organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-tert-butyl 1-[2-hy­dr­oxy-3-(methyl­sulfan­yl)prop­yl]hydrazine-1,2-di­carboxyl­ate

aInstitute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China, and bHangDeXin (Beijing) Pharmatech. Co. Ltd, Fengtai District, Beijing 100050, People's Republic of China
*Correspondence e-mail: imbjxwang@gmail.com

(Received 10 June 2014; accepted 26 June 2014; online 2 July 2014)

The title compound, C14H28N2O5S, was synthesized by the reaction of 2-[(methyl­sulfan­yl)meth­yl]oxirane with di-tert-butyl oxalate in hydrazine hydrate. In the crystal, mol­ecules are linked by N—H⋯O and O—H⋯O hydrogen bonds into supra­molecular chains propagating along the b-axis direction.

Keywords: crystal structure.

Related literature

For the synthesis of the title compound, see: Budavari et al. (1989[Budavari, S., O'Neil, M. J. & Smith, A. (1989). Merck Index, 11th ed., edited by S. Budavari, p. 6442. Rahway, New Jersey: Merck and Co. Inc.]); Mendling et al. (2002[Mendling, W., Poli, A. & Magnani, P. (2002). Arzneimittelforschung, 52, 725-729.]).

[Scheme 1]

Experimental

Crystal data
  • C14H28N2O5S

  • Mr = 336.44

  • Monoclinic, P 21 /c

  • a = 14.0172 (3) Å

  • b = 7.83649 (15) Å

  • c = 17.2076 (3) Å

  • β = 103.772 (2)°

  • V = 1835.84 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.77 mm−1

  • T = 293 K

  • 0.28 × 0.24 × 0.24 mm

Data collection
  • Agilent Xcalibur (Atlas, Gemini ultra) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO, Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.551, Tmax = 0.680

  • 16825 measured reflections

  • 3247 independent reflections

  • 2903 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.187

  • S = 1.00

  • 3247 reflections

  • 207 parameters

  • H-atom parameters constrained

  • Δρmax = 1.02 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O2i 0.82 2.03 2.842 (3) 168
N2—H2⋯O5i 0.93 2.07 2.996 (3) 172
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

Nifuratel is a medicine used in gynecology (Budavari et al., 1989; Mendling et al., 2002). It is a local antiprotozoal and antifungal agent that may also be given orally. The tile compound is a key intermediate of nifuratel, herewith we report the synthesis and the crystal structure of the title compound. In the molecule of the title compound, all bond lengths and angles have normal values with C—C bond lengths between 1.510 (4) to 1.514 (4) Å and slightly shorter C—N distances, 1.367 (3) and 1.460 (3) Å, as expected (Fig. 1). Molecules are linked by N5—H5···O2i and N2—H2···O5i (i = -x + 1, y - 1/2, -z + 1/2) hydrogen bonds involving the imino group N atom, the ester group O atom and hydroxyl O atom into chains running parallel to the b axis (Fig. 2).

Related literature top

For the synthesis of the title compound, see: Budavari et al. (1989); Mendling et al. (2002).

Experimental top

In a 500 ml four-necked round-bottom flask equipped with a mechanical stirrer 2-((methylsulfanyl)methyl)oxirane (55.8 g) was cautiously dissolved in 80% hydrazine hydrate (17.5 g). The solution was heated at 95°C for 6 h, then the hydrazine hydrate was removed by reduced pressure distillation at 85°C. 125 ml me thanol and Boc2O was added into the remaining aqueous phase group by group. The reaction was completion after 2 h, the crude product were obtained. The crude product was purified by column chromatography to obtain 44.3 g (78.8%) of product which was recrystallized from 200 ml of a mixture of methanol and acetone (v/v = 1/2) to yield 25.3 g (57%) of clear light colourless block-like crystals.

Refinement top

H atoms were placed in calculated positions and refined constrained to ride on their parent atoms, with C—H = 0.96—0.97 Å, N—H = 0.93 Å and O—H = 0.82, Uiso(H) = 1.5Ueq(C,O) for methyl and hydroxyl H atoms and 1.2Ueq(C,N) for the others.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. View of the one-dimensional chains of the title compound extending along the b axis. All the hydrogen atoms except those involved in hydrogen bonding have been omitted for clarity. Hydrogen bonds are shown as dashed lines.
Di-tert-butyl 1-[2-hydroxy-3-(methylsulfanyl)propyl]hydrazine-1,2-dicarboxylate top
Crystal data top
C14H28N2O5SF(000) = 728
Mr = 336.44Dx = 1.217 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 7294 reflections
a = 14.0172 (3) Åθ = 5.3–66.4°
b = 7.83649 (15) ŵ = 1.77 mm1
c = 17.2076 (3) ÅT = 293 K
β = 103.772 (2)°Block, colourless
V = 1835.84 (7) Å30.28 × 0.24 × 0.24 mm
Z = 4
Data collection top
Agilent Xcalibur (Atlas, Gemini ultra)
diffractometer
3247 independent reflections
Radiation source: fine-focus sealed tube2903 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 66.6°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis PRO, Agilent, 2013)
h = 1616
Tmin = 0.551, Tmax = 0.680k = 97
16825 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.187H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1098P)2 + 1.6106P]
where P = (Fo2 + 2Fc2)/3
3247 reflections(Δ/σ)max < 0.001
207 parametersΔρmax = 1.02 e Å3
0 restraintsΔρmin = 0.66 e Å3
Crystal data top
C14H28N2O5SV = 1835.84 (7) Å3
Mr = 336.44Z = 4
Monoclinic, P21/cCu Kα radiation
a = 14.0172 (3) ŵ = 1.77 mm1
b = 7.83649 (15) ÅT = 293 K
c = 17.2076 (3) Å0.28 × 0.24 × 0.24 mm
β = 103.772 (2)°
Data collection top
Agilent Xcalibur (Atlas, Gemini ultra)
diffractometer
3247 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO, Agilent, 2013)
2903 reflections with I > 2σ(I)
Tmin = 0.551, Tmax = 0.680Rint = 0.028
16825 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.187H-atom parameters constrained
S = 1.00Δρmax = 1.02 e Å3
3247 reflectionsΔρmin = 0.66 e Å3
207 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8328 (2)0.0844 (4)0.2221 (2)0.0607 (8)
H1A0.80600.04940.26600.091*
H1B0.88980.01690.22160.091*
H1C0.78450.06880.17280.091*
C20.86149 (18)0.2704 (3)0.23178 (17)0.0442 (6)
C30.8960 (3)0.3336 (4)0.1599 (2)0.0654 (9)
H3A0.84450.31870.11250.098*
H3B0.95270.26970.15510.098*
H3C0.91270.45230.16670.098*
C40.9360 (2)0.3034 (4)0.3097 (2)0.0661 (8)
H4A0.95050.42320.31470.099*
H4B0.99510.24100.31020.099*
H4C0.90970.26700.35360.099*
C50.75898 (17)0.5211 (3)0.24304 (13)0.0377 (5)
C60.8608 (3)0.5688 (5)0.4950 (2)0.0734 (10)
H6A0.81610.47720.49730.110*
H6B0.90310.58630.54710.110*
H6C0.89960.54050.45780.110*
C70.8696 (3)0.8736 (6)0.4540 (2)0.0829 (12)
H7A0.89770.84450.41000.124*
H7B0.92120.89010.50130.124*
H7C0.83220.97690.44180.124*
C80.7408 (3)0.7799 (5)0.52474 (19)0.0717 (9)
H8A0.70310.87970.50500.107*
H8B0.78240.80350.57660.107*
H8C0.69720.68760.52880.107*
C90.8032 (2)0.7309 (4)0.46795 (15)0.0502 (7)
C100.68395 (18)0.7871 (3)0.34172 (15)0.0398 (6)
C110.59483 (19)0.8209 (3)0.20202 (15)0.0420 (6)
H11A0.64110.83570.16870.050*
H11B0.58210.93270.22170.050*
C120.50032 (19)0.7509 (3)0.15139 (15)0.0414 (6)
H120.51170.63710.13180.050*
C130.4655 (2)0.8726 (4)0.08046 (17)0.0540 (7)
H13A0.52060.89620.05710.065*
H13B0.44640.97970.10070.065*
C140.4265 (4)0.6873 (6)0.0605 (3)0.1003 (15)
H14A0.43920.76400.10040.150*
H14B0.38610.59480.08620.150*
H14C0.48750.64300.02940.150*
N10.63988 (15)0.7134 (3)0.27015 (12)0.0406 (5)
N20.66615 (14)0.5497 (2)0.25167 (12)0.0384 (5)
H20.63170.46150.26860.046*
O10.73806 (14)0.6746 (2)0.39125 (10)0.0453 (4)
O20.67196 (16)0.9354 (2)0.35674 (12)0.0576 (5)
O30.76770 (12)0.3515 (2)0.23478 (12)0.0450 (5)
O40.81944 (14)0.6293 (2)0.24135 (12)0.0512 (5)
O50.43100 (14)0.7407 (2)0.19925 (12)0.0496 (5)
H50.39430.65930.18470.074*
S10.36497 (6)0.79803 (14)0.00276 (5)0.0743 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0588 (17)0.0400 (15)0.087 (2)0.0079 (13)0.0240 (16)0.0047 (14)
C20.0374 (13)0.0403 (13)0.0560 (15)0.0054 (10)0.0135 (11)0.0014 (11)
C30.071 (2)0.0624 (19)0.074 (2)0.0013 (16)0.0392 (17)0.0057 (16)
C40.0560 (18)0.0638 (19)0.070 (2)0.0053 (15)0.0009 (15)0.0018 (16)
C50.0417 (12)0.0355 (12)0.0348 (11)0.0021 (10)0.0067 (9)0.0013 (9)
C60.064 (2)0.090 (3)0.0553 (18)0.0143 (18)0.0082 (15)0.0067 (17)
C70.067 (2)0.107 (3)0.069 (2)0.031 (2)0.0045 (17)0.004 (2)
C80.080 (2)0.091 (3)0.0456 (16)0.0027 (19)0.0186 (16)0.0128 (16)
C90.0487 (15)0.0645 (17)0.0341 (12)0.0049 (13)0.0035 (11)0.0017 (12)
C100.0408 (13)0.0408 (13)0.0373 (12)0.0047 (10)0.0082 (10)0.0009 (10)
C110.0430 (13)0.0410 (13)0.0401 (13)0.0039 (10)0.0061 (10)0.0035 (10)
C120.0443 (13)0.0371 (12)0.0403 (13)0.0057 (10)0.0052 (10)0.0052 (10)
C130.0579 (16)0.0540 (16)0.0456 (15)0.0029 (13)0.0033 (12)0.0047 (12)
C140.117 (4)0.084 (3)0.086 (3)0.005 (3)0.002 (3)0.030 (2)
N10.0432 (11)0.0360 (10)0.0387 (11)0.0087 (9)0.0022 (9)0.0041 (8)
N20.0381 (10)0.0326 (10)0.0431 (11)0.0030 (8)0.0069 (8)0.0029 (8)
O10.0509 (10)0.0440 (10)0.0360 (9)0.0060 (8)0.0003 (7)0.0027 (7)
O20.0774 (14)0.0407 (11)0.0497 (11)0.0110 (9)0.0048 (9)0.0083 (8)
O30.0373 (9)0.0340 (9)0.0655 (11)0.0004 (7)0.0156 (8)0.0049 (8)
O40.0518 (11)0.0389 (10)0.0658 (12)0.0061 (8)0.0198 (9)0.0010 (8)
O50.0466 (10)0.0450 (10)0.0570 (11)0.0068 (8)0.0119 (9)0.0017 (8)
S10.0590 (5)0.0937 (7)0.0592 (5)0.0013 (4)0.0082 (4)0.0056 (4)
Geometric parameters (Å, º) top
C1—C21.510 (4)C8—H8A0.9600
C1—H1A0.9600C8—H8B0.9600
C1—H1B0.9600C8—H8C0.9600
C1—H1C0.9600C9—O11.482 (3)
C2—O31.472 (3)C10—O21.210 (3)
C2—C41.513 (4)C10—O11.331 (3)
C2—C31.514 (4)C10—N11.367 (3)
C3—H3A0.9600C11—N11.460 (3)
C3—H3B0.9600C11—C121.505 (4)
C3—H3C0.9600C11—H11A0.9700
C4—H4A0.9600C11—H11B0.9700
C4—H4B0.9600C12—O51.418 (3)
C4—H4C0.9600C12—C131.534 (4)
C5—O41.204 (3)C12—H120.9800
C5—O31.345 (3)C13—S11.794 (3)
C5—N21.363 (3)C13—H13A0.9700
C6—C91.518 (5)C13—H13B0.9700
C6—H6A0.9600C14—S11.769 (5)
C6—H6B0.9600C14—H14A0.9600
C6—H6C0.9600C14—H14B0.9600
C7—C91.511 (5)C14—H14C0.9600
C7—H7A0.9600N1—N21.393 (3)
C7—H7B0.9600N2—H20.9282
C7—H7C0.9600O5—H50.8200
C8—C91.508 (4)
C2—C1—H1A109.5H8B—C8—H8C109.5
C2—C1—H1B109.5O1—C9—C8108.9 (2)
H1A—C1—H1B109.5O1—C9—C7110.5 (2)
C2—C1—H1C109.5C8—C9—C7112.9 (3)
H1A—C1—H1C109.5O1—C9—C6101.2 (2)
H1B—C1—H1C109.5C8—C9—C6111.3 (3)
O3—C2—C1101.8 (2)C7—C9—C6111.4 (3)
O3—C2—C4109.2 (2)O2—C10—O1125.9 (2)
C1—C2—C4111.8 (3)O2—C10—N1122.8 (2)
O3—C2—C3110.4 (2)O1—C10—N1111.3 (2)
C1—C2—C3110.7 (3)N1—C11—C12114.0 (2)
C4—C2—C3112.3 (3)N1—C11—H11A108.7
C2—C3—H3A109.5C12—C11—H11A108.7
C2—C3—H3B109.5N1—C11—H11B108.7
H3A—C3—H3B109.5C12—C11—H11B108.7
C2—C3—H3C109.5H11A—C11—H11B107.6
H3A—C3—H3C109.5O5—C12—C11108.3 (2)
H3B—C3—H3C109.5O5—C12—C13111.4 (2)
C2—C4—H4A109.5C11—C12—C13107.6 (2)
C2—C4—H4B109.5O5—C12—H12109.8
H4A—C4—H4B109.5C11—C12—H12109.8
C2—C4—H4C109.5C13—C12—H12109.8
H4A—C4—H4C109.5C12—C13—S1115.8 (2)
H4B—C4—H4C109.5C12—C13—H13A108.3
O4—C5—O3127.7 (2)S1—C13—H13A108.3
O4—C5—N2125.6 (2)C12—C13—H13B108.3
O3—C5—N2106.7 (2)S1—C13—H13B108.3
C9—C6—H6A109.5H13A—C13—H13B107.4
C9—C6—H6B109.5S1—C14—H14A109.5
H6A—C6—H6B109.5S1—C14—H14B109.5
C9—C6—H6C109.5H14A—C14—H14B109.5
H6A—C6—H6C109.5S1—C14—H14C109.5
H6B—C6—H6C109.5H14A—C14—H14C109.5
C9—C7—H7A109.5H14B—C14—H14C109.5
C9—C7—H7B109.5C10—N1—N2120.5 (2)
H7A—C7—H7B109.5C10—N1—C11119.7 (2)
C9—C7—H7C109.5N2—N1—C11115.85 (19)
H7A—C7—H7C109.5C5—N2—N1119.2 (2)
H7B—C7—H7C109.5C5—N2—H2119.6
C9—C8—H8A109.5N1—N2—H2115.4
C9—C8—H8B109.5C10—O1—C9120.6 (2)
H8A—C8—H8B109.5C5—O3—C2122.31 (19)
C9—C8—H8C109.5C12—O5—H5109.5
H8A—C8—H8C109.5C14—S1—C13101.96 (19)
N1—C11—C12—O562.4 (3)C11—N1—N2—C592.7 (3)
N1—C11—C12—C13177.0 (2)O2—C10—O1—C99.8 (4)
O5—C12—C13—S171.2 (3)N1—C10—O1—C9171.7 (2)
C11—C12—C13—S1170.10 (19)C8—C9—O1—C1072.2 (3)
O2—C10—N1—N2171.3 (2)C7—C9—O1—C1052.4 (4)
O1—C10—N1—N210.2 (3)C6—C9—O1—C10170.5 (2)
O2—C10—N1—C1114.5 (4)O4—C5—O3—C27.7 (4)
O1—C10—N1—C11167.0 (2)N2—C5—O3—C2174.0 (2)
C12—C11—N1—C10141.4 (2)C1—C2—O3—C5179.9 (2)
C12—C11—N1—N260.8 (3)C4—C2—O3—C561.8 (3)
O4—C5—N2—N18.6 (4)C3—C2—O3—C562.3 (3)
O3—C5—N2—N1173.04 (19)C12—C13—S1—C1489.1 (3)
C10—N1—N2—C565.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O2i0.822.032.842 (3)168
N2—H2···O5i0.932.072.996 (3)172
Symmetry code: (i) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O2i0.822.032.842 (3)168.2
N2—H2···O5i0.932.072.996 (3)171.5
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

We are grateful for financial support from the National Natural Science Foundation of China (No. 81302644).

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationMendling, W., Poli, A. & Magnani, P. (2002). Arzneimittelforschung, 52, 725–729.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBudavari, S., O'Neil, M. J. & Smith, A. (1989). Merck Index, 11th ed., edited by S. Budavari, p. 6442. Rahway, New Jersey: Merck and Co. Inc.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds