, as shown in Fig. 2: each Cd1 atom is linked to four different Cd2 atoms and vice versa. The shortest Cd1···Cd2 separations (via ligands) are 14.4350 (6) and 14.7807 (6) Å. The shortest non-bonded Cd1···Cd1 and Cd2···Cd2 separations across a squashed 44 square are both 11.0921 (5) Å. It is inter­esting that the shortest metal–metal distances in (I) of 10.0618 (4) and 10.1653 (4) Å for both Cd1 and Cd2 are inter-sheet separations.

For the N11 ligand molecule, the dihedral angle between the N11 and N12 rings is 77.8 (4)° and the alkyl chain adopts a gaaa (g = gauche, a = anti) conformation (reading from the N11 ring to the N12 ring). Cd1 is displaced by 0.69 (1) Å from the N11 ring plane and Cd2 is displaced by -0.26 (1) Å from the N12 plane. In the N21 molecule, the dihedral angle between the pyridine rings is 75.2 (4)° and the alkyl-chain conformation is aaag (in the sense of the N21 ring to the N22 ring). The displacement of Cd1 from the N21 ring is 0.42 (1) Å and the displacement of Cd2 from the N22 ring is -0.58 (1) Å. The shortest out-and-back pathway from any metal atom to itself encompasses no fewer than 56 atoms (4 metal atoms and 4 × 13 ligand atoms).

The mean Cl—O bond lengths in the perchlorate ions in (I) are 1.446 Å for the Cl1 species and 1.436 Å for the Cl2 species. The third (N31) molecule is not bonded to the metal ions: the dihedral angle between its N31 and N32 rings is 18.3 (5)° and its alkyl chain conformation is ggaa (from N31 to N32; Fig. 3).

Supra­molecular features top

In the crystal, the infinite [Cd(H2O)2L2]n sheets propagate in the (110) plane (Fig. 4). There is no inter­penetration of the sheets in this structure. Sandwiched between the cationic sheets are layers of perchlorate ions, free (unbounded) N31-ligands and ethanol solvent molecules. The water molecules attached to the cadmium ions each form one O—H···O hydrogen bond to a perchlorate ion and one O—H···N hydrogen bond to the free solvent molecule, such that both N31 and N32 accept a hydrogen bond. An intra-layer Oe—H···Cl (e = ethanol) hydrogen bond also occurs. A number of C—H···O inter­actions are also observed (mean H···O = 2.54 Å): see Table 2.

Database survey top

Only four 'hits' for crystal structures containing 1,5-bis­(pyridin-4-yl)pentane were obtained from a search of Version 5.31 (last update February 2014) of the Cambridge Structural Database (Allen & Motherwell, 2002). Three of these are the isostructural family [M(C15H18N2)2(NO3)2]n, (M = Co, Ni, Cu) (Plater et al., 2008), which contain inter­penetrated 65.8 nets, with the nitrate counter-ions directly bonded to the metal ions. In [Cd4(C15H18N2)8(NO3)8]n·2nH2O, (II), (Plater et al., 2000), remarkable triply-inter­penetrated 63 nets occur in which the cadmium ions are coordinated by three ligand N atoms and two O,O-bidentate nitrate ions, generating distorted CdN3O4 penta­gonal bipyramids. It may be noted that in (I) and (II) the counter-ions and water molecules have effectively swapped places, resulting in radically different structures.

Synthesis and crystallization top

1,5-Bis(pyridin-4-yl)pentane (0.1 g, 0. 450 mmol; Plater et al., 2000) was dissolved in ethanol (5 ml) and carefully layered onto a solution of Cd(ClO4)2·xH2O (0.137 g, 0.44 mmol) in water (5 ml). The solution was left to stand for two weeks during which time colourless blocks of (I) grew at the layer inter­face. The crystals were harvested and air dried (0.107 g, 45%). IR (KBr disc)/cm-1 ν = 3469 s, 3422 s, 2932 s, 2858 s, 1513 s, 1427 s, 1226 s, 1094 s, 1012 w, 842 w, 800 w, 624 s and 512 w.

Refinement top

The O-bound H atoms were located in difference maps and refined as riding atoms in their as-found relative positions. The C-bound H atoms were placed geometrically and refined as riding atoms. The H atoms of the methyl group were allowed to rotate, but not to tip, to best fit the electron density. The constraint Uiso(H) = 1.2Ueq(C,O) or 1.5Ueq(methyl C) was applied in all cases. Crystal data, data collection and structure refinement details are summarized in Table 3.

Related literature top

For related literature, see: Allen & Motherwell (2002); Batten et al. (2009); Brese & O'Keeffe (1991); O'Keeffe & Hyde (1996); Plater et al. (2000, 2008); Robinson et al. (1971).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997) and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and ATOMS (Dowty, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) showing 50% displacement ellipsoids.
[Figure 2] Fig. 2. Part of an infinite 44 sheet propagating in (110) in the structure of (I). The Cd1 and Cd2 ions are represented by orange and fuchsia spheres, respectively.
[Figure 3] Fig. 3. Part of a layer of perchlorate ions, N31-ligands and ethanol molecules in the structure of (I). The Oe—H···O (e = ethanol) hydrogen bond is shown as a yellow line.
[Figure 4] Fig. 4. View down [001] of the structure of (I) showing the alternating polymeric [Cd(H2O)2L2]n and perchlorate/free ligand/ethanol layers. The Cd1- and Cd2-centred octahedra are shown as orange and fuchsia polyhedra, respectively.
Poly[[diaquabis[1,5-bis(pyridin-4-yl)pentane-κ2N:N']cadmium] bis(perchlorate) 1,5-bis(pyridin-4-yl)pentane ethanol monosolvate] top
Crystal data top
[Cd(C15H18N2)2(H2O)2](ClO4)2·C15H18N2·C2H6OZ = 2
Mr = 1072.34F(000) = 1116
Triclinic, P1Dx = 1.410 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.0618 (3) ÅCell parameters from 8655 reflections
b = 10.1653 (3) Åθ = 2.9–26.0°
c = 27.0304 (11) ŵ = 0.60 mm1
α = 87.163 (1)°T = 120 K
β = 85.001 (1)°Chip, colourless
γ = 66.509 (1)°0.10 × 0.07 × 0.05 mm
V = 2525.60 (15) Å3
Data collection top
Nonius KappaCCD
diffractometer
9645 independent reflections
Radiation source: fine-focus sealed tube6116 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.135
ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1112
Tmin = 0.942, Tmax = 0.971k = 1212
20841 measured reflectionsl = 3332
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.091Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.221H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0516P)2 + 20.691P]
where P = (Fo2 + 2Fc2)/3
9645 reflections(Δ/σ)max < 0.001
608 parametersΔρmax = 2.94 e Å3
24 restraintsΔρmin = 1.34 e Å3
Crystal data top
[Cd(C15H18N2)2(H2O)2](ClO4)2·C15H18N2·C2H6Oγ = 66.509 (1)°
Mr = 1072.34V = 2525.60 (15) Å3
Triclinic, P1Z = 2
a = 10.0618 (3) ÅMo Kα radiation
b = 10.1653 (3) ŵ = 0.60 mm1
c = 27.0304 (11) ÅT = 120 K
α = 87.163 (1)°0.10 × 0.07 × 0.05 mm
β = 85.001 (1)°
Data collection top
Nonius KappaCCD
diffractometer
9645 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
6116 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.971Rint = 0.135
20841 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.09124 restraints
wR(F2) = 0.221H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0516P)2 + 20.691P]
where P = (Fo2 + 2Fc2)/3
9645 reflectionsΔρmax = 2.94 e Å3
608 parametersΔρmin = 1.34 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50000.00000.00000.0179 (2)
Cd20.00000.50000.50000.0152 (2)
O10.3460 (6)0.1203 (6)0.0086 (2)0.0255 (14)
H1O0.34540.19000.02780.031*
H2O0.28840.11180.01310.031*
O20.1216 (6)0.3462 (6)0.5004 (2)0.0188 (13)
H3O0.10820.30170.47300.023*
H4O0.21170.38340.50720.023*
N110.3004 (7)0.2155 (7)0.0113 (2)0.0159 (14)
N120.0329 (7)0.4706 (7)0.4130 (2)0.0168 (15)
C1010.1756 (9)0.2138 (9)0.0360 (3)0.0188 (18)
H1010.16500.12480.03820.023*
C1020.0667 (9)0.3284 (9)0.0576 (3)0.0218 (19)
H1020.01600.31700.07360.026*
C1030.0737 (9)0.4624 (9)0.0566 (3)0.0180 (18)
C1040.1981 (9)0.4690 (9)0.0313 (3)0.0215 (19)
H1040.20940.55760.02860.026*
C1050.3048 (9)0.3478 (9)0.0101 (3)0.0227 (19)
H1050.38770.35740.00650.027*
C1060.0347 (9)0.5862 (9)0.0839 (3)0.0221 (19)
H10A0.12760.57370.08890.027*
H10B0.05180.67450.06360.027*
C1070.0128 (9)0.6049 (9)0.1346 (3)0.0204 (19)
H10C0.10610.61680.12980.024*
H10D0.06070.69290.15020.024*
C1080.0311 (10)0.4762 (9)0.1694 (3)0.025 (2)
H10E0.11800.39240.15740.030*
H10F0.05450.45160.16860.030*
C1090.0473 (10)0.5069 (9)0.2231 (3)0.023 (2)
H10G0.13070.53490.22370.027*
H10H0.04130.58830.23560.027*
C1100.0710 (10)0.3759 (9)0.2574 (3)0.027 (2)
H11A0.00200.33680.25170.033*
H11B0.16840.30070.24850.033*
C1110.0598 (10)0.4099 (9)0.3123 (3)0.022 (2)
C1120.1818 (10)0.3809 (9)0.3390 (3)0.0231 (19)
H1120.27690.34030.32310.028*
C1130.1614 (9)0.4124 (8)0.3887 (3)0.0179 (18)
H1130.24500.39090.40660.022*
C1140.0851 (9)0.5015 (9)0.3870 (3)0.0203 (19)
H1140.17870.54420.40400.024*
C1150.0759 (10)0.4739 (9)0.3371 (3)0.0212 (19)
H1150.16150.49860.32010.025*
N210.5191 (8)0.0094 (8)0.0862 (2)0.0192 (16)
N220.7871 (7)0.3004 (6)0.4863 (2)0.0113 (13)
C2010.5874 (9)0.1351 (9)0.1092 (3)0.0226 (19)
H2010.61210.22090.09140.027*
C2020.6240 (10)0.1453 (10)0.1584 (3)0.027 (2)
H2020.67030.23680.17360.032*
C2030.5927 (10)0.0224 (10)0.1847 (3)0.025 (2)
C2040.5167 (10)0.1083 (10)0.1611 (3)0.027 (2)
H2040.48710.19550.17840.032*
C2050.4851 (10)0.1102 (10)0.1130 (3)0.028 (2)
H2050.43640.20060.09740.034*
C2060.6337 (10)0.0278 (11)0.2377 (3)0.030 (2)
H20A0.72250.11510.24250.036*
H20B0.65610.05650.24320.036*
C2070.5147 (10)0.0287 (11)0.2752 (3)0.027 (2)
H20C0.50320.12040.27280.033*
H20D0.42240.04980.26670.033*
C2080.5406 (9)0.0109 (10)0.3284 (3)0.023 (2)
H20E0.55510.07930.33070.027*
H20F0.63090.09120.33740.027*
C2090.4158 (9)0.0072 (9)0.3655 (3)0.0196 (19)
H20G0.41240.10340.36750.024*
H20H0.32300.06140.35330.024*
C2100.4299 (9)0.0364 (9)0.4179 (3)0.0210 (19)
H21A0.44520.12700.41560.025*
H21B0.33820.05430.43850.025*
C2110.5540 (9)0.0769 (9)0.4432 (3)0.0165 (18)
C2120.5365 (9)0.1941 (9)0.4666 (3)0.0198 (18)
H2120.44450.20050.46850.024*
C2130.6524 (9)0.3010 (9)0.4870 (3)0.0172 (18)
H2130.63730.38030.50260.021*
C2140.8012 (9)0.1840 (9)0.4630 (3)0.0188 (18)
H2140.89390.17930.46080.023*
C2150.6890 (9)0.0734 (9)0.4424 (3)0.0195 (18)
H2150.70500.00620.42760.023*
N310.0493 (8)1.1537 (9)0.4252 (3)0.0320 (19)
N320.1723 (9)1.0904 (9)0.0658 (3)0.035 (2)
C3010.1172 (10)1.1686 (10)0.3835 (4)0.030 (2)
H3010.18751.26040.37520.036*
C3020.0885 (10)1.0542 (10)0.3516 (3)0.026 (2)
H3020.14251.06860.32320.031*
C3030.0188 (9)0.9194 (9)0.3613 (3)0.0154 (17)
C3040.0963 (9)0.9043 (9)0.4046 (3)0.0202 (19)
H3040.17170.81570.41290.024*
C3050.0566 (10)1.0247 (10)0.4341 (3)0.027 (2)
H3050.10861.01500.46270.032*
C3060.0541 (10)0.7921 (9)0.3294 (3)0.028 (2)
H30A0.02410.81330.30660.033*
H30B0.05640.70950.35080.033*
C3070.1996 (10)0.7500 (9)0.2985 (3)0.028 (2)
H30C0.27800.72790.32120.033*
H30D0.21850.66170.28020.033*
C3080.2050 (10)0.8652 (11)0.2619 (3)0.033 (2)
H30E0.30440.83380.24550.040*
H30F0.18550.95360.28030.040*
C3090.0965 (10)0.9005 (10)0.2218 (3)0.028 (2)
H30G0.00370.94240.23760.034*
H30H0.10910.81100.20530.034*
C3100.1180 (11)1.0081 (10)0.1822 (3)0.032 (2)
H31A0.10011.09960.19830.038*
H31B0.21960.96860.16760.038*
C3110.0166 (9)1.0358 (9)0.1418 (3)0.0210 (19)
C3120.1188 (10)1.1552 (10)0.1427 (4)0.030 (2)
H3120.14681.22010.16940.037*
C3130.2088 (11)1.1779 (10)0.1058 (4)0.038 (3)
H3130.30021.25720.10780.046*
C3140.0463 (10)0.9765 (9)0.0655 (3)0.025 (2)
H3140.02140.91200.03870.030*
C3150.0528 (10)0.9460 (9)0.1029 (3)0.023 (2)
H3150.14240.86460.10070.028*
Cl10.5093 (2)0.4849 (2)0.40637 (8)0.0265 (5)
O30.3649 (6)0.5756 (7)0.4264 (2)0.0309 (15)
O40.5991 (7)0.4198 (8)0.4469 (3)0.0458 (19)
O50.5694 (8)0.5707 (8)0.3756 (2)0.0425 (19)
O60.4995 (7)0.3747 (7)0.3767 (2)0.0373 (17)
Cl20.4508 (3)0.5691 (2)0.11401 (9)0.0307 (6)
O70.4223 (8)0.4435 (7)0.1242 (3)0.0416 (18)
O80.3993 (8)0.6319 (8)0.0671 (3)0.054 (2)
O90.3709 (9)0.6750 (9)0.1517 (3)0.066 (3)
O100.6020 (7)0.5384 (7)0.1153 (3)0.0359 (16)
C10.6037 (12)0.5405 (12)0.2465 (4)0.047 (3)
H1A0.54240.61340.22390.071*
H1B0.70620.51570.23560.071*
H1C0.58400.57830.28020.071*
C20.5708 (14)0.4094 (12)0.2460 (4)0.052 (3)
H2A0.46580.43690.25500.062*
H2B0.59160.37190.21190.062*
O110.6511 (11)0.2977 (9)0.2790 (3)0.080 (3)
H110.63250.32770.30820.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0242 (5)0.0207 (5)0.0097 (4)0.0101 (4)0.0019 (4)0.0028 (4)
Cd20.0155 (5)0.0196 (5)0.0088 (4)0.0055 (4)0.0000 (3)0.0000 (3)
O10.031 (4)0.030 (4)0.024 (3)0.020 (3)0.007 (3)0.003 (3)
O20.018 (3)0.020 (3)0.018 (3)0.008 (3)0.002 (2)0.001 (2)
N110.017 (2)0.017 (2)0.014 (2)0.0080 (16)0.0034 (16)0.0051 (16)
N120.020 (4)0.020 (4)0.014 (3)0.011 (3)0.001 (3)0.000 (3)
C1010.031 (5)0.018 (4)0.012 (4)0.015 (4)0.000 (4)0.002 (3)
C1020.023 (5)0.031 (5)0.012 (4)0.012 (4)0.003 (3)0.000 (4)
C1030.025 (5)0.022 (5)0.006 (4)0.007 (4)0.007 (3)0.001 (3)
C1040.026 (5)0.021 (5)0.019 (4)0.011 (4)0.003 (4)0.002 (4)
C1050.025 (5)0.031 (5)0.015 (4)0.015 (4)0.002 (4)0.003 (4)
C1060.024 (5)0.022 (5)0.013 (4)0.001 (4)0.001 (3)0.001 (4)
C1070.025 (5)0.013 (4)0.014 (4)0.001 (4)0.001 (3)0.003 (3)
C1080.032 (5)0.024 (5)0.017 (5)0.010 (4)0.000 (4)0.001 (4)
C1090.032 (5)0.021 (5)0.011 (4)0.008 (4)0.005 (4)0.003 (3)
C1100.039 (6)0.027 (5)0.008 (4)0.004 (4)0.002 (4)0.000 (4)
C1110.036 (5)0.019 (4)0.006 (4)0.006 (4)0.004 (4)0.000 (3)
C1120.026 (5)0.024 (5)0.017 (4)0.008 (4)0.001 (4)0.002 (4)
C1130.017 (4)0.016 (4)0.016 (4)0.001 (4)0.004 (3)0.001 (3)
C1140.021 (5)0.028 (5)0.018 (4)0.016 (4)0.003 (4)0.001 (4)
C1150.026 (5)0.024 (5)0.014 (4)0.010 (4)0.006 (4)0.001 (4)
N210.023 (4)0.029 (4)0.008 (3)0.014 (3)0.002 (3)0.003 (3)
N220.012 (2)0.012 (2)0.009 (2)0.0042 (16)0.0046 (16)0.0034 (16)
C2010.028 (5)0.026 (5)0.010 (4)0.007 (4)0.000 (3)0.001 (4)
C2020.029 (5)0.031 (5)0.015 (4)0.008 (4)0.001 (4)0.001 (4)
C2030.029 (5)0.036 (6)0.015 (4)0.019 (4)0.002 (4)0.004 (4)
C2040.045 (6)0.019 (5)0.022 (5)0.016 (4)0.006 (4)0.001 (4)
C2050.042 (6)0.025 (5)0.022 (5)0.018 (5)0.007 (4)0.002 (4)
C2060.033 (6)0.045 (6)0.016 (5)0.018 (5)0.006 (4)0.000 (4)
C2070.022 (5)0.045 (6)0.015 (4)0.014 (5)0.002 (4)0.000 (4)
C2080.023 (5)0.035 (5)0.008 (4)0.009 (4)0.000 (3)0.003 (4)
C2090.023 (5)0.020 (5)0.013 (4)0.007 (4)0.005 (3)0.009 (3)
C2100.021 (5)0.025 (5)0.012 (4)0.004 (4)0.000 (3)0.000 (4)
C2110.019 (5)0.025 (5)0.004 (4)0.006 (4)0.001 (3)0.004 (3)
C2120.013 (4)0.025 (5)0.017 (4)0.003 (4)0.001 (3)0.004 (4)
C2130.020 (5)0.017 (4)0.013 (4)0.006 (4)0.004 (3)0.001 (3)
C2140.018 (4)0.023 (5)0.015 (4)0.008 (4)0.001 (3)0.000 (3)
C2150.026 (5)0.021 (5)0.010 (4)0.010 (4)0.003 (3)0.002 (3)
N310.026 (5)0.038 (5)0.034 (5)0.015 (4)0.002 (4)0.008 (4)
N320.033 (5)0.042 (5)0.031 (5)0.018 (4)0.005 (4)0.010 (4)
C3010.032 (6)0.025 (5)0.040 (6)0.019 (4)0.003 (4)0.005 (4)
C3020.026 (5)0.031 (5)0.019 (5)0.008 (4)0.006 (4)0.005 (4)
C3030.019 (4)0.025 (5)0.007 (4)0.013 (4)0.005 (3)0.002 (3)
C3040.021 (4)0.024 (4)0.016 (4)0.010 (3)0.007 (3)0.010 (3)
C3050.028 (5)0.045 (6)0.013 (4)0.020 (5)0.002 (4)0.008 (4)
C3060.040 (6)0.019 (5)0.028 (5)0.016 (4)0.007 (4)0.007 (4)
C3070.026 (5)0.024 (5)0.030 (5)0.005 (4)0.007 (4)0.007 (4)
C3080.025 (5)0.039 (6)0.032 (5)0.007 (5)0.006 (4)0.012 (5)
C3090.032 (5)0.035 (5)0.016 (4)0.012 (4)0.001 (4)0.003 (4)
C3100.040 (6)0.032 (5)0.030 (5)0.020 (5)0.007 (4)0.003 (4)
C3110.021 (5)0.023 (5)0.024 (5)0.016 (4)0.007 (4)0.002 (4)
C3120.031 (6)0.022 (5)0.042 (6)0.014 (4)0.006 (5)0.002 (4)
C3130.028 (6)0.024 (5)0.057 (7)0.007 (4)0.010 (5)0.012 (5)
C3140.043 (6)0.020 (5)0.021 (5)0.021 (5)0.007 (4)0.001 (4)
C3150.024 (4)0.018 (4)0.028 (4)0.009 (3)0.005 (3)0.012 (3)
Cl10.0150 (11)0.0345 (13)0.0266 (12)0.0066 (10)0.0037 (9)0.0067 (10)
O30.016 (3)0.035 (4)0.031 (4)0.003 (3)0.013 (3)0.003 (3)
O40.029 (4)0.047 (5)0.044 (4)0.005 (3)0.012 (3)0.002 (4)
O50.048 (5)0.066 (5)0.029 (4)0.041 (4)0.015 (3)0.010 (3)
O60.028 (4)0.042 (4)0.043 (4)0.013 (3)0.003 (3)0.023 (3)
Cl20.0286 (13)0.0232 (12)0.0387 (14)0.0086 (10)0.0094 (10)0.0107 (10)
O70.049 (5)0.028 (4)0.055 (5)0.024 (3)0.012 (4)0.023 (3)
O80.055 (5)0.051 (5)0.061 (5)0.026 (4)0.024 (4)0.043 (4)
O90.046 (5)0.067 (6)0.070 (6)0.005 (4)0.005 (4)0.036 (5)
O100.024 (4)0.028 (4)0.056 (5)0.010 (3)0.010 (3)0.000 (3)
C10.046 (7)0.061 (8)0.028 (6)0.016 (6)0.001 (5)0.001 (5)
C20.064 (8)0.045 (7)0.029 (6)0.003 (6)0.005 (5)0.003 (5)
O110.117 (8)0.044 (5)0.043 (5)0.005 (5)0.003 (5)0.001 (4)
Geometric parameters (Å, º) top
Cd1—O12.317 (5)C207—H20D0.9900
Cd1—O1i2.317 (5)C208—C2091.527 (11)
Cd1—N11i2.319 (7)C208—H20E0.9900
Cd1—N112.319 (7)C208—H20F0.9900
Cd1—N21i2.349 (6)C209—C2101.541 (11)
Cd1—N212.349 (6)C209—H20G0.9900
Cd2—O2ii2.337 (5)C209—H20H0.9900
Cd2—O22.337 (5)C210—C2111.508 (11)
Cd2—N22iii2.333 (6)C210—H21A0.9900
Cd2—N22iv2.333 (6)C210—H21B0.9900
Cd2—N12ii2.363 (6)C211—C2151.372 (11)
Cd2—N122.363 (6)C211—C2121.387 (11)
O1—H1O0.8595C212—C2131.374 (11)
O1—H2O0.8386C212—H2120.9500
O2—H3O0.8596C213—H2130.9500
O2—H4O0.8387C214—C2151.371 (11)
N11—C1051.362 (10)C214—H2140.9500
N11—C1011.376 (10)C215—H2150.9500
N12—C1131.317 (10)N31—C3011.340 (12)
N12—C1141.352 (10)N31—C3051.347 (12)
C101—C1021.355 (12)N32—C3141.333 (12)
C101—H1010.9500N32—C3131.364 (13)
C102—C1031.391 (12)C301—C3021.403 (13)
C102—H1020.9500C301—H3010.9500
C103—C1041.398 (11)C302—C3031.395 (12)
C103—C1061.474 (11)C302—H3020.9500
C104—C1051.380 (12)C303—C3041.431 (11)
C104—H1040.9500C303—C3061.495 (12)
C105—H1050.9500C304—C3051.395 (12)
C106—C1071.535 (11)C304—H3040.9500
C106—H10A0.9900C305—H3050.9500
C106—H10B0.9900C306—C3071.531 (12)
C107—C1081.531 (11)C306—H30A0.9900
C107—H10C0.9900C306—H30B0.9900
C107—H10D0.9900C307—C3081.510 (13)
C108—C1091.535 (11)C307—H30C0.9900
C108—H10E0.9900C307—H30D0.9900
C108—H10F0.9900C308—C3091.532 (12)
C109—C1101.533 (11)C308—H30E0.9900
C109—H10G0.9900C308—H30F0.9900
C109—H10H0.9900C309—C3101.556 (12)
C110—C1111.525 (11)C309—H30G0.9900
C110—H11A0.9900C309—H30H0.9900
C110—H11B0.9900C310—C3111.498 (12)
C111—C1151.384 (12)C310—H31A0.9900
C111—C1121.400 (12)C310—H31B0.9900
C112—C1131.376 (11)C311—C3151.355 (12)
C112—H1120.9500C311—C3121.418 (13)
C113—H1130.9500C312—C3131.355 (14)
C114—C1151.379 (11)C312—H3120.9500
C114—H1140.9500C313—H3130.9500
C115—H1150.9500C314—C3151.417 (12)
N21—C2011.337 (11)C314—H3140.9500
N21—C2051.353 (11)C315—H3150.9500
N22—C2131.356 (10)Cl1—O51.441 (7)
N22—C2141.365 (10)Cl1—O41.443 (7)
N22—Cd2v2.333 (6)Cl1—O61.449 (6)
C201—C2021.397 (11)Cl1—O31.449 (6)
C201—H2010.9500Cl2—O71.425 (6)
C202—C2031.380 (12)Cl2—O101.429 (7)
C202—H2020.9500Cl2—O81.433 (7)
C203—C2041.396 (12)Cl2—O91.456 (8)
C203—C2061.516 (11)C1—C21.497 (15)
C204—C2051.361 (12)C1—H1A0.9800
C204—H2040.9500C1—H1B0.9800
C205—H2050.9500C1—H1C0.9800
C206—C2071.504 (12)C2—O111.424 (13)
C206—H20A0.9900C2—H2A0.9900
C206—H20B0.9900C2—H2B0.9900
C207—C2081.513 (11)O11—H110.8400
C207—H20C0.9900
O1—Cd1—O1i180.0H20A—C206—H20B107.9
O1—Cd1—N11i90.6 (2)C206—C207—C208114.4 (7)
O1i—Cd1—N11i89.4 (2)C206—C207—H20C108.7
O1—Cd1—N1189.4 (2)C208—C207—H20C108.7
O1i—Cd1—N1190.6 (2)C206—C207—H20D108.7
N11i—Cd1—N11180.0C208—C207—H20D108.7
O1—Cd1—N21i88.7 (2)H20C—C207—H20D107.6
O1i—Cd1—N21i91.3 (2)C207—C208—C209113.3 (7)
N11i—Cd1—N21i87.8 (2)C207—C208—H20E108.9
N11—Cd1—N21i92.2 (2)C209—C208—H20E108.9
O1—Cd1—N2191.3 (2)C207—C208—H20F108.9
O1i—Cd1—N2188.7 (2)C209—C208—H20F108.9
N11i—Cd1—N2192.2 (2)H20E—C208—H20F107.7
N11—Cd1—N2187.8 (2)C208—C209—C210113.1 (7)
N21i—Cd1—N21180.0C208—C209—H20G109.0
N22iii—Cd2—N22iv180.0C210—C209—H20G109.0
N22iii—Cd2—O2ii88.5 (2)C208—C209—H20H109.0
N22iv—Cd2—O2ii91.5 (2)C210—C209—H20H109.0
N22iii—Cd2—O291.5 (2)H20G—C209—H20H107.8
N22iv—Cd2—O288.5 (2)C211—C210—C209112.4 (7)
O2ii—Cd2—O2180.0C211—C210—H21A109.1
N22iii—Cd2—N12ii92.9 (2)C209—C210—H21A109.1
N22iv—Cd2—N12ii87.1 (2)C211—C210—H21B109.1
O2ii—Cd2—N12ii85.8 (2)C209—C210—H21B109.1
O2—Cd2—N12ii94.2 (2)H21A—C210—H21B107.9
N22iii—Cd2—N1287.1 (2)C215—C211—C212117.0 (7)
N22iv—Cd2—N1292.9 (2)C215—C211—C210122.6 (7)
O2ii—Cd2—N1294.2 (2)C212—C211—C210120.3 (7)
O2—Cd2—N1285.8 (2)C213—C212—C211119.9 (8)
N12ii—Cd2—N12180.0C213—C212—H212120.0
Cd1—O1—H1O131.8C211—C212—H212120.0
Cd1—O1—H2O120.6N22—C213—C212124.0 (7)
H1O—O1—H2O106.4N22—C213—H213118.0
Cd2—O2—H3O113.7C212—C213—H213118.0
Cd2—O2—H4O116.2N22—C214—C215123.7 (8)
H3O—O2—H4O106.4N22—C214—H214118.1
C105—N11—C101112.7 (7)C215—C214—H214118.1
C105—N11—Cd1125.5 (5)C214—C215—C211120.5 (8)
C101—N11—Cd1118.6 (5)C214—C215—H215119.8
C113—N12—C114117.4 (7)C211—C215—H215119.8
C113—N12—Cd2123.4 (5)C301—N31—C305117.0 (8)
C114—N12—Cd2118.9 (5)C314—N32—C313117.1 (8)
C102—C101—N11125.4 (7)N31—C301—C302122.7 (9)
C102—C101—H101117.3N31—C301—H301118.7
N11—C101—H101117.3C302—C301—H301118.7
C101—C102—C103121.2 (8)C303—C302—C301120.4 (8)
C101—C102—H102119.4C303—C302—H302119.8
C103—C102—H102119.4C301—C302—H302119.8
C102—C103—C104115.1 (8)C302—C303—C304117.2 (8)
C102—C103—C106123.0 (8)C302—C303—C306123.4 (7)
C104—C103—C106121.7 (8)C304—C303—C306119.3 (8)
C105—C104—C103120.6 (8)C305—C304—C303117.4 (8)
C105—C104—H104119.7C305—C304—H304121.3
C103—C104—H104119.7C303—C304—H304121.3
N11—C105—C104125.0 (8)N31—C305—C304125.2 (8)
N11—C105—H105117.5N31—C305—H305117.4
C104—C105—H105117.5C304—C305—H305117.4
C103—C106—C107112.8 (7)C303—C306—C307113.5 (7)
C103—C106—H10A109.0C303—C306—H30A108.9
C107—C106—H10A109.0C307—C306—H30A108.9
C103—C106—H10B109.0C303—C306—H30B108.9
C107—C106—H10B109.0C307—C306—H30B108.9
H10A—C106—H10B107.8H30A—C306—H30B107.7
C108—C107—C106111.8 (7)C308—C307—C306113.5 (7)
C108—C107—H10C109.2C308—C307—H30C108.9
C106—C107—H10C109.2C306—C307—H30C108.9
C108—C107—H10D109.2C308—C307—H30D108.9
C106—C107—H10D109.2C306—C307—H30D108.9
H10C—C107—H10D107.9H30C—C307—H30D107.7
C107—C108—C109112.0 (7)C307—C308—C309114.0 (8)
C107—C108—H10E109.2C307—C308—H30E108.8
C109—C108—H10E109.2C309—C308—H30E108.8
C107—C108—H10F109.2C307—C308—H30F108.8
C109—C108—H10F109.2C309—C308—H30F108.8
H10E—C108—H10F107.9H30E—C308—H30F107.7
C110—C109—C108111.8 (7)C308—C309—C310111.5 (8)
C110—C109—H10G109.3C308—C309—H30G109.3
C108—C109—H10G109.3C310—C309—H30G109.3
C110—C109—H10H109.3C308—C309—H30H109.3
C108—C109—H10H109.3C310—C309—H30H109.3
H10G—C109—H10H107.9H30G—C309—H30H108.0
C111—C110—C109113.2 (7)C311—C310—C309111.0 (7)
C111—C110—H11A108.9C311—C310—H31A109.4
C109—C110—H11A108.9C309—C310—H31A109.4
C111—C110—H11B108.9C311—C310—H31B109.4
C109—C110—H11B108.9C309—C310—H31B109.4
H11A—C110—H11B107.8H31A—C310—H31B108.0
C115—C111—C112117.8 (7)C315—C311—C312117.7 (8)
C115—C111—C110119.4 (8)C315—C311—C310120.4 (8)
C112—C111—C110122.8 (8)C312—C311—C310121.9 (8)
C113—C112—C111118.8 (8)C313—C312—C311120.9 (9)
C113—C112—H112120.6C313—C312—H312119.6
C111—C112—H112120.6C311—C312—H312119.6
N12—C113—C112123.9 (8)C312—C313—N32122.0 (9)
N12—C113—H113118.1C312—C313—H313119.0
C112—C113—H113118.1N32—C313—H313119.0
N12—C114—C115123.0 (8)N32—C314—C315123.8 (8)
N12—C114—H114118.5N32—C314—H314118.1
C115—C114—H114118.5C315—C314—H314118.1
C114—C115—C111119.0 (8)C311—C315—C314118.5 (9)
C114—C115—H115120.5C311—C315—H315120.8
C111—C115—H115120.5C314—C315—H315120.8
C201—N21—C205116.7 (7)O5—Cl1—O4110.3 (5)
C201—N21—Cd1120.2 (5)O5—Cl1—O6109.5 (4)
C205—N21—Cd1122.2 (6)O4—Cl1—O6109.9 (4)
C213—N22—C214114.8 (7)O5—Cl1—O3109.3 (4)
C213—N22—Cd2v125.4 (5)O4—Cl1—O3108.9 (4)
C214—N22—Cd2v117.4 (5)O6—Cl1—O3109.0 (4)
N21—C201—C202122.7 (8)O7—Cl2—O10111.3 (4)
N21—C201—H201118.7O7—Cl2—O8110.6 (4)
C202—C201—H201118.7O10—Cl2—O8110.9 (4)
C203—C202—C201119.9 (8)O7—Cl2—O9108.9 (5)
C203—C202—H202120.0O10—Cl2—O9108.3 (5)
C201—C202—H202120.0O8—Cl2—O9106.9 (5)
C202—C203—C204117.0 (8)C2—C1—H1A109.5
C202—C203—C206121.9 (8)C2—C1—H1B109.5
C204—C203—C206121.0 (8)H1A—C1—H1B109.5
C205—C204—C203119.8 (8)C2—C1—H1C109.5
C205—C204—H204120.1H1A—C1—H1C109.5
C203—C204—H204120.1H1B—C1—H1C109.5
N21—C205—C204123.8 (8)O11—C2—C1114.2 (10)
N21—C205—H205118.1O11—C2—H2A108.7
C204—C205—H205118.1C1—C2—H2A108.7
C207—C206—C203112.4 (7)O11—C2—H2B108.7
C207—C206—H20A109.1C1—C2—H2B108.7
C203—C206—H20A109.1H2A—C2—H2B107.6
C207—C206—H20B109.1C2—O11—H11109.5
C203—C206—H20B109.1
O1—Cd1—N11—C105178.7 (6)N11i—Cd1—N21—C205145.8 (7)
O1i—Cd1—N11—C1051.3 (6)N11—Cd1—N21—C20534.2 (7)
N11i—Cd1—N11—C105165 (5)N21i—Cd1—N21—C20561 (15)
N21i—Cd1—N11—C10590.1 (6)C205—N21—C201—C2020.5 (12)
N21—Cd1—N11—C10589.9 (6)Cd1—N21—C201—C202168.8 (6)
O1—Cd1—N11—C10123.3 (6)N21—C201—C202—C2031.6 (13)
O1i—Cd1—N11—C101156.7 (6)C201—C202—C203—C2043.8 (13)
N11i—Cd1—N11—C10137 (5)C201—C202—C203—C206178.4 (8)
N21i—Cd1—N11—C101111.9 (6)C202—C203—C204—C2054.1 (13)
N21—Cd1—N11—C10168.1 (6)C206—C203—C204—C205178.0 (8)
N22iii—Cd2—N12—C113150.8 (6)C201—N21—C205—C2040.1 (13)
N22iv—Cd2—N12—C11329.2 (6)Cd1—N21—C205—C204168.9 (7)
O2ii—Cd2—N12—C11362.5 (6)C203—C204—C205—N212.2 (14)
O2—Cd2—N12—C113117.5 (6)C202—C203—C206—C20791.2 (11)
N12ii—Cd2—N12—C11395 (26)C204—C203—C206—C20786.5 (11)
N22iii—Cd2—N12—C11436.1 (6)C203—C206—C207—C208171.0 (8)
N22iv—Cd2—N12—C114143.9 (6)C206—C207—C208—C209178.1 (8)
O2ii—Cd2—N12—C114124.3 (6)C207—C208—C209—C210170.2 (7)
O2—Cd2—N12—C11455.7 (6)C208—C209—C210—C21169.2 (9)
N12ii—Cd2—N12—C11478 (26)C209—C210—C211—C21595.5 (9)
C105—N11—C101—C1020.1 (11)C209—C210—C211—C21281.6 (9)
Cd1—N11—C101—C102160.6 (7)C215—C211—C212—C2131.0 (11)
N11—C101—C102—C1030.7 (13)C210—C211—C212—C213176.3 (7)
C101—C102—C103—C1041.3 (12)C214—N22—C213—C2120.5 (11)
C101—C102—C103—C106173.4 (8)Cd2v—N22—C213—C212162.2 (6)
C102—C103—C104—C1051.2 (12)C211—C212—C213—N220.5 (12)
C106—C103—C104—C105173.6 (8)C213—N22—C214—C2151.3 (11)
C101—N11—C105—C1040.2 (12)Cd2v—N22—C214—C215164.6 (6)
Cd1—N11—C105—C104158.9 (7)N22—C214—C215—C2112.0 (13)
C103—C104—C105—N110.5 (13)C212—C211—C215—C2141.7 (12)
C102—C103—C106—C10795.9 (10)C210—C211—C215—C214175.5 (8)
C104—C103—C106—C10778.5 (10)C305—N31—C301—C3024.4 (13)
C103—C106—C107—C10862.7 (10)N31—C301—C302—C3033.0 (14)
C106—C107—C108—C109168.2 (7)C301—C302—C303—C3040.1 (12)
C107—C108—C109—C110177.9 (8)C301—C302—C303—C306179.2 (8)
C108—C109—C110—C111169.4 (8)C302—C303—C304—C3051.1 (11)
C109—C110—C111—C11579.7 (10)C306—C303—C304—C305178.1 (7)
C109—C110—C111—C11299.4 (10)C301—N31—C305—C3043.2 (13)
C115—C111—C112—C1132.3 (12)C303—C304—C305—N310.5 (13)
C110—C111—C112—C113178.6 (8)C302—C303—C306—C307107.9 (10)
C114—N12—C113—C1120.4 (12)C304—C303—C306—C30773.1 (10)
Cd2—N12—C113—C112172.9 (6)C303—C306—C307—C30862.3 (10)
C111—C112—C113—N121.0 (13)C306—C307—C308—C30963.3 (10)
C113—N12—C114—C1150.4 (12)C307—C308—C309—C310174.2 (8)
Cd2—N12—C114—C115173.2 (6)C308—C309—C310—C311177.0 (8)
N12—C114—C115—C1111.0 (13)C309—C310—C311—C31584.8 (10)
C112—C111—C115—C1142.3 (12)C309—C310—C311—C31295.4 (10)
C110—C111—C115—C114178.6 (8)C315—C311—C312—C3130.3 (12)
O1—Cd1—N21—C20167.8 (6)C310—C311—C312—C313179.9 (8)
O1i—Cd1—N21—C201112.2 (6)C311—C312—C313—N321.9 (14)
N11i—Cd1—N21—C20122.8 (6)C314—N32—C313—C3123.1 (13)
