organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-(9-Hexyl-9H-carbazol-3-yl)acrylic acid

aDepartment of Chemistry, Anhui University, Hefei 230039, People's Republic of China, and bKey Laboratory of Functional Inorganic Materials Chemistry, Hefei 230039, People's Republic of China
*Correspondence e-mail: lsl1968@ahu.edu.cn

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 5 June 2014; accepted 12 July 2014; online 31 July 2014)

In the title compound, C21H23NO2, the hexyl group adopts an extended conformation, the six C atoms are nearly coplanar [maximum deviation = 0.082 (3) Å] and their mean plane is approximately perpendicular to the carbazole ring system, with a dihedral angle of 78.91 (15)°. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, forming inversion dimers; ππ stacking between carbazole ring systems of adjacent dimers further links the dimers into supra­molecular chains propagating along the b-axis direction [centroid-to-centroid distances = 3.868 (2) and 3.929 (2) Å].

Keywords: crystal structure.

Related literature

For structures of related carbazole derivatives, see: Saeed et al. (2010[Saeed, A., Kazmi, M., Ameen Samra, S., Irfan, M. & Bolte, M. (2010). Acta Cryst. E66, o2118.]). For applications of carbazole derivatives, see: Adhikari et al. (2009[Adhikari, R. M., Shah, B. M., Palayangoda, S. S. & Neckers, D. C. (2009). Langmuir, 25, 2402-2406.]); Daicho et al. (2013[Daicho, Y., Murakami, T., Hagiwara, T. & Maruo, S. (2013). Opt. Mater. Express, 3, 873-883.]); Tao et al. (2010[Tao, Y.-T., Wang, Q., Yang, C.-L., Cheng, Z. & Ma, D.-G. (2010). Adv. Funct. Mater. 20, 304-311.]); Zheng et al. (2012[Zheng, C.-J., Ye, J. & Lo, M.-F. (2012). Chem. Mater. 24, 643-650.]); Dvornikov et al. (2009[Dvornikov, A. S., Walker, E. P. & Rentzepis, P. M. (2009). J. Phys. Chem. A, 113, 13633-13644.]).

[Scheme 1]

Experimental

Crystal data
  • C21H23NO2

  • Mr = 321.40

  • Monoclinic, P 21 /n

  • a = 10.594 (5) Å

  • b = 5.109 (2) Å

  • c = 33.152 (15) Å

  • β = 94.922 (6)°

  • V = 1787.5 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • 11882 measured reflections

  • 3115 independent reflections

  • 2291 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.192

  • S = 1.07

  • 3115 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.85 2.650 (3) 166
Symmetry code: (i) -x+2, -y-2, -z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SAMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, carbazole derivatives have attracted attention as their superphotoelectric effect (Tao et al., 2010) and electron transporting capabilities (Zheng et al., 2012). So they have been widely used in biochemistry optical switching (Adhikari et al., 2009), 3-D microfabrication (Daicho et al., 2013) and optical data storage (Dvornikov et al., 2009). In the present paper, the title carbazole derivative (Fig.1) is synthesized.

In the molecule, the carbazole and carboxylic acid are coplanar, while the hexyl group is nearly perpendicular to the plan of carbazole ring [dihedral angle = 78.91 (15)°]. The molecule connect with each other by intermolecular hydrogen-bonding O1—H1···O2.

Related literature top

For structures of related carbazole derivatives, see: Saeed et al. (2010). For applications of carbazole derivatives, see: Adhikari et al. (2009); Daicho et al. (2013); Tao et al. (2010); Zheng et al. (2012); Dvornikov et al. (2009).

Experimental top

Carbazole single aldehyde (1.6 g, 5 mmol) and malonic acid (1.04 g, 10 mmol) was dissolved in pyridine with addition of 0.1 ml piperidine. The mixture was refluxed for 3 h, traced by TLC then column chromatography (silica, petroleum ether: ethyl acetate (V/V) = 5: 1) and finally 1.2 g white solid were acquired. Yield: 37%. 0.1 g LCOOH was dissolved in 30 ml me thanol, filtered to 50 ml volumetric flask, naturally evaporated for a week, and then colorless single crystals were obtained. 1H NMR (400 MHz, CD3COCD3) 0.84 (t, 3H), 1.33 (m, 6H), 1.89 (m, 2H), 4.46 (t, 2H), 6.59 (d, 1H), 7.26 (t, 1H), 7.50 (t, 1H), 7.62 (t, 2H), 7.82 (d, 1H), 7.87 (d, 1H), 8.23 (t, 1H), 8.51 (s, 1H), 10.53 (s, 1H).

Refinement top

All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with O—H = 0.82 and C—H = 0.93–0.97 Å, Uiso(H) = 1.5Ueq(C,O) for methyl H and hydroxyl H atoms, and 1.2Ueq(C) for the others.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids.
(E)-3-(9-Hexyl-9H-carbazol-3-yl)acrylic acid top
Crystal data top
C21H23NO2F(000) = 688
Mr = 321.40Dx = 1.194 Mg m3
Monoclinic, P21/nMelting point: 425 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 10.594 (5) ÅCell parameters from 2128 reflections
b = 5.109 (2) Åθ = 4.2–20.6°
c = 33.152 (15) ŵ = 0.08 mm1
β = 94.922 (6)°T = 298 K
V = 1787.5 (14) Å3Block, yellow
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2291 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.027
Graphite monochromatorθmax = 25.0°, θmin = 1.2°
phi and ω scansh = 1212
11882 measured reflectionsk = 65
3115 independent reflectionsl = 3938
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.192H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1029P)2 + 0.5377P]
where P = (Fo2 + 2Fc2)/3
3115 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C21H23NO2V = 1787.5 (14) Å3
Mr = 321.40Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.594 (5) ŵ = 0.08 mm1
b = 5.109 (2) ÅT = 298 K
c = 33.152 (15) Å0.30 × 0.20 × 0.20 mm
β = 94.922 (6)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2291 reflections with I > 2σ(I)
11882 measured reflectionsRint = 0.027
3115 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.192H-atom parameters constrained
S = 1.07Δρmax = 0.47 e Å3
3115 reflectionsΔρmin = 0.26 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7326 (2)0.3637 (5)0.18010 (7)0.0663 (7)
H1A0.80980.27620.18340.080*
C20.7043 (3)0.5596 (5)0.20667 (8)0.0774 (8)
H20.76340.60470.22790.093*
C30.5892 (3)0.6895 (5)0.20204 (8)0.0758 (8)
H30.57270.82100.22030.091*
C40.4993 (3)0.6291 (5)0.17135 (8)0.0698 (7)
H40.42200.71640.16860.084*
C50.5273 (2)0.4319 (4)0.14423 (7)0.0570 (6)
C60.6441 (2)0.2999 (4)0.14841 (6)0.0535 (6)
C70.64129 (19)0.1119 (4)0.11537 (6)0.0500 (6)
C80.5225 (2)0.1420 (4)0.09295 (6)0.0526 (6)
C90.4886 (2)0.0077 (5)0.05871 (6)0.0598 (6)
H90.41020.01270.04420.072*
C100.5756 (2)0.1879 (5)0.04707 (6)0.0587 (6)
H100.55450.28960.02420.070*
C110.6947 (2)0.2234 (4)0.06846 (6)0.0529 (6)
C120.7261 (2)0.0701 (4)0.10286 (6)0.0532 (6)
H120.80450.09090.11740.064*
C130.7861 (2)0.4127 (4)0.05570 (6)0.0568 (6)
H130.86240.42290.07180.068*
C140.7743 (2)0.5720 (5)0.02407 (7)0.0609 (6)
H140.69930.56680.00730.073*
C150.8722 (2)0.7543 (5)0.01418 (7)0.0605 (6)
C160.3276 (2)0.4227 (5)0.09634 (8)0.0730 (8)
H16A0.32110.42950.06700.088*
H16B0.31520.59890.10620.088*
C170.2239 (2)0.2500 (7)0.10958 (9)0.0903 (10)
H17A0.14320.32670.09980.108*
H17B0.22980.08170.09630.108*
C180.2226 (3)0.2040 (7)0.15327 (9)0.0911 (9)
H18A0.21150.37050.16660.109*
H18B0.30420.13410.16350.109*
C190.1198 (3)0.0179 (7)0.16456 (13)0.1166 (13)
H19A0.12390.14150.14880.140*
H19B0.03770.09760.15760.140*
C200.1322 (5)0.0535 (9)0.21078 (15)0.1420 (17)
H20A0.21630.12420.21770.170*
H20B0.12520.10650.22620.170*
C210.0420 (5)0.2353 (11)0.22313 (17)0.182 (2)
H21A0.04300.38960.20660.273*
H21B0.04090.15790.22010.273*
H21C0.06280.28130.25100.273*
N10.45361 (17)0.3355 (4)0.11062 (5)0.0585 (5)
O10.84699 (17)0.8937 (4)0.01813 (5)0.0839 (6)
H10.91060.97450.02330.126*
O20.97385 (16)0.7732 (4)0.03562 (5)0.0849 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0730 (16)0.0645 (15)0.0614 (14)0.0008 (13)0.0060 (12)0.0050 (12)
C20.095 (2)0.0748 (19)0.0621 (15)0.0061 (15)0.0069 (13)0.0155 (13)
C30.099 (2)0.0602 (16)0.0706 (16)0.0007 (15)0.0238 (14)0.0148 (13)
C40.0798 (17)0.0579 (15)0.0750 (16)0.0120 (13)0.0253 (13)0.0025 (13)
C50.0688 (15)0.0494 (13)0.0548 (12)0.0067 (11)0.0171 (10)0.0024 (10)
C60.0622 (13)0.0493 (13)0.0502 (12)0.0028 (10)0.0116 (10)0.0018 (10)
C70.0546 (13)0.0495 (13)0.0470 (11)0.0044 (10)0.0108 (9)0.0043 (9)
C80.0566 (13)0.0546 (13)0.0481 (11)0.0076 (10)0.0121 (9)0.0044 (10)
C90.0546 (13)0.0713 (15)0.0532 (12)0.0123 (12)0.0036 (9)0.0000 (11)
C100.0625 (14)0.0648 (15)0.0490 (12)0.0049 (11)0.0057 (10)0.0078 (10)
C110.0558 (13)0.0536 (13)0.0499 (12)0.0084 (10)0.0092 (9)0.0006 (10)
C120.0539 (13)0.0539 (14)0.0519 (12)0.0075 (10)0.0040 (9)0.0005 (10)
C130.0576 (13)0.0588 (14)0.0541 (12)0.0078 (11)0.0053 (10)0.0049 (11)
C140.0583 (14)0.0676 (16)0.0566 (13)0.0130 (11)0.0037 (10)0.0060 (11)
C150.0600 (14)0.0662 (15)0.0552 (13)0.0116 (11)0.0038 (10)0.0103 (11)
C160.0710 (17)0.0803 (19)0.0681 (15)0.0281 (14)0.0088 (12)0.0062 (13)
C170.0615 (16)0.123 (3)0.0839 (19)0.0204 (17)0.0066 (14)0.0058 (17)
C180.0790 (19)0.089 (2)0.107 (2)0.0104 (16)0.0196 (16)0.0084 (18)
C190.095 (2)0.101 (3)0.160 (3)0.012 (2)0.052 (2)0.024 (2)
C200.151 (4)0.126 (3)0.158 (4)0.042 (3)0.066 (3)0.020 (3)
C210.189 (5)0.129 (4)0.245 (6)0.028 (3)0.117 (5)0.021 (4)
N10.0601 (11)0.0592 (12)0.0572 (11)0.0153 (9)0.0108 (9)0.0002 (9)
O10.0744 (12)0.1000 (15)0.0750 (11)0.0311 (11)0.0068 (9)0.0370 (10)
O20.0699 (12)0.1028 (15)0.0789 (12)0.0305 (10)0.0121 (9)0.0354 (11)
Geometric parameters (Å, º) top
C1—C21.383 (4)C14—C151.452 (3)
C1—C61.386 (3)C14—H140.9300
C1—H1A0.9300C15—O21.242 (3)
C2—C31.385 (4)C15—O11.295 (3)
C2—H20.9300C16—N11.448 (3)
C3—C41.368 (3)C16—C171.504 (4)
C3—H30.9300C16—H16A0.9700
C4—C51.399 (3)C16—H16B0.9700
C4—H40.9300C17—C181.469 (4)
C5—N11.394 (3)C17—H17A0.9700
C5—C61.406 (3)C17—H17B0.9700
C6—C71.455 (3)C18—C191.517 (5)
C7—C121.381 (3)C18—H18A0.9700
C7—C81.414 (3)C18—H18B0.9700
C8—N11.387 (3)C19—C201.570 (6)
C8—C91.390 (3)C19—H19A0.9700
C9—C101.380 (3)C19—H19B0.9700
C9—H90.9300C20—C211.418 (6)
C10—C111.405 (3)C20—H20A0.9700
C10—H100.9300C20—H20B0.9700
C11—C121.400 (3)C21—H21A0.9600
C11—C131.457 (3)C21—H21B0.9600
C12—H120.9300C21—H21C0.9600
C13—C141.325 (3)O1—H10.8200
C13—H130.9300
C2—C1—C6118.9 (2)O2—C15—C14121.4 (2)
C2—C1—H1A120.5O1—C15—C14116.04 (19)
C6—C1—H1A120.5N1—C16—C17113.6 (2)
C1—C2—C3120.9 (2)N1—C16—H16A108.8
C1—C2—H2119.6C17—C16—H16A108.8
C3—C2—H2119.6N1—C16—H16B108.8
C4—C3—C2121.6 (2)C17—C16—H16B108.8
C4—C3—H3119.2H16A—C16—H16B107.7
C2—C3—H3119.2C18—C17—C16116.8 (2)
C3—C4—C5117.9 (2)C18—C17—H17A108.1
C3—C4—H4121.1C16—C17—H17A108.1
C5—C4—H4121.1C18—C17—H17B108.1
N1—C5—C4129.3 (2)C16—C17—H17B108.1
N1—C5—C6109.70 (19)H17A—C17—H17B107.3
C4—C5—C6121.0 (2)C17—C18—C19114.3 (3)
C1—C6—C5119.7 (2)C17—C18—H18A108.7
C1—C6—C7134.0 (2)C19—C18—H18A108.7
C5—C6—C7106.33 (18)C17—C18—H18B108.7
C12—C7—C8119.20 (19)C19—C18—H18B108.7
C12—C7—C6134.30 (19)H18A—C18—H18B107.6
C8—C7—C6106.49 (18)C18—C19—C20112.6 (3)
N1—C8—C9128.9 (2)C18—C19—H19A109.1
N1—C8—C7109.38 (19)C20—C19—H19A109.1
C9—C8—C7121.7 (2)C18—C19—H19B109.1
C10—C9—C8117.6 (2)C20—C19—H19B109.1
C10—C9—H9121.2H19A—C19—H19B107.8
C8—C9—H9121.2C21—C20—C19115.6 (4)
C9—C10—C11122.5 (2)C21—C20—H20A108.4
C9—C10—H10118.8C19—C20—H20A108.4
C11—C10—H10118.8C21—C20—H20B108.4
C12—C11—C10118.63 (19)C19—C20—H20B108.4
C12—C11—C13119.4 (2)H20A—C20—H20B107.4
C10—C11—C13122.0 (2)C20—C21—H21A109.5
C7—C12—C11120.40 (19)C20—C21—H21B109.5
C7—C12—H12119.8H21A—C21—H21B109.5
C11—C12—H12119.8C20—C21—H21C109.5
C14—C13—C11128.1 (2)H21A—C21—H21C109.5
C14—C13—H13115.9H21B—C21—H21C109.5
C11—C13—H13115.9C8—N1—C5108.09 (18)
C13—C14—C15123.5 (2)C8—N1—C16125.8 (2)
C13—C14—H14118.3C5—N1—C16126.14 (19)
C15—C14—H14118.3C15—O1—H1109.5
O2—C15—O1122.5 (2)
C1—C6—C7—C120.7 (5)N1—C5—C4—C3179.6 (2)
C5—C6—C7—C12179.3 (2)C6—C5—C4—C30.2 (4)
C1—C6—C7—C8180.0 (3)C15—C14—C13—C11180.0 (2)
C5—C6—C7—C80.0 (2)C12—C11—C13—C14179.3 (3)
C8—C7—C12—C110.0 (3)C10—C11—C13—C140.2 (4)
C6—C7—C12—C11179.3 (2)N1—C8—C9—C10179.5 (2)
C10—C11—C12—C70.1 (3)C7—C8—C9—C100.2 (4)
C13—C11—C12—C7179.5 (2)C8—C9—C10—C110.1 (4)
C5—N1—C8—C9179.5 (2)C12—C11—C10—C90.1 (4)
C16—N1—C8—C90.1 (4)C13—C11—C10—C9179.5 (2)
C5—N1—C8—C70.3 (3)C5—C4—C3—C20.5 (4)
C16—N1—C8—C7179.7 (2)C13—C14—C15—O21.2 (4)
C12—C7—C8—N1179.60 (19)C13—C14—C15—O1178.9 (3)
C6—C7—C8—N10.2 (2)C5—C6—C1—C20.6 (4)
C12—C7—C8—C90.2 (3)C7—C6—C1—C2179.3 (3)
C6—C7—C8—C9179.6 (2)C6—C1—C2—C30.3 (4)
C8—N1—C5—C4179.4 (2)C4—C3—C2—C10.3 (5)
C16—N1—C5—C40.1 (4)C16—C17—C18—C19177.5 (3)
C8—N1—C5—C60.4 (3)C17—C18—C19—C20173.0 (3)
C16—N1—C5—C6179.7 (2)C18—C19—C20—C21177.3 (4)
C1—C6—C5—N1179.8 (2)C8—N1—C16—C1781.9 (3)
C7—C6—C5—N10.2 (3)C5—N1—C16—C1798.9 (3)
C1—C6—C5—C40.4 (4)C18—C17—C16—N155.5 (4)
C7—C6—C5—C4179.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.852.650 (3)166
Symmetry code: (i) x+2, y2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.852.650 (3)166
Symmetry code: (i) x+2, y2, z.
 

Acknowledgements

This work was supported by Anhui Provincial Natural Science Foundation (grant No. 1308085MB24) and the Foundation of Educational Commission of Anhui Province, China (grant No. KJ2012A025).

References

First citationAdhikari, R. M., Shah, B. M., Palayangoda, S. S. & Neckers, D. C. (2009). Langmuir, 25, 2402–2406.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2007). SAMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDaicho, Y., Murakami, T., Hagiwara, T. & Maruo, S. (2013). Opt. Mater. Express, 3, 873–883.  Web of Science CrossRef Google Scholar
First citationDvornikov, A. S., Walker, E. P. & Rentzepis, P. M. (2009). J. Phys. Chem. A, 113, 13633–13644.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSaeed, A., Kazmi, M., Ameen Samra, S., Irfan, M. & Bolte, M. (2010). Acta Cryst. E66, o2118.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTao, Y.-T., Wang, Q., Yang, C.-L., Cheng, Z. & Ma, D.-G. (2010). Adv. Funct. Mater. 20, 304–311.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, C.-J., Ye, J. & Lo, M.-F. (2012). Chem. Mater. 24, 643–650.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds