research communications
4 net containing Cd2+ ions and 1,5-bis(pyridin-4-yl)pentane linkers
of a layered coordination polymer based on a 4aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk
The title compound, poly[[diaquabis[1,5-bis(pyridin-4-yl)pentane-κ2N:N′]cadmium] bis(perchlorate) 1,5-bis(pyridin-4-yl)pentane ethanol monosolvate], [Cd(C15H18N2)2(H2O)2](ClO4)2·C15H18N2·C2H6O, is a layered coordination polymer built up from highly squashed 44 nets in which the octahedral trans-CdO2N4 nodes (Cd -1) are linked by the bifunctional ligands, forming infinite (110) sheets. The cationic sheets are charge-balanced by interlayer perchlorate ions. A free 1,5-bis(pyridin-4-yl)pentane molecule and an ethanol molecule of crystallization are also found in the intersheet region. A number of O—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds help to consolidate the layered structure.
Keywords: Cadmium; flexible ligand; layered coordination polymer; crystal structure.
CCDC reference: 1008978
1. Chemical context
The most popular linking ligands in metal-organic frameworks (MOFs) are probably multi-functional carboxylates (Batten et al., 2009) but other functional groups are also possible. As part of our ongoing studies of flexible bifunctional pyridyl ligands (Plater et al., 2008) as potential MOF linkers, we now describe the synthesis and structure of the title layered coordination polymer, (I), which combines Cd2+ ions and the little-studied ligand 1,5-bis(pyridin-4-yl)pentane, C15H18N2. The neutral bridging ligand necessitates the presence of perchlorate counter-ions (from the starting metal salt), which exert an important influence on the structure.
2. Structural commentary
The contains two Cd2+ ions (both lying on crystallographic inversion centres), three 1,5-bis(pyridin-4-yl)pentane (C15H18N2; L) molecules, two perchlorate ions, two water molecules and one ethanol molecule (Fig. 1). The cadmium ions, water molecules and two of the L molecules combine to generate an infinite cationic network of composition [Cd(H2O)2L2]2+n.
of (I)Both cadmium ions adopt almost regular trans-CdO2N4 octahedral coordination geometries (Table 1) arising from two water molecules and four ligands. The mean Cd—O and Cd—N bond lengths are 2.327 and 2.341 Å, respectively. Bond-valence sum (BVS) calculations (Brese & O'Keeffe, 1991) in valence units for Cd1 and Cd2 yield values of 2.11 and 2.02, respectively, in close agreement with the expected value of 2.00. The octahedral angular variances (Robinson et al., 1971) for Cd1 and Cd2 are 2.53 and 10.57°2, respectively. Both ligands bridge the Cd1 and Cd2 atoms, resulting in a highly squashed and contorted 44 network (O'Keeffe & Hyde, 1996), which propagates in the (110) plane, as shown in Fig. 2: each Cd1 atom is linked to four different Cd2 atoms and vice versa. The shortest Cd1⋯Cd2 separations (via ligands) are 14.4350 (6) and 14.7807 (6) Å. The shortest non-bonded Cd1⋯Cd1 and Cd2⋯Cd2 separations across a squashed 44 square are both 11.0921 (5) Å. It is interesting that the shortest metal–metal distances in (I) of 10.0618 (4) and 10.1653 (4) Å for both Cd1 and Cd2 are inter-sheet separations.
|
For the N11 ligand molecule, the dihedral angle between the N11 and N12 rings is 77.8 (4)° and the alkyl chain adopts a gaaa (g = gauche, a = anti) conformation (reading from the N11 ring to the N12 ring). Cd1 is displaced by 0.69 (1) Å from the N11 ring plane and Cd2 is displaced by −0.26 (1) Å from the N12 plane. In the N21 ligand molecule, the dihedral angle between the pyridine rings is 75.2 (4)° and the alkyl-chain conformation is aaag (in the sense of the N21 ring to the N22 ring). The displacement of Cd1 from the N21 ring is 0.42 (1) Å and the displacement of Cd2 from the N22 ring is −0.58 (1) Å. The shortest out-and-back pathway from any metal atom to itself encompasses no fewer than 56 atoms (4 metal atoms and 4 × 13 ligand atoms).
The mean Cl—O bond lengths in the perchlorate ions in (I) are 1.446 Å for the Cl1 species and 1.436 Å for the Cl2 species. The third (N31) ligand molecule is not bonded to the metal ions: the dihedral angle between its N31 and N32 rings is 18.3 (5)° and its alkyl chain conformation is ggaa (from N31 to N32; Fig. 3).
3. Supramolecular features
In the crystal, the infinite [Cd(H2O)2L2]n sheets propagate in the (110) plane (Fig. 4). There is no interpenetration of the sheets in this structure. Sandwiched between the cationic sheets are layers of perchlorate ions, free (unbounded) N31-molecules and ethanol solvent molecules. The water molecules attached to the cadmium ions each form one O—H⋯O hydrogen bond to a perchlorate ion and one O—H⋯N hydrogen bond to the free solvent molecule, such that both N31 and N32 accept a hydrogen bond. An intra-layer Oe—H⋯Cl (e = ethanol) hydrogen bond also occurs. A number of C—H⋯O interactions are also observed (mean H⋯O = 2.54 Å): see Table 2.
4. Database survey
Only four `hits' for crystal structures containing 1,5-bis(pyridin-4-yl)pentane were obtained from a search of Version 5.31 (last update February 2014) of the Cambridge Structural Database (Allen & Motherwell, 2002). Three of these are the isostructural family [M(C15H18N2)2(NO3)2]n, (M = Co, Ni, Cu) (Plater et al., 2008), which contain interpenetrated 65.8 nets, with the nitrate counter-ions directly bonded to the metal ions. In [Cd4(C15H18N2)8(NO3)8]n·2nH2O, (II), (Plater et al., 2000), remarkable triply-interpenetrated 63 nets occur in which the cadmium ions are coordinated by three ligand N atoms and two O,O-bidentate nitrate ions, generating distorted CdN3O4 pentagonal bipyramids. It may be noted that in (I) and (II) the counter-ions and water molecules have effectively swapped places, resulting in radically different structures.
5. Synthesis and crystallization
1,5-Bis(pyridin-4-yl)pentane (0.1 g, 0. 450 mmol; Plater et al., 2000) was dissolved in ethanol (5 ml) and carefully layered onto a solution of Cd(ClO4)2·xH2O (0.137 g, 0.44 mmol) in water (5 ml). The solution was left to stand for two weeks during which time colourless blocks of (I) grew at the layer interface. The crystals were harvested and air dried (0.107 g, 45%). IR (KBr disc)/cm−1 ν = 3469 s, 3422 s, 2932 s, 2858 s, 1513 s, 1427 s, 1226 s, 1094 s, 1012 w, 842 w, 800 w, 624 s and 512 w.
6. Refinement
The O-bound H atoms were located in difference maps and refined as riding atoms in their as-found relative positions. The C-bound H atoms were placed geometrically and refined as riding atoms. The H atoms of the methyl group were allowed to rotate, but not to tip, to best fit the electron density. The constraint Uiso(H) = 1.2Ueq(C,O) or 1.5Ueq(methyl C) was applied in all cases. Crystal data, data collection and structure details are summarized in Table 3.
|
Supporting information
CCDC reference: 1008978
10.1107/S1600536814014779/wm0007sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814014779/wm0007Isup2.hkl
The most popular linking ligands in metal-organic frameworks (MOFs) are probably multi-functional carboxylates (Batten et al., 2009) but other functional groups are also possible. As part of our ongoing studies of flexible bifunctional pyridyl ligands (Plater et al., 2008) as potential MOF linkers, we now describe the synthesis and structure of the title layered coordination polymer, (I), which combines Cd2+ ions and the little-studied ligand 1,5-bis(pyridin-4-yl)pentane, C15H18N2. The neutral bridging ligand necessitates the presence of perchlorate counter-ions (from the starting metal salt), which exert an important influence on the structure.
The
of (I) contains two Cd2+ ions (both lying on crystallographic inversion centres), three 1,5-bis(pyridin-4-yl)pentane (C15H18N2; L) ligands, two perchlorate ions, two water molecules and one ethanol molecule (Fig. 1). The cadmium ions, water molecules and two of the ligands combine to generate an infinite cationic network of composition [Cd(H2O)2L2]2+n.Both cadmium ions adopt almost regular trans-CdO2N4 octahedral coordination geometries (Table 1) arising from two water molecules and four ligands. The mean Cd—O and Cd—N bond lengths are 2.327 and 2.341 Å, respectively. Bond-valence sum (BVS) calculations (Brese & O'Keeffe, 1991) in valence units for Cd1 and Cd2 yield values of 2.11 and 2.02, respectively, in close agreement with the expected value of 2.00. The octahedral angular variances (Robinson et al., 1971) for Cd1 and Cd2 are 2.53 and 10.57°2, respectively. Both ligands bridge the Cd1 and Cd2 atoms, resulting in a highly squashed and contorted 44 network (O'Keeffe & Hyde, 1996), which propagates in the (110) plane, as shown in Fig. 2: each Cd1 atom is linked to four different Cd2 atoms and vice versa. The shortest Cd1···Cd2 separations (via ligands) are 14.4350 (6) and 14.7807 (6) Å. The shortest non-bonded Cd1···Cd1 and Cd2···Cd2 separations across a squashed 44 square are both 11.0921 (5) Å. It is interesting that the shortest metal–metal distances in (I) of 10.0618 (4) and 10.1653 (4) Å for both Cd1 and Cd2 are inter-sheet separations.
For the N11 ligand molecule, the dihedral angle between the N11 and N12 rings is 77.8 (4)° and the alkyl chain adopts a gaaa (g = gauche, a = anti) conformation (reading from the N11 ring to the N12 ring). Cd1 is displaced by 0.69 (1) Å from the N11 ring plane and Cd2 is displaced by -0.26 (1) Å from the N12 plane. In the N21 molecule, the dihedral angle between the pyridine rings is 75.2 (4)° and the alkyl-chain conformation is aaag (in the sense of the N21 ring to the N22 ring). The displacement of Cd1 from the N21 ring is 0.42 (1) Å and the displacement of Cd2 from the N22 ring is -0.58 (1) Å. The shortest out-and-back pathway from any metal atom to itself encompasses no fewer than 56 atoms (4 metal atoms and 4 × 13 ligand atoms).
The mean Cl—O bond lengths in the perchlorate ions in (I) are 1.446 Å for the Cl1 species and 1.436 Å for the Cl2 species. The third (N31) molecule is not bonded to the metal ions: the dihedral angle between its N31 and N32 rings is 18.3 (5)° and its alkyl chain conformation is ggaa (from N31 to N32; Fig. 3).
In the crystal, the infinite [Cd(H2O)2L2]n sheets propagate in the (110) plane (Fig. 4). There is no interpenetration of the sheets in this structure. Sandwiched between the cationic sheets are layers of perchlorate ions, free (unbounded) N31-ligands and ethanol solvent molecules. The water molecules attached to the cadmium ions each form one O—H···O hydrogen bond to a perchlorate ion and one O—H···N hydrogen bond to the free solvent molecule, such that both N31 and N32 accept a hydrogen bond. An intra-layer Oe—H···Cl (e = ethanol) hydrogen bond also occurs. A number of C—H···O interactions are also observed (mean H···O = 2.54 Å): see Table 2.
Only four 'hits' for crystal structures containing 1,5-bis(pyridin-4-yl)pentane were obtained from a search of Version 5.31 (last update February 2014) of the Cambridge Structural Database (Allen & Motherwell, 2002). Three of these are the isostructural family [M(C15H18N2)2(NO3)2]n, (M = Co, Ni, Cu) (Plater et al., 2008), which contain interpenetrated 65.8 nets, with the nitrate counter-ions directly bonded to the metal ions. In [Cd4(C15H18N2)8(NO3)8]n·2nH2O, (II), (Plater et al., 2000), remarkable triply-interpenetrated 63 nets occur in which the cadmium ions are coordinated by three ligand N atoms and two O,O-bidentate nitrate ions, generating distorted CdN3O4 pentagonal bipyramids. It may be noted that in (I) and (II) the counter-ions and water molecules have effectively swapped places, resulting in radically different structures.
1,5-Bis(pyridin-4-yl)pentane (0.1 g, 0. 450 mmol; Plater et al., 2000) was dissolved in ethanol (5 ml) and carefully layered onto a solution of Cd(ClO4)2·xH2O (0.137 g, 0.44 mmol) in water (5 ml). The solution was left to stand for two weeks during which time colourless blocks of (I) grew at the layer interface. The crystals were harvested and air dried (0.107 g, 45%). IR (KBr disc)/cm-1 ν = 3469 s, 3422 s, 2932 s, 2858 s, 1513 s, 1427 s, 1226 s, 1094 s, 1012 w, 842 w, 800 w, 624 s and 512 w.
The O-bound H atoms were located in difference maps and refined as riding atoms in their as-found relative positions. The C-bound H atoms were placed geometrically and refined as riding atoms. The H atoms of the methyl group were allowed to rotate, but not to tip, to best fit the electron density. The constraint Uiso(H) = 1.2Ueq(C,O) or 1.5Ueq(methyl C) was applied in all cases. Crystal data, data collection and structure
details are summarized in Table 3.Data collection: COLLECT (Nonius, 1998); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997) and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and ATOMS (Dowty, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The asymmetric unit of (I) showing 50% displacement ellipsoids. | |
Fig. 2. Part of an infinite 44 sheet propagating in (110) in the structure of (I). The Cd1 and Cd2 ions are represented by orange and fuchsia spheres, respectively. | |
Fig. 3. Part of a layer of perchlorate ions, N31-ligands and ethanol molecules in the structure of (I). The Oe—H···O (e = ethanol) hydrogen bond is shown as a yellow line. | |
Fig. 4. View down [001] of the structure of (I) showing the alternating polymeric [Cd(H2O)2L2]n and perchlorate/free ligand/ethanol layers. The Cd1- and Cd2-centred octahedra are shown as orange and fuchsia polyhedra, respectively. |
[Cd(C15H18N2)2(H2O)2](ClO4)2·C15H18N2·C2H6O | Z = 2 |
Mr = 1072.34 | F(000) = 1116 |
Triclinic, P1 | Dx = 1.410 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 10.0618 (3) Å | Cell parameters from 8655 reflections |
b = 10.1653 (3) Å | θ = 2.9–26.0° |
c = 27.0304 (11) Å | µ = 0.60 mm−1 |
α = 87.163 (1)° | T = 120 K |
β = 85.001 (1)° | Chip, colourless |
γ = 66.509 (1)° | 0.10 × 0.07 × 0.05 mm |
V = 2525.60 (15) Å3 |
Nonius KappaCCD diffractometer | 9645 independent reflections |
Radiation source: fine-focus sealed tube | 6116 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.135 |
ω scans | θmax = 26.0°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) | h = −11→12 |
Tmin = 0.942, Tmax = 0.971 | k = −12→12 |
20841 measured reflections | l = −33→32 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.091 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.221 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0516P)2 + 20.691P] where P = (Fo2 + 2Fc2)/3 |
9645 reflections | (Δ/σ)max < 0.001 |
608 parameters | Δρmax = 2.94 e Å−3 |
24 restraints | Δρmin = −1.34 e Å−3 |
[Cd(C15H18N2)2(H2O)2](ClO4)2·C15H18N2·C2H6O | γ = 66.509 (1)° |
Mr = 1072.34 | V = 2525.60 (15) Å3 |
Triclinic, P1 | Z = 2 |
a = 10.0618 (3) Å | Mo Kα radiation |
b = 10.1653 (3) Å | µ = 0.60 mm−1 |
c = 27.0304 (11) Å | T = 120 K |
α = 87.163 (1)° | 0.10 × 0.07 × 0.05 mm |
β = 85.001 (1)° |
Nonius KappaCCD diffractometer | 9645 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) | 6116 reflections with I > 2σ(I) |
Tmin = 0.942, Tmax = 0.971 | Rint = 0.135 |
20841 measured reflections |
R[F2 > 2σ(F2)] = 0.091 | 24 restraints |
wR(F2) = 0.221 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0516P)2 + 20.691P] where P = (Fo2 + 2Fc2)/3 |
9645 reflections | Δρmax = 2.94 e Å−3 |
608 parameters | Δρmin = −1.34 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cd1 | 0.5000 | 0.0000 | 0.0000 | 0.0179 (2) | |
Cd2 | 0.0000 | 0.5000 | 0.5000 | 0.0152 (2) | |
O1 | 0.3460 (6) | −0.1203 (6) | 0.0086 (2) | 0.0255 (14) | |
H1O | 0.3454 | −0.1900 | 0.0278 | 0.031* | |
H2O | 0.2884 | −0.1118 | −0.0131 | 0.031* | |
O2 | −0.1216 (6) | 0.3462 (6) | 0.5004 (2) | 0.0188 (13) | |
H3O | −0.1082 | 0.3017 | 0.4730 | 0.023* | |
H4O | −0.2117 | 0.3834 | 0.5072 | 0.023* | |
N11 | 0.3004 (7) | 0.2155 (7) | 0.0113 (2) | 0.0159 (14) | |
N12 | 0.0329 (7) | 0.4706 (7) | 0.4130 (2) | 0.0168 (15) | |
C101 | 0.1756 (9) | 0.2138 (9) | 0.0360 (3) | 0.0188 (18) | |
H101 | 0.1650 | 0.1248 | 0.0382 | 0.023* | |
C102 | 0.0667 (9) | 0.3284 (9) | 0.0576 (3) | 0.0218 (19) | |
H102 | −0.0160 | 0.3170 | 0.0736 | 0.026* | |
C103 | 0.0737 (9) | 0.4624 (9) | 0.0566 (3) | 0.0180 (18) | |
C104 | 0.1981 (9) | 0.4690 (9) | 0.0313 (3) | 0.0215 (19) | |
H104 | 0.2094 | 0.5576 | 0.0286 | 0.026* | |
C105 | 0.3048 (9) | 0.3478 (9) | 0.0101 (3) | 0.0227 (19) | |
H105 | 0.3877 | 0.3574 | −0.0065 | 0.027* | |
C106 | −0.0347 (9) | 0.5862 (9) | 0.0839 (3) | 0.0221 (19) | |
H10A | −0.1276 | 0.5737 | 0.0889 | 0.027* | |
H10B | −0.0518 | 0.6745 | 0.0636 | 0.027* | |
C107 | 0.0128 (9) | 0.6049 (9) | 0.1346 (3) | 0.0204 (19) | |
H10C | 0.1061 | 0.6168 | 0.1298 | 0.024* | |
H10D | −0.0607 | 0.6929 | 0.1502 | 0.024* | |
C108 | 0.0311 (10) | 0.4762 (9) | 0.1694 (3) | 0.025 (2) | |
H10E | 0.1180 | 0.3924 | 0.1574 | 0.030* | |
H10F | −0.0545 | 0.4516 | 0.1686 | 0.030* | |
C109 | 0.0473 (10) | 0.5069 (9) | 0.2231 (3) | 0.023 (2) | |
H10G | 0.1307 | 0.5349 | 0.2237 | 0.027* | |
H10H | −0.0413 | 0.5883 | 0.2356 | 0.027* | |
C110 | 0.0710 (10) | 0.3759 (9) | 0.2574 (3) | 0.027 (2) | |
H11A | −0.0020 | 0.3368 | 0.2517 | 0.033* | |
H11B | 0.1684 | 0.3007 | 0.2485 | 0.033* | |
C111 | 0.0598 (10) | 0.4099 (9) | 0.3123 (3) | 0.022 (2) | |
C112 | 0.1818 (10) | 0.3809 (9) | 0.3390 (3) | 0.0231 (19) | |
H112 | 0.2769 | 0.3403 | 0.3231 | 0.028* | |
C113 | 0.1614 (9) | 0.4124 (8) | 0.3887 (3) | 0.0179 (18) | |
H113 | 0.2450 | 0.3909 | 0.4066 | 0.022* | |
C114 | −0.0851 (9) | 0.5015 (9) | 0.3870 (3) | 0.0203 (19) | |
H114 | −0.1787 | 0.5442 | 0.4040 | 0.024* | |
C115 | −0.0759 (10) | 0.4739 (9) | 0.3371 (3) | 0.0212 (19) | |
H115 | −0.1615 | 0.4986 | 0.3201 | 0.025* | |
N21 | 0.5191 (8) | −0.0094 (8) | 0.0862 (2) | 0.0192 (16) | |
N22 | 0.7871 (7) | −0.3004 (6) | 0.4863 (2) | 0.0113 (13) | |
C201 | 0.5874 (9) | −0.1351 (9) | 0.1092 (3) | 0.0226 (19) | |
H201 | 0.6121 | −0.2209 | 0.0914 | 0.027* | |
C202 | 0.6240 (10) | −0.1453 (10) | 0.1584 (3) | 0.027 (2) | |
H202 | 0.6703 | −0.2368 | 0.1736 | 0.032* | |
C203 | 0.5927 (10) | −0.0224 (10) | 0.1847 (3) | 0.025 (2) | |
C204 | 0.5167 (10) | 0.1083 (10) | 0.1611 (3) | 0.027 (2) | |
H204 | 0.4871 | 0.1955 | 0.1784 | 0.032* | |
C205 | 0.4851 (10) | 0.1102 (10) | 0.1130 (3) | 0.028 (2) | |
H205 | 0.4364 | 0.2006 | 0.0974 | 0.034* | |
C206 | 0.6337 (10) | −0.0278 (11) | 0.2377 (3) | 0.030 (2) | |
H20A | 0.7225 | −0.1151 | 0.2425 | 0.036* | |
H20B | 0.6561 | 0.0565 | 0.2432 | 0.036* | |
C207 | 0.5147 (10) | −0.0287 (11) | 0.2752 (3) | 0.027 (2) | |
H20C | 0.5032 | −0.1204 | 0.2728 | 0.033* | |
H20D | 0.4224 | 0.0498 | 0.2667 | 0.033* | |
C208 | 0.5406 (9) | −0.0109 (10) | 0.3284 (3) | 0.023 (2) | |
H20E | 0.5551 | 0.0793 | 0.3307 | 0.027* | |
H20F | 0.6309 | −0.0912 | 0.3374 | 0.027* | |
C209 | 0.4158 (9) | −0.0072 (9) | 0.3655 (3) | 0.0196 (19) | |
H20G | 0.4124 | −0.1034 | 0.3675 | 0.024* | |
H20H | 0.3230 | 0.0614 | 0.3533 | 0.024* | |
C210 | 0.4299 (9) | 0.0364 (9) | 0.4179 (3) | 0.0210 (19) | |
H21A | 0.4452 | 0.1270 | 0.4156 | 0.025* | |
H21B | 0.3382 | 0.0543 | 0.4385 | 0.025* | |
C211 | 0.5540 (9) | −0.0769 (9) | 0.4432 (3) | 0.0165 (18) | |
C212 | 0.5365 (9) | −0.1941 (9) | 0.4666 (3) | 0.0198 (18) | |
H212 | 0.4445 | −0.2005 | 0.4685 | 0.024* | |
C213 | 0.6524 (9) | −0.3010 (9) | 0.4870 (3) | 0.0172 (18) | |
H213 | 0.6373 | −0.3803 | 0.5026 | 0.021* | |
C214 | 0.8012 (9) | −0.1840 (9) | 0.4630 (3) | 0.0188 (18) | |
H214 | 0.8939 | −0.1793 | 0.4608 | 0.023* | |
C215 | 0.6890 (9) | −0.0734 (9) | 0.4424 (3) | 0.0195 (18) | |
H215 | 0.7050 | 0.0062 | 0.4276 | 0.023* | |
N31 | −0.0493 (8) | 1.1537 (9) | 0.4252 (3) | 0.0320 (19) | |
N32 | −0.1723 (9) | 1.0904 (9) | 0.0658 (3) | 0.035 (2) | |
C301 | −0.1172 (10) | 1.1686 (10) | 0.3835 (4) | 0.030 (2) | |
H301 | −0.1875 | 1.2604 | 0.3752 | 0.036* | |
C302 | −0.0885 (10) | 1.0542 (10) | 0.3516 (3) | 0.026 (2) | |
H302 | −0.1425 | 1.0686 | 0.3232 | 0.031* | |
C303 | 0.0188 (9) | 0.9194 (9) | 0.3613 (3) | 0.0154 (17) | |
C304 | 0.0963 (9) | 0.9043 (9) | 0.4046 (3) | 0.0202 (19) | |
H304 | 0.1717 | 0.8157 | 0.4129 | 0.024* | |
C305 | 0.0566 (10) | 1.0247 (10) | 0.4341 (3) | 0.027 (2) | |
H305 | 0.1086 | 1.0150 | 0.4627 | 0.032* | |
C306 | 0.0541 (10) | 0.7921 (9) | 0.3294 (3) | 0.028 (2) | |
H30A | −0.0241 | 0.8133 | 0.3066 | 0.033* | |
H30B | 0.0564 | 0.7095 | 0.3508 | 0.033* | |
C307 | 0.1996 (10) | 0.7500 (9) | 0.2985 (3) | 0.028 (2) | |
H30C | 0.2780 | 0.7279 | 0.3212 | 0.033* | |
H30D | 0.2185 | 0.6617 | 0.2802 | 0.033* | |
C308 | 0.2050 (10) | 0.8652 (11) | 0.2619 (3) | 0.033 (2) | |
H30E | 0.3044 | 0.8338 | 0.2455 | 0.040* | |
H30F | 0.1855 | 0.9536 | 0.2803 | 0.040* | |
C309 | 0.0965 (10) | 0.9005 (10) | 0.2218 (3) | 0.028 (2) | |
H30G | −0.0037 | 0.9424 | 0.2376 | 0.034* | |
H30H | 0.1091 | 0.8110 | 0.2053 | 0.034* | |
C310 | 0.1180 (11) | 1.0081 (10) | 0.1822 (3) | 0.032 (2) | |
H31A | 0.1001 | 1.0996 | 0.1983 | 0.038* | |
H31B | 0.2196 | 0.9686 | 0.1676 | 0.038* | |
C311 | 0.0166 (9) | 1.0358 (9) | 0.1418 (3) | 0.0210 (19) | |
C312 | −0.1188 (10) | 1.1552 (10) | 0.1427 (4) | 0.030 (2) | |
H312 | −0.1468 | 1.2201 | 0.1694 | 0.037* | |
C313 | −0.2088 (11) | 1.1779 (10) | 0.1058 (4) | 0.038 (3) | |
H313 | −0.3002 | 1.2572 | 0.1078 | 0.046* | |
C314 | −0.0463 (10) | 0.9765 (9) | 0.0655 (3) | 0.025 (2) | |
H314 | −0.0214 | 0.9120 | 0.0387 | 0.030* | |
C315 | 0.0528 (10) | 0.9460 (9) | 0.1029 (3) | 0.023 (2) | |
H315 | 0.1424 | 0.8646 | 0.1007 | 0.028* | |
Cl1 | 0.5093 (2) | 0.4849 (2) | 0.40637 (8) | 0.0265 (5) | |
O3 | 0.3649 (6) | 0.5756 (7) | 0.4264 (2) | 0.0309 (15) | |
O4 | 0.5991 (7) | 0.4198 (8) | 0.4469 (3) | 0.0458 (19) | |
O5 | 0.5694 (8) | 0.5707 (8) | 0.3756 (2) | 0.0425 (19) | |
O6 | 0.4995 (7) | 0.3747 (7) | 0.3767 (2) | 0.0373 (17) | |
Cl2 | 0.4508 (3) | 0.5691 (2) | 0.11401 (9) | 0.0307 (6) | |
O7 | 0.4223 (8) | 0.4435 (7) | 0.1242 (3) | 0.0416 (18) | |
O8 | 0.3993 (8) | 0.6319 (8) | 0.0671 (3) | 0.054 (2) | |
O9 | 0.3709 (9) | 0.6750 (9) | 0.1517 (3) | 0.066 (3) | |
O10 | 0.6020 (7) | 0.5384 (7) | 0.1153 (3) | 0.0359 (16) | |
C1 | 0.6037 (12) | 0.5405 (12) | 0.2465 (4) | 0.047 (3) | |
H1A | 0.5424 | 0.6134 | 0.2239 | 0.071* | |
H1B | 0.7062 | 0.5157 | 0.2356 | 0.071* | |
H1C | 0.5840 | 0.5783 | 0.2802 | 0.071* | |
C2 | 0.5708 (14) | 0.4094 (12) | 0.2460 (4) | 0.052 (3) | |
H2A | 0.4658 | 0.4369 | 0.2550 | 0.062* | |
H2B | 0.5916 | 0.3719 | 0.2119 | 0.062* | |
O11 | 0.6511 (11) | 0.2977 (9) | 0.2790 (3) | 0.080 (3) | |
H11 | 0.6325 | 0.3277 | 0.3082 | 0.120* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.0242 (5) | 0.0207 (5) | 0.0097 (4) | −0.0101 (4) | −0.0019 (4) | 0.0028 (4) |
Cd2 | 0.0155 (5) | 0.0196 (5) | 0.0088 (4) | −0.0055 (4) | 0.0000 (3) | 0.0000 (3) |
O1 | 0.031 (4) | 0.030 (4) | 0.024 (3) | −0.020 (3) | −0.007 (3) | 0.003 (3) |
O2 | 0.018 (3) | 0.020 (3) | 0.018 (3) | −0.008 (3) | 0.002 (2) | −0.001 (2) |
N11 | 0.017 (2) | 0.017 (2) | 0.014 (2) | −0.0080 (16) | −0.0034 (16) | 0.0051 (16) |
N12 | 0.020 (4) | 0.020 (4) | 0.014 (3) | −0.011 (3) | −0.001 (3) | 0.000 (3) |
C101 | 0.031 (5) | 0.018 (4) | 0.012 (4) | −0.015 (4) | 0.000 (4) | −0.002 (3) |
C102 | 0.023 (5) | 0.031 (5) | 0.012 (4) | −0.012 (4) | 0.003 (3) | 0.000 (4) |
C103 | 0.025 (5) | 0.022 (5) | 0.006 (4) | −0.007 (4) | −0.007 (3) | 0.001 (3) |
C104 | 0.026 (5) | 0.021 (5) | 0.019 (4) | −0.011 (4) | 0.003 (4) | −0.002 (4) |
C105 | 0.025 (5) | 0.031 (5) | 0.015 (4) | −0.015 (4) | 0.002 (4) | 0.003 (4) |
C106 | 0.024 (5) | 0.022 (5) | 0.013 (4) | −0.001 (4) | −0.001 (3) | 0.001 (4) |
C107 | 0.025 (5) | 0.013 (4) | 0.014 (4) | 0.001 (4) | 0.001 (3) | −0.003 (3) |
C108 | 0.032 (5) | 0.024 (5) | 0.017 (5) | −0.010 (4) | 0.000 (4) | 0.001 (4) |
C109 | 0.032 (5) | 0.021 (5) | 0.011 (4) | −0.008 (4) | 0.005 (4) | −0.003 (3) |
C110 | 0.039 (6) | 0.027 (5) | 0.008 (4) | −0.004 (4) | −0.002 (4) | 0.000 (4) |
C111 | 0.036 (5) | 0.019 (4) | 0.006 (4) | −0.006 (4) | 0.004 (4) | 0.000 (3) |
C112 | 0.026 (5) | 0.024 (5) | 0.017 (4) | −0.008 (4) | −0.001 (4) | −0.002 (4) |
C113 | 0.017 (4) | 0.016 (4) | 0.016 (4) | −0.001 (4) | −0.004 (3) | 0.001 (3) |
C114 | 0.021 (5) | 0.028 (5) | 0.018 (4) | −0.016 (4) | −0.003 (4) | −0.001 (4) |
C115 | 0.026 (5) | 0.024 (5) | 0.014 (4) | −0.010 (4) | −0.006 (4) | 0.001 (4) |
N21 | 0.023 (4) | 0.029 (4) | 0.008 (3) | −0.014 (3) | 0.002 (3) | 0.003 (3) |
N22 | 0.012 (2) | 0.012 (2) | 0.009 (2) | −0.0042 (16) | 0.0046 (16) | −0.0034 (16) |
C201 | 0.028 (5) | 0.026 (5) | 0.010 (4) | −0.007 (4) | 0.000 (3) | −0.001 (4) |
C202 | 0.029 (5) | 0.031 (5) | 0.015 (4) | −0.008 (4) | 0.001 (4) | −0.001 (4) |
C203 | 0.029 (5) | 0.036 (6) | 0.015 (4) | −0.019 (4) | 0.002 (4) | −0.004 (4) |
C204 | 0.045 (6) | 0.019 (5) | 0.022 (5) | −0.016 (4) | −0.006 (4) | −0.001 (4) |
C205 | 0.042 (6) | 0.025 (5) | 0.022 (5) | −0.018 (5) | −0.007 (4) | 0.002 (4) |
C206 | 0.033 (6) | 0.045 (6) | 0.016 (5) | −0.018 (5) | −0.006 (4) | 0.000 (4) |
C207 | 0.022 (5) | 0.045 (6) | 0.015 (4) | −0.014 (5) | −0.002 (4) | 0.000 (4) |
C208 | 0.023 (5) | 0.035 (5) | 0.008 (4) | −0.009 (4) | 0.000 (3) | 0.003 (4) |
C209 | 0.023 (5) | 0.020 (5) | 0.013 (4) | −0.007 (4) | −0.005 (3) | 0.009 (3) |
C210 | 0.021 (5) | 0.025 (5) | 0.012 (4) | −0.004 (4) | 0.000 (3) | 0.000 (4) |
C211 | 0.019 (5) | 0.025 (5) | 0.004 (4) | −0.006 (4) | −0.001 (3) | −0.004 (3) |
C212 | 0.013 (4) | 0.025 (5) | 0.017 (4) | −0.003 (4) | 0.001 (3) | −0.004 (4) |
C213 | 0.020 (5) | 0.017 (4) | 0.013 (4) | −0.006 (4) | 0.004 (3) | −0.001 (3) |
C214 | 0.018 (4) | 0.023 (5) | 0.015 (4) | −0.008 (4) | 0.001 (3) | 0.000 (3) |
C215 | 0.026 (5) | 0.021 (5) | 0.010 (4) | −0.010 (4) | 0.003 (3) | 0.002 (3) |
N31 | 0.026 (5) | 0.038 (5) | 0.034 (5) | −0.015 (4) | 0.002 (4) | −0.008 (4) |
N32 | 0.033 (5) | 0.042 (5) | 0.031 (5) | −0.018 (4) | −0.005 (4) | 0.010 (4) |
C301 | 0.032 (6) | 0.025 (5) | 0.040 (6) | −0.019 (4) | 0.003 (4) | −0.005 (4) |
C302 | 0.026 (5) | 0.031 (5) | 0.019 (5) | −0.008 (4) | −0.006 (4) | 0.005 (4) |
C303 | 0.019 (4) | 0.025 (5) | 0.007 (4) | −0.013 (4) | −0.005 (3) | 0.002 (3) |
C304 | 0.021 (4) | 0.024 (4) | 0.016 (4) | −0.010 (3) | −0.007 (3) | 0.010 (3) |
C305 | 0.028 (5) | 0.045 (6) | 0.013 (4) | −0.020 (5) | 0.002 (4) | −0.008 (4) |
C306 | 0.040 (6) | 0.019 (5) | 0.028 (5) | −0.016 (4) | −0.007 (4) | 0.007 (4) |
C307 | 0.026 (5) | 0.024 (5) | 0.030 (5) | −0.005 (4) | −0.007 (4) | −0.007 (4) |
C308 | 0.025 (5) | 0.039 (6) | 0.032 (5) | −0.007 (5) | −0.006 (4) | −0.012 (5) |
C309 | 0.032 (5) | 0.035 (5) | 0.016 (4) | −0.012 (4) | −0.001 (4) | −0.003 (4) |
C310 | 0.040 (6) | 0.032 (5) | 0.030 (5) | −0.020 (5) | −0.007 (4) | 0.003 (4) |
C311 | 0.021 (5) | 0.023 (5) | 0.024 (5) | −0.016 (4) | 0.007 (4) | 0.002 (4) |
C312 | 0.031 (6) | 0.022 (5) | 0.042 (6) | −0.014 (4) | −0.006 (5) | −0.002 (4) |
C313 | 0.028 (6) | 0.024 (5) | 0.057 (7) | −0.007 (4) | 0.010 (5) | 0.012 (5) |
C314 | 0.043 (6) | 0.020 (5) | 0.021 (5) | −0.021 (5) | −0.007 (4) | −0.001 (4) |
C315 | 0.024 (4) | 0.018 (4) | 0.028 (4) | −0.009 (3) | −0.005 (3) | 0.012 (3) |
Cl1 | 0.0150 (11) | 0.0345 (13) | 0.0266 (12) | −0.0066 (10) | 0.0037 (9) | −0.0067 (10) |
O3 | 0.016 (3) | 0.035 (4) | 0.031 (4) | −0.003 (3) | 0.013 (3) | −0.003 (3) |
O4 | 0.029 (4) | 0.047 (5) | 0.044 (4) | 0.005 (3) | −0.012 (3) | −0.002 (4) |
O5 | 0.048 (5) | 0.066 (5) | 0.029 (4) | −0.041 (4) | 0.015 (3) | −0.010 (3) |
O6 | 0.028 (4) | 0.042 (4) | 0.043 (4) | −0.013 (3) | −0.003 (3) | −0.023 (3) |
Cl2 | 0.0286 (13) | 0.0232 (12) | 0.0387 (14) | −0.0086 (10) | −0.0094 (10) | 0.0107 (10) |
O7 | 0.049 (5) | 0.028 (4) | 0.055 (5) | −0.024 (3) | −0.012 (4) | 0.023 (3) |
O8 | 0.055 (5) | 0.051 (5) | 0.061 (5) | −0.026 (4) | −0.024 (4) | 0.043 (4) |
O9 | 0.046 (5) | 0.067 (6) | 0.070 (6) | −0.005 (4) | 0.005 (4) | −0.036 (5) |
O10 | 0.024 (4) | 0.028 (4) | 0.056 (5) | −0.010 (3) | −0.010 (3) | 0.000 (3) |
C1 | 0.046 (7) | 0.061 (8) | 0.028 (6) | −0.016 (6) | −0.001 (5) | −0.001 (5) |
C2 | 0.064 (8) | 0.045 (7) | 0.029 (6) | −0.003 (6) | −0.005 (5) | −0.003 (5) |
O11 | 0.117 (8) | 0.044 (5) | 0.043 (5) | 0.005 (5) | −0.003 (5) | 0.001 (4) |
Cd1—O1 | 2.317 (5) | C207—H20D | 0.9900 |
Cd1—O1i | 2.317 (5) | C208—C209 | 1.527 (11) |
Cd1—N11i | 2.319 (7) | C208—H20E | 0.9900 |
Cd1—N11 | 2.319 (7) | C208—H20F | 0.9900 |
Cd1—N21i | 2.349 (6) | C209—C210 | 1.541 (11) |
Cd1—N21 | 2.349 (6) | C209—H20G | 0.9900 |
Cd2—O2ii | 2.337 (5) | C209—H20H | 0.9900 |
Cd2—O2 | 2.337 (5) | C210—C211 | 1.508 (11) |
Cd2—N22iii | 2.333 (6) | C210—H21A | 0.9900 |
Cd2—N22iv | 2.333 (6) | C210—H21B | 0.9900 |
Cd2—N12ii | 2.363 (6) | C211—C215 | 1.372 (11) |
Cd2—N12 | 2.363 (6) | C211—C212 | 1.387 (11) |
O1—H1O | 0.8595 | C212—C213 | 1.374 (11) |
O1—H2O | 0.8386 | C212—H212 | 0.9500 |
O2—H3O | 0.8596 | C213—H213 | 0.9500 |
O2—H4O | 0.8387 | C214—C215 | 1.371 (11) |
N11—C105 | 1.362 (10) | C214—H214 | 0.9500 |
N11—C101 | 1.376 (10) | C215—H215 | 0.9500 |
N12—C113 | 1.317 (10) | N31—C301 | 1.340 (12) |
N12—C114 | 1.352 (10) | N31—C305 | 1.347 (12) |
C101—C102 | 1.355 (12) | N32—C314 | 1.333 (12) |
C101—H101 | 0.9500 | N32—C313 | 1.364 (13) |
C102—C103 | 1.391 (12) | C301—C302 | 1.403 (13) |
C102—H102 | 0.9500 | C301—H301 | 0.9500 |
C103—C104 | 1.398 (11) | C302—C303 | 1.395 (12) |
C103—C106 | 1.474 (11) | C302—H302 | 0.9500 |
C104—C105 | 1.380 (12) | C303—C304 | 1.431 (11) |
C104—H104 | 0.9500 | C303—C306 | 1.495 (12) |
C105—H105 | 0.9500 | C304—C305 | 1.395 (12) |
C106—C107 | 1.535 (11) | C304—H304 | 0.9500 |
C106—H10A | 0.9900 | C305—H305 | 0.9500 |
C106—H10B | 0.9900 | C306—C307 | 1.531 (12) |
C107—C108 | 1.531 (11) | C306—H30A | 0.9900 |
C107—H10C | 0.9900 | C306—H30B | 0.9900 |
C107—H10D | 0.9900 | C307—C308 | 1.510 (13) |
C108—C109 | 1.535 (11) | C307—H30C | 0.9900 |
C108—H10E | 0.9900 | C307—H30D | 0.9900 |
C108—H10F | 0.9900 | C308—C309 | 1.532 (12) |
C109—C110 | 1.533 (11) | C308—H30E | 0.9900 |
C109—H10G | 0.9900 | C308—H30F | 0.9900 |
C109—H10H | 0.9900 | C309—C310 | 1.556 (12) |
C110—C111 | 1.525 (11) | C309—H30G | 0.9900 |
C110—H11A | 0.9900 | C309—H30H | 0.9900 |
C110—H11B | 0.9900 | C310—C311 | 1.498 (12) |
C111—C115 | 1.384 (12) | C310—H31A | 0.9900 |
C111—C112 | 1.400 (12) | C310—H31B | 0.9900 |
C112—C113 | 1.376 (11) | C311—C315 | 1.355 (12) |
C112—H112 | 0.9500 | C311—C312 | 1.418 (13) |
C113—H113 | 0.9500 | C312—C313 | 1.355 (14) |
C114—C115 | 1.379 (11) | C312—H312 | 0.9500 |
C114—H114 | 0.9500 | C313—H313 | 0.9500 |
C115—H115 | 0.9500 | C314—C315 | 1.417 (12) |
N21—C201 | 1.337 (11) | C314—H314 | 0.9500 |
N21—C205 | 1.353 (11) | C315—H315 | 0.9500 |
N22—C213 | 1.356 (10) | Cl1—O5 | 1.441 (7) |
N22—C214 | 1.365 (10) | Cl1—O4 | 1.443 (7) |
N22—Cd2v | 2.333 (6) | Cl1—O6 | 1.449 (6) |
C201—C202 | 1.397 (11) | Cl1—O3 | 1.449 (6) |
C201—H201 | 0.9500 | Cl2—O7 | 1.425 (6) |
C202—C203 | 1.380 (12) | Cl2—O10 | 1.429 (7) |
C202—H202 | 0.9500 | Cl2—O8 | 1.433 (7) |
C203—C204 | 1.396 (12) | Cl2—O9 | 1.456 (8) |
C203—C206 | 1.516 (11) | C1—C2 | 1.497 (15) |
C204—C205 | 1.361 (12) | C1—H1A | 0.9800 |
C204—H204 | 0.9500 | C1—H1B | 0.9800 |
C205—H205 | 0.9500 | C1—H1C | 0.9800 |
C206—C207 | 1.504 (12) | C2—O11 | 1.424 (13) |
C206—H20A | 0.9900 | C2—H2A | 0.9900 |
C206—H20B | 0.9900 | C2—H2B | 0.9900 |
C207—C208 | 1.513 (11) | O11—H11 | 0.8400 |
C207—H20C | 0.9900 | ||
O1—Cd1—O1i | 180.0 | H20A—C206—H20B | 107.9 |
O1—Cd1—N11i | 90.6 (2) | C206—C207—C208 | 114.4 (7) |
O1i—Cd1—N11i | 89.4 (2) | C206—C207—H20C | 108.7 |
O1—Cd1—N11 | 89.4 (2) | C208—C207—H20C | 108.7 |
O1i—Cd1—N11 | 90.6 (2) | C206—C207—H20D | 108.7 |
N11i—Cd1—N11 | 180.0 | C208—C207—H20D | 108.7 |
O1—Cd1—N21i | 88.7 (2) | H20C—C207—H20D | 107.6 |
O1i—Cd1—N21i | 91.3 (2) | C207—C208—C209 | 113.3 (7) |
N11i—Cd1—N21i | 87.8 (2) | C207—C208—H20E | 108.9 |
N11—Cd1—N21i | 92.2 (2) | C209—C208—H20E | 108.9 |
O1—Cd1—N21 | 91.3 (2) | C207—C208—H20F | 108.9 |
O1i—Cd1—N21 | 88.7 (2) | C209—C208—H20F | 108.9 |
N11i—Cd1—N21 | 92.2 (2) | H20E—C208—H20F | 107.7 |
N11—Cd1—N21 | 87.8 (2) | C208—C209—C210 | 113.1 (7) |
N21i—Cd1—N21 | 180.0 | C208—C209—H20G | 109.0 |
N22iii—Cd2—N22iv | 180.0 | C210—C209—H20G | 109.0 |
N22iii—Cd2—O2ii | 88.5 (2) | C208—C209—H20H | 109.0 |
N22iv—Cd2—O2ii | 91.5 (2) | C210—C209—H20H | 109.0 |
N22iii—Cd2—O2 | 91.5 (2) | H20G—C209—H20H | 107.8 |
N22iv—Cd2—O2 | 88.5 (2) | C211—C210—C209 | 112.4 (7) |
O2ii—Cd2—O2 | 180.0 | C211—C210—H21A | 109.1 |
N22iii—Cd2—N12ii | 92.9 (2) | C209—C210—H21A | 109.1 |
N22iv—Cd2—N12ii | 87.1 (2) | C211—C210—H21B | 109.1 |
O2ii—Cd2—N12ii | 85.8 (2) | C209—C210—H21B | 109.1 |
O2—Cd2—N12ii | 94.2 (2) | H21A—C210—H21B | 107.9 |
N22iii—Cd2—N12 | 87.1 (2) | C215—C211—C212 | 117.0 (7) |
N22iv—Cd2—N12 | 92.9 (2) | C215—C211—C210 | 122.6 (7) |
O2ii—Cd2—N12 | 94.2 (2) | C212—C211—C210 | 120.3 (7) |
O2—Cd2—N12 | 85.8 (2) | C213—C212—C211 | 119.9 (8) |
N12ii—Cd2—N12 | 180.0 | C213—C212—H212 | 120.0 |
Cd1—O1—H1O | 131.8 | C211—C212—H212 | 120.0 |
Cd1—O1—H2O | 120.6 | N22—C213—C212 | 124.0 (7) |
H1O—O1—H2O | 106.4 | N22—C213—H213 | 118.0 |
Cd2—O2—H3O | 113.7 | C212—C213—H213 | 118.0 |
Cd2—O2—H4O | 116.2 | N22—C214—C215 | 123.7 (8) |
H3O—O2—H4O | 106.4 | N22—C214—H214 | 118.1 |
C105—N11—C101 | 112.7 (7) | C215—C214—H214 | 118.1 |
C105—N11—Cd1 | 125.5 (5) | C214—C215—C211 | 120.5 (8) |
C101—N11—Cd1 | 118.6 (5) | C214—C215—H215 | 119.8 |
C113—N12—C114 | 117.4 (7) | C211—C215—H215 | 119.8 |
C113—N12—Cd2 | 123.4 (5) | C301—N31—C305 | 117.0 (8) |
C114—N12—Cd2 | 118.9 (5) | C314—N32—C313 | 117.1 (8) |
C102—C101—N11 | 125.4 (7) | N31—C301—C302 | 122.7 (9) |
C102—C101—H101 | 117.3 | N31—C301—H301 | 118.7 |
N11—C101—H101 | 117.3 | C302—C301—H301 | 118.7 |
C101—C102—C103 | 121.2 (8) | C303—C302—C301 | 120.4 (8) |
C101—C102—H102 | 119.4 | C303—C302—H302 | 119.8 |
C103—C102—H102 | 119.4 | C301—C302—H302 | 119.8 |
C102—C103—C104 | 115.1 (8) | C302—C303—C304 | 117.2 (8) |
C102—C103—C106 | 123.0 (8) | C302—C303—C306 | 123.4 (7) |
C104—C103—C106 | 121.7 (8) | C304—C303—C306 | 119.3 (8) |
C105—C104—C103 | 120.6 (8) | C305—C304—C303 | 117.4 (8) |
C105—C104—H104 | 119.7 | C305—C304—H304 | 121.3 |
C103—C104—H104 | 119.7 | C303—C304—H304 | 121.3 |
N11—C105—C104 | 125.0 (8) | N31—C305—C304 | 125.2 (8) |
N11—C105—H105 | 117.5 | N31—C305—H305 | 117.4 |
C104—C105—H105 | 117.5 | C304—C305—H305 | 117.4 |
C103—C106—C107 | 112.8 (7) | C303—C306—C307 | 113.5 (7) |
C103—C106—H10A | 109.0 | C303—C306—H30A | 108.9 |
C107—C106—H10A | 109.0 | C307—C306—H30A | 108.9 |
C103—C106—H10B | 109.0 | C303—C306—H30B | 108.9 |
C107—C106—H10B | 109.0 | C307—C306—H30B | 108.9 |
H10A—C106—H10B | 107.8 | H30A—C306—H30B | 107.7 |
C108—C107—C106 | 111.8 (7) | C308—C307—C306 | 113.5 (7) |
C108—C107—H10C | 109.2 | C308—C307—H30C | 108.9 |
C106—C107—H10C | 109.2 | C306—C307—H30C | 108.9 |
C108—C107—H10D | 109.2 | C308—C307—H30D | 108.9 |
C106—C107—H10D | 109.2 | C306—C307—H30D | 108.9 |
H10C—C107—H10D | 107.9 | H30C—C307—H30D | 107.7 |
C107—C108—C109 | 112.0 (7) | C307—C308—C309 | 114.0 (8) |
C107—C108—H10E | 109.2 | C307—C308—H30E | 108.8 |
C109—C108—H10E | 109.2 | C309—C308—H30E | 108.8 |
C107—C108—H10F | 109.2 | C307—C308—H30F | 108.8 |
C109—C108—H10F | 109.2 | C309—C308—H30F | 108.8 |
H10E—C108—H10F | 107.9 | H30E—C308—H30F | 107.7 |
C110—C109—C108 | 111.8 (7) | C308—C309—C310 | 111.5 (8) |
C110—C109—H10G | 109.3 | C308—C309—H30G | 109.3 |
C108—C109—H10G | 109.3 | C310—C309—H30G | 109.3 |
C110—C109—H10H | 109.3 | C308—C309—H30H | 109.3 |
C108—C109—H10H | 109.3 | C310—C309—H30H | 109.3 |
H10G—C109—H10H | 107.9 | H30G—C309—H30H | 108.0 |
C111—C110—C109 | 113.2 (7) | C311—C310—C309 | 111.0 (7) |
C111—C110—H11A | 108.9 | C311—C310—H31A | 109.4 |
C109—C110—H11A | 108.9 | C309—C310—H31A | 109.4 |
C111—C110—H11B | 108.9 | C311—C310—H31B | 109.4 |
C109—C110—H11B | 108.9 | C309—C310—H31B | 109.4 |
H11A—C110—H11B | 107.8 | H31A—C310—H31B | 108.0 |
C115—C111—C112 | 117.8 (7) | C315—C311—C312 | 117.7 (8) |
C115—C111—C110 | 119.4 (8) | C315—C311—C310 | 120.4 (8) |
C112—C111—C110 | 122.8 (8) | C312—C311—C310 | 121.9 (8) |
C113—C112—C111 | 118.8 (8) | C313—C312—C311 | 120.9 (9) |
C113—C112—H112 | 120.6 | C313—C312—H312 | 119.6 |
C111—C112—H112 | 120.6 | C311—C312—H312 | 119.6 |
N12—C113—C112 | 123.9 (8) | C312—C313—N32 | 122.0 (9) |
N12—C113—H113 | 118.1 | C312—C313—H313 | 119.0 |
C112—C113—H113 | 118.1 | N32—C313—H313 | 119.0 |
N12—C114—C115 | 123.0 (8) | N32—C314—C315 | 123.8 (8) |
N12—C114—H114 | 118.5 | N32—C314—H314 | 118.1 |
C115—C114—H114 | 118.5 | C315—C314—H314 | 118.1 |
C114—C115—C111 | 119.0 (8) | C311—C315—C314 | 118.5 (9) |
C114—C115—H115 | 120.5 | C311—C315—H315 | 120.8 |
C111—C115—H115 | 120.5 | C314—C315—H315 | 120.8 |
C201—N21—C205 | 116.7 (7) | O5—Cl1—O4 | 110.3 (5) |
C201—N21—Cd1 | 120.2 (5) | O5—Cl1—O6 | 109.5 (4) |
C205—N21—Cd1 | 122.2 (6) | O4—Cl1—O6 | 109.9 (4) |
C213—N22—C214 | 114.8 (7) | O5—Cl1—O3 | 109.3 (4) |
C213—N22—Cd2v | 125.4 (5) | O4—Cl1—O3 | 108.9 (4) |
C214—N22—Cd2v | 117.4 (5) | O6—Cl1—O3 | 109.0 (4) |
N21—C201—C202 | 122.7 (8) | O7—Cl2—O10 | 111.3 (4) |
N21—C201—H201 | 118.7 | O7—Cl2—O8 | 110.6 (4) |
C202—C201—H201 | 118.7 | O10—Cl2—O8 | 110.9 (4) |
C203—C202—C201 | 119.9 (8) | O7—Cl2—O9 | 108.9 (5) |
C203—C202—H202 | 120.0 | O10—Cl2—O9 | 108.3 (5) |
C201—C202—H202 | 120.0 | O8—Cl2—O9 | 106.9 (5) |
C202—C203—C204 | 117.0 (8) | C2—C1—H1A | 109.5 |
C202—C203—C206 | 121.9 (8) | C2—C1—H1B | 109.5 |
C204—C203—C206 | 121.0 (8) | H1A—C1—H1B | 109.5 |
C205—C204—C203 | 119.8 (8) | C2—C1—H1C | 109.5 |
C205—C204—H204 | 120.1 | H1A—C1—H1C | 109.5 |
C203—C204—H204 | 120.1 | H1B—C1—H1C | 109.5 |
N21—C205—C204 | 123.8 (8) | O11—C2—C1 | 114.2 (10) |
N21—C205—H205 | 118.1 | O11—C2—H2A | 108.7 |
C204—C205—H205 | 118.1 | C1—C2—H2A | 108.7 |
C207—C206—C203 | 112.4 (7) | O11—C2—H2B | 108.7 |
C207—C206—H20A | 109.1 | C1—C2—H2B | 108.7 |
C203—C206—H20A | 109.1 | H2A—C2—H2B | 107.6 |
C207—C206—H20B | 109.1 | C2—O11—H11 | 109.5 |
C203—C206—H20B | 109.1 | ||
O1—Cd1—N11—C105 | −178.7 (6) | N11i—Cd1—N21—C205 | 145.8 (7) |
O1i—Cd1—N11—C105 | 1.3 (6) | N11—Cd1—N21—C205 | −34.2 (7) |
N11i—Cd1—N11—C105 | −165 (5) | N21i—Cd1—N21—C205 | 61 (15) |
N21i—Cd1—N11—C105 | −90.1 (6) | C205—N21—C201—C202 | −0.5 (12) |
N21—Cd1—N11—C105 | 89.9 (6) | Cd1—N21—C201—C202 | 168.8 (6) |
O1—Cd1—N11—C101 | 23.3 (6) | N21—C201—C202—C203 | −1.6 (13) |
O1i—Cd1—N11—C101 | −156.7 (6) | C201—C202—C203—C204 | 3.8 (13) |
N11i—Cd1—N11—C101 | 37 (5) | C201—C202—C203—C206 | −178.4 (8) |
N21i—Cd1—N11—C101 | 111.9 (6) | C202—C203—C204—C205 | −4.1 (13) |
N21—Cd1—N11—C101 | −68.1 (6) | C206—C203—C204—C205 | 178.0 (8) |
N22iii—Cd2—N12—C113 | 150.8 (6) | C201—N21—C205—C204 | 0.1 (13) |
N22iv—Cd2—N12—C113 | −29.2 (6) | Cd1—N21—C205—C204 | −168.9 (7) |
O2ii—Cd2—N12—C113 | 62.5 (6) | C203—C204—C205—N21 | 2.2 (14) |
O2—Cd2—N12—C113 | −117.5 (6) | C202—C203—C206—C207 | −91.2 (11) |
N12ii—Cd2—N12—C113 | −95 (26) | C204—C203—C206—C207 | 86.5 (11) |
N22iii—Cd2—N12—C114 | −36.1 (6) | C203—C206—C207—C208 | −171.0 (8) |
N22iv—Cd2—N12—C114 | 143.9 (6) | C206—C207—C208—C209 | 178.1 (8) |
O2ii—Cd2—N12—C114 | −124.3 (6) | C207—C208—C209—C210 | −170.2 (7) |
O2—Cd2—N12—C114 | 55.7 (6) | C208—C209—C210—C211 | −69.2 (9) |
N12ii—Cd2—N12—C114 | 78 (26) | C209—C210—C211—C215 | 95.5 (9) |
C105—N11—C101—C102 | −0.1 (11) | C209—C210—C211—C212 | −81.6 (9) |
Cd1—N11—C101—C102 | 160.6 (7) | C215—C211—C212—C213 | −1.0 (11) |
N11—C101—C102—C103 | −0.7 (13) | C210—C211—C212—C213 | 176.3 (7) |
C101—C102—C103—C104 | 1.3 (12) | C214—N22—C213—C212 | −0.5 (11) |
C101—C102—C103—C106 | −173.4 (8) | Cd2v—N22—C213—C212 | −162.2 (6) |
C102—C103—C104—C105 | −1.2 (12) | C211—C212—C213—N22 | 0.5 (12) |
C106—C103—C104—C105 | 173.6 (8) | C213—N22—C214—C215 | 1.3 (11) |
C101—N11—C105—C104 | 0.2 (12) | Cd2v—N22—C214—C215 | 164.6 (6) |
Cd1—N11—C105—C104 | −158.9 (7) | N22—C214—C215—C211 | −2.0 (13) |
C103—C104—C105—N11 | 0.5 (13) | C212—C211—C215—C214 | 1.7 (12) |
C102—C103—C106—C107 | 95.9 (10) | C210—C211—C215—C214 | −175.5 (8) |
C104—C103—C106—C107 | −78.5 (10) | C305—N31—C301—C302 | 4.4 (13) |
C103—C106—C107—C108 | −62.7 (10) | N31—C301—C302—C303 | −3.0 (14) |
C106—C107—C108—C109 | −168.2 (7) | C301—C302—C303—C304 | 0.1 (12) |
C107—C108—C109—C110 | −177.9 (8) | C301—C302—C303—C306 | 179.2 (8) |
C108—C109—C110—C111 | −169.4 (8) | C302—C303—C304—C305 | 1.1 (11) |
C109—C110—C111—C115 | 79.7 (10) | C306—C303—C304—C305 | −178.1 (7) |
C109—C110—C111—C112 | −99.4 (10) | C301—N31—C305—C304 | −3.2 (13) |
C115—C111—C112—C113 | 2.3 (12) | C303—C304—C305—N31 | 0.5 (13) |
C110—C111—C112—C113 | −178.6 (8) | C302—C303—C306—C307 | 107.9 (10) |
C114—N12—C113—C112 | −0.4 (12) | C304—C303—C306—C307 | −73.1 (10) |
Cd2—N12—C113—C112 | 172.9 (6) | C303—C306—C307—C308 | −62.3 (10) |
C111—C112—C113—N12 | −1.0 (13) | C306—C307—C308—C309 | −63.3 (10) |
C113—N12—C114—C115 | 0.4 (12) | C307—C308—C309—C310 | −174.2 (8) |
Cd2—N12—C114—C115 | −173.2 (6) | C308—C309—C310—C311 | 177.0 (8) |
N12—C114—C115—C111 | 1.0 (13) | C309—C310—C311—C315 | −84.8 (10) |
C112—C111—C115—C114 | −2.3 (12) | C309—C310—C311—C312 | 95.4 (10) |
C110—C111—C115—C114 | 178.6 (8) | C315—C311—C312—C313 | 0.3 (12) |
O1—Cd1—N21—C201 | 67.8 (6) | C310—C311—C312—C313 | −179.9 (8) |
O1i—Cd1—N21—C201 | −112.2 (6) | C311—C312—C313—N32 | −1.9 (14) |
N11i—Cd1—N21—C201 | −22.8 (6) | C314—N32—C313—C312 | 3.1 (13) |
N11—Cd1—N21—C201 | 157.2 (6) | C313—N32—C314—C315 | −2.9 (13) |
N21i—Cd1—N21—C201 | −107 (15) | C312—C311—C315—C314 | 0.0 (11) |
O1—Cd1—N21—C205 | −123.5 (7) | C310—C311—C315—C314 | −179.9 (7) |
O1i—Cd1—N21—C205 | 56.5 (7) | N32—C314—C315—C311 | 1.4 (13) |
Symmetry codes: (i) −x+1, −y, −z; (ii) −x, −y+1, −z+1; (iii) x−1, y+1, z; (iv) −x+1, −y, −z+1; (v) x+1, y−1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···O8vi | 0.86 | 1.96 | 2.795 (9) | 165 |
O1—H2O···N32vii | 0.84 | 1.87 | 2.705 (10) | 175 |
O2—H3O···N31vi | 0.86 | 1.91 | 2.736 (9) | 162 |
O2—H4O···O3ii | 0.84 | 2.20 | 2.880 (8) | 138 |
O11—H11···O6 | 0.84 | 2.14 | 2.910 (11) | 152 |
C1—H1C···O5 | 0.98 | 2.57 | 3.493 (12) | 157 |
C101—H101···O1 | 0.95 | 2.55 | 3.226 (10) | 128 |
C113—H113···O6 | 0.95 | 2.56 | 3.257 (12) | 130 |
C201—H201···O10vi | 0.95 | 2.54 | 3.260 (11) | 133 |
C205—H205···O7 | 0.95 | 2.55 | 3.214 (12) | 127 |
C214—H214···O2iv | 0.95 | 2.52 | 3.201 (11) | 128 |
C304—H304···O3 | 0.95 | 2.47 | 3.420 (11) | 174 |
Symmetry codes: (ii) −x, −y+1, −z+1; (iv) −x+1, −y, −z+1; (vi) x, y−1, z; (vii) −x, −y+1, −z. |
Cd1—O1 | 2.317 (5) | Cd2—O2 | 2.337 (5) |
Cd1—N11 | 2.319 (7) | Cd2—N22i | 2.333 (6) |
Cd1—N21 | 2.349 (6) | Cd2—N12 | 2.363 (6) |
Symmetry code: (i) x−1, y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···O8ii | 0.86 | 1.96 | 2.795 (9) | 165 |
O1—H2O···N32iii | 0.84 | 1.87 | 2.705 (10) | 175 |
O2—H3O···N31ii | 0.86 | 1.91 | 2.736 (9) | 162 |
O2—H4O···O3iv | 0.84 | 2.20 | 2.880 (8) | 138 |
O11—H11···O6 | 0.84 | 2.14 | 2.910 (11) | 152 |
C1—H1C···O5 | 0.98 | 2.57 | 3.493 (12) | 157 |
C101—H101···O1 | 0.95 | 2.55 | 3.226 (10) | 128 |
C113—H113···O6 | 0.95 | 2.56 | 3.257 (12) | 130 |
C201—H201···O10ii | 0.95 | 2.54 | 3.260 (11) | 133 |
C205—H205···O7 | 0.95 | 2.55 | 3.214 (12) | 127 |
C214—H214···O2v | 0.95 | 2.52 | 3.201 (11) | 128 |
C304—H304···O3 | 0.95 | 2.47 | 3.420 (11) | 174 |
Symmetry codes: (ii) x, y−1, z; (iii) −x, −y+1, −z; (iv) −x, −y+1, −z+1; (v) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cd(C15H18N2)2(H2O)2](ClO4)2·C15H18N2·C2H6O |
Mr | 1072.34 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 120 |
a, b, c (Å) | 10.0618 (3), 10.1653 (3), 27.0304 (11) |
α, β, γ (°) | 87.163 (1), 85.001 (1), 66.509 (1) |
V (Å3) | 2525.60 (15) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.60 |
Crystal size (mm) | 0.10 × 0.07 × 0.05 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2001) |
Tmin, Tmax | 0.942, 0.971 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 20841, 9645, 6116 |
Rint | 0.135 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.091, 0.221, 1.10 |
No. of reflections | 9645 |
No. of parameters | 608 |
No. of restraints | 24 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.0516P)2 + 20.691P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 2.94, −1.34 |
Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997) and SORTAV (Blessing, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and ATOMS (Dowty, 1998).
Acknowledgements
We thank the EPSRC National Crystallography Service (University of Southampton) for the data collection.
References
Allen, F. H. & Motherwell, W. D. S. (2002). Acta Cryst. B58, 407–422. Web of Science CrossRef CAS IUCr Journals Google Scholar
Batten, S. R., Neville, S. M. & Turner, D. R. (2009). In Coordination Polymers: Design, Analysis and Applications. Cambridge: RSC Publishing. Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197. CrossRef CAS Web of Science IUCr Journals Google Scholar
Dowty, E. (1998). ATOMS. Shape Software, Kingsport, Tennessee, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
O'Keeffe, M. & Hyde, B. G. (1996). Crystal Structures I: Patterns and Symmetry, p. 164. Washington DC: Mineralogical Society of America. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter, Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Plater, M. J., Foreman, M. R. St J., Gelbrich, T., Coles, S. J. & Hursthouse, M. B. (2000). J. Chem. Soc. Dalton Trans. pp. 3065–3073. Web of Science CSD CrossRef Google Scholar
Plater, M. J., Gelbrich, T., Hursthouse, M. B. & De Silva, B. M. (2008). CrystEngComm, 10, 125–130. Web of Science CSD CrossRef CAS Google Scholar
Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570. CrossRef PubMed CAS Web of Science Google Scholar
Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.