N11—Cd1—N21—C201157.2 (6)C313—N32—C314—C3152.9 (13)
N21i—Cd1—N21—C201107 (15)C312—C311—C315—C3140.0 (11)
O1—Cd1—N21—C205123.5 (7)C310—C311—C315—C314179.9 (7)
O1i—Cd1—N21—C20556.5 (7)N32—C314—C315—C3111.4 (13)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1; (iii) x1, y+1, z; (iv) x+1, y, z+1; (v) x+1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O8vi0.861.962.795 (9)165
O1—H2O···N32vii0.841.872.705 (10)175
O2—H3O···N31vi0.861.912.736 (9)162
O2—H4O···O3ii0.842.202.880 (8)138
O11—H11···O60.842.142.910 (11)152
C1—H1C···O50.982.573.493 (12)157
C101—H101···O10.952.553.226 (10)128
C113—H113···O60.952.563.257 (12)130
C201—H201···O10vi0.952.543.260 (11)133
C205—H205···O70.952.553.214 (12)127
C214—H214···O2iv0.952.523.201 (11)128
C304—H304···O30.952.473.420 (11)174
Symmetry codes: (ii) x, y+1, z+1; (iv) x+1, y, z+1; (vi) x, y1, z; (vii) x, y+1, z.
Selected bond lengths (Å) top
Cd1—O12.317 (5)Cd2—O22.337 (5)
Cd1—N112.319 (7)Cd2—N22i2.333 (6)
Cd1—N212.349 (6)Cd2—N122.363 (6)
Symmetry code: (i) x1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O8ii0.861.962.795 (9)165
O1—H2O···N32iii0.841.872.705 (10)175
O2—H3O···N31ii0.861.912.736 (9)162
O2—H4O···O3iv0.842.202.880 (8)138
O11—H11···O60.842.142.910 (11)152
C1—H1C···O50.982.573.493 (12)157
C101—H101···O10.952.553.226 (10)128
C113—H113···O60.952.563.257 (12)130
C201—H201···O10ii0.952.543.260 (11)133
C205—H205···O70.952.553.214 (12)127
C214—H214···O2v0.952.523.201 (11)128
C304—H304···O30.952.473.420 (11)174
Symmetry codes: (ii) x, y1, z; (iii) x, y+1, z; (iv) x, y+1, z+1; (v) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Cd(C15H18N2)2(H2O)2](ClO4)2·C15H18N2·C2H6O
Mr1072.34
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)10.0618 (3), 10.1653 (3), 27.0304 (11)
α, β, γ (°)87.163 (1), 85.001 (1), 66.509 (1)
V3)2525.60 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.60
Crystal size (mm)0.10 × 0.07 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.942, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
20841, 9645, 6116
Rint0.135
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.091, 0.221, 1.10
No. of reflections9645
No. of parameters608
No. of restraints24
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0516P)2 + 20.691P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.94, 1.34

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997) and SORTAV (Blessing, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and ATOMS (Dowty, 1998).

 

Acknowledgements

We thank the EPSRC National Crystallography Service (University of Southampton) for the data collection.

References

First citationAllen, F. H. & Motherwell, W. D. S. (2002). Acta Cryst. B58, 407–422.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBatten, S. R., Neville, S. M. & Turner, D. R. (2009). In Coordination Polymers: Design, Analysis and Applications. Cambridge: RSC Publishing.  Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDowty, E. (1998). ATOMS. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationO'Keeffe, M. & Hyde, B. G. (1996). Crystal Structures I: Patterns and Symmetry, p. 164. Washington DC: Mineralogical Society of America.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter, Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPlater, M. J., Foreman, M. R. St J., Gelbrich, T., Coles, S. J. & Hursthouse, M. B. (2000). J. Chem. Soc. Dalton Trans. pp. 3065–3073.  Web of Science CSD CrossRef Google Scholar
First citationPlater, M. J., Gelbrich, T., Hursthouse, M. B. & De Silva, B. M. (2008). CrystEngComm, 10, 125–130.  Web of Science CSD CrossRef CAS Google Scholar
First citationRobinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds