organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl-N-{2-[(E)-3-oxo-3-phenyl­prop-1-en-1-yl]phen­yl}benzene­sulfonamide

aDepartment of Chemistry, Kyonggi University, 154-42, Gwanggyosan-ro, Yeongtong-gu, Suwon 443-760, Republic of Korea
*Correspondence e-mail: sgkim123@kyonggi.ac.kr

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 12 June 2014; accepted 30 June 2014; online 5 July 2014)

In the title compound, C22H19NO3S, the terminal phenyl and methyl­phenyl rings are twisted by 37.35 (12) and 49.08 (13)°, respectively, to the central benzene ring. In the crystal, mol­ecules are linked by classical N—H⋯O hydrogen bonds and weak C—H⋯O hydrogen bonds into a three-dimensional supra­molecular network.

Keywords: crystal structure.

Related literature

For applications of sulfonamides in the fields of chemistry, biology and pharmacology, see: Chohan et al. (2010[Chohan, Z. H., Moulay, H., Youssoufi, M. H., Jarrahpour, A. & Hadda, T. B. (2010). Eur. J. Med. Chem. 45, 1189-1199.]); El-Sayed et al. (2011[El-Sayed, N. S., El-Bendary, E. R., El-Ashry, S. M. & El-Kerdawy, M. M. (2011). Eur. J. Med. Chem. 46, 3714-3720.]); Seri et al. (2000[Seri, K., Sanai, K., Kurashima, K., Imamura, Y. & Akita, H. (2000). Eur. J. Pharmacol. 389, 253-256.]); Suparan et al. (2000[Suparan, C. T., Briganti, F., Tilli, S., Chegwidden, W. R. & Scozzafava, A. (2000). Bioorg. Med. Chem. 9, 703-714.]). For related structures, see: Murugavel et al. (2012[Murugavel, S., Manikandan, N., Kannan, D. & Bakthadoss, M. (2012). Acta Cryst. E68, o1009-o1010.]); Zhang et al. (2010[Zhang, G.-Y., Chen, D.-J., Guo, X.-Y., Wang, S.-H. & Chang, J.-G. (2010). Acta Cryst. E66, o346.]); Mughal et al. (2012[Mughal, S. Y., Khan, I. U., Harrison, W. T. A., Khan, M. H. & Tahir, M. N. (2012). Acta Cryst. E68, o3013.]).

[Scheme 1]

Experimental

Crystal data
  • C22H19NO3S

  • Mr = 377.44

  • Monoclinic, P 21 /n

  • a = 8.9356 (7) Å

  • b = 10.8873 (8) Å

  • c = 19.3122 (14) Å

  • β = 99.472 (2)°

  • V = 1853.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 200 K

  • 0.19 × 0.12 × 0.06 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.964, Tmax = 0.988

  • 13392 measured reflections

  • 4589 independent reflections

  • 2366 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.154

  • S = 1.01

  • 4589 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 2.24 2.839 (3) 125
C4—H4⋯O2i 0.95 2.51 3.272 (4) 137
C18—H18⋯O3ii 0.95 2.44 3.373 (3) 167
C22—H22B⋯O1iii 0.98 2.58 3.466 (4) 150
Symmetry codes: (i) [-x+{\script{5\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y+1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Structural commentary top

For related structures, see: Murugavel et al. (2012); Zhang et al. (2010). Sulfonamides, which are already known as sulfa drugs, are an important class of compounds in the field of chemistry, biology and pharmacology. Several sulfonamide derivatives are used as chemotherapeutic agents for their anti­bacterial, anti­fungal, anti­tumor and hypoglycemic (Chohan et al., 2010; El-Sayed et al., 2011; Seri et al., 2000). In addition, some sulfonamide derivatives have been shown to inhibit on carbonic anhydrases (Suparan et al., 2000). In view of these potential applications and in continuation of our work, the structure of the title compound has been carried out and the results are presented here.

X-ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The geometry around atoms S and N are distorted tetra­hedral and planar trigonal, respectively. The average S—O bond length is 1.427 (2) Å, while the S—N and S—C bond lengths are 1.638 (3) and 1.757 (3), respectively. The dihedral angle between the vinyl­phenyl ring (C1—C6) and the methyl­phenyl ring (C16—C21) is 49.08 (13)o, and the dihedral angle between the vinyl­phenyl ring (C1—C6) and keto­phenyl (C10—C15) ring is 37.35 (12)o. The sulfonamide torsion angle 1s 64.0 (2)o for C2—N1—S1—C16. The C==C double bond is in an E conformation and the vinyl­carbonyl groups adopt extended conformations.

Synthesis and crystallization top

A solution of 4 M Na2CO3 in water (10 mL) was added to a solution of 2-amino­benzyl alcohol (5.0 mmol) and p-toluene­sulfonyl chloride (5.5 mmol) in THF (10 mL). After stirring at room temperature for 24 h, the reaction mixture was poured into cold water and extracted with EtOAc. The resultant organic layer was washed with brine and dried over MgSO4. The resulting residue was purified by silica gel chromatography to afford 2-(toluensulfonyl­amino)­benzyl alcohol. Next, to solutionof 2-(toluensulfonyl­amino)­benzyl alcohol (3.0 mmol) in CH2Cl2 (10 mL) was added excess MnO2 (15 mmol). After stirring for at room temperature for 36 h, the reaction mixture was filtered under celite pad and purified by silica gel chromatography to afford 2-(toluensulfonyl­amino)­benzaldehyde. To a solution of phenacyl­tri­phenyl­phospho­nium bromide (1.1 mmol) in toluene (5 mL) was added NaH (1.2 mmol) at 273 K. After stirring at 273 K for 1 h, to the reactin mixture, 2-(toluensulfonyl­amino)­benzaldehyde (1.0 mmol) was added. After stirring at room temperature for 24 h, the reaction mixture was poured into water and extracted with EtOAc. The resultant organic layer was washed with brine and dried over MgSO4. Theresulting residue was purified by silica gel chromatography to afford the title compound. Crystals suitable for X-ray analysis were obtained by recryatallization from an n-hexane/CH2Cl2 solution.

Refinement top

All H atoms were positioned geometrically, (C—H = 0.95–0.96 Å) and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.2 for all other H atoms.

Related literature top

For applications of sulfonamides in the fields of chemistry, biology and pharmacology, see: Chohan et al. (2010); El-Sayed et al. (2011); Seri et al. (2000); Suparan et al. (2000). For related structures, see: Murugavel et al. (2012); Zhang et al. (2010); Mughal et al. (2012).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial view of the crystal packing of the title compound. Hydrogen atoms have been omitted for clarity.
4-Methyl-N-{2-[(E)-3-oxo-3-phenylprop-1-en-1-yl]phenyl}benzenesulfonamide top
Crystal data top
C22H19NO3SF(000) = 792
Mr = 377.44Dx = 1.353 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2689 reflections
a = 8.9356 (7) Åθ = 2.4–26.1°
b = 10.8873 (8) ŵ = 0.20 mm1
c = 19.3122 (14) ÅT = 200 K
β = 99.472 (2)°Rod, colorless
V = 1853.2 (2) Å30.19 × 0.12 × 0.06 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
4589 independent reflections
Radiation source: fine-focus sealed tube2366 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
phi and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1111
Tmin = 0.964, Tmax = 0.988k = 1413
13392 measured reflectionsl = 2524
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0583P)2]
where P = (Fo2 + 2Fc2)/3
4589 reflections(Δ/σ)max < 0.001
245 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C22H19NO3SV = 1853.2 (2) Å3
Mr = 377.44Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.9356 (7) ŵ = 0.20 mm1
b = 10.8873 (8) ÅT = 200 K
c = 19.3122 (14) Å0.19 × 0.12 × 0.06 mm
β = 99.472 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
4589 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2366 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.988Rint = 0.066
13392 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.01Δρmax = 0.46 e Å3
4589 reflectionsΔρmin = 0.43 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.1405 (3)0.4390 (2)0.37034 (13)0.0321 (6)
C21.1969 (3)0.5180 (3)0.32288 (13)0.0340 (6)
C31.2509 (3)0.6334 (3)0.34430 (14)0.0407 (7)
H31.28770.68610.31170.049*
C41.2520 (3)0.6731 (3)0.41228 (15)0.0459 (8)
H41.29120.75180.42670.055*
C51.1952 (3)0.5965 (3)0.45938 (15)0.0439 (8)
H51.19470.62330.50620.053*
C61.1398 (3)0.4822 (3)0.43849 (13)0.0372 (7)
H61.10010.43140.47110.045*
C71.0964 (3)0.3133 (2)0.35017 (13)0.0336 (6)
H71.12360.28530.30730.040*
C81.0229 (3)0.2331 (2)0.38424 (13)0.0335 (6)
H80.98560.25810.42530.040*
C90.9987 (3)0.1067 (2)0.35913 (14)0.0326 (6)
O11.0479 (2)0.07285 (18)0.30617 (10)0.0461 (5)
C100.9149 (3)0.0178 (2)0.39676 (13)0.0300 (6)
C110.8184 (3)0.0538 (3)0.44267 (13)0.0355 (7)
H110.80810.13860.45260.043*
C120.7373 (3)0.0321 (3)0.47403 (14)0.0426 (7)
H120.67110.00660.50500.051*
C130.7536 (4)0.1553 (3)0.45992 (14)0.0470 (8)
H130.69680.21460.48070.056*
C140.8511 (4)0.1927 (3)0.41609 (15)0.0493 (8)
H140.86320.27780.40760.059*
C150.9315 (3)0.1073 (3)0.38437 (14)0.0400 (7)
H150.99860.13370.35400.048*
N11.2050 (2)0.4787 (2)0.25294 (10)0.0350 (6)
H11.29270.45430.24270.042*
S11.05508 (8)0.47777 (7)0.19146 (4)0.0388 (2)
O21.1089 (2)0.43544 (17)0.13014 (9)0.0465 (5)
O30.9384 (2)0.41316 (19)0.21857 (10)0.0520 (6)
C160.9960 (3)0.6311 (3)0.17777 (13)0.0359 (7)
C170.8957 (3)0.6821 (3)0.21770 (14)0.0464 (8)
H170.86010.63460.25290.056*
C180.8480 (3)0.8018 (3)0.20592 (16)0.0533 (9)
H180.78020.83650.23360.064*
C190.8975 (3)0.8729 (3)0.15412 (16)0.0455 (8)
C200.9965 (3)0.8202 (3)0.11462 (15)0.0423 (7)
H201.03100.86720.07890.051*
C211.0464 (3)0.7003 (3)0.12619 (14)0.0360 (7)
H211.11500.66580.09880.043*
C220.8426 (4)1.0035 (3)0.14254 (18)0.0638 (10)
H22A0.87661.03680.10060.096*
H22B0.88401.05350.18340.096*
H22C0.73151.00510.13610.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0322 (15)0.0345 (16)0.0305 (14)0.0012 (12)0.0077 (12)0.0040 (12)
C20.0333 (16)0.0384 (17)0.0312 (14)0.0015 (13)0.0079 (12)0.0065 (13)
C30.0464 (18)0.0390 (18)0.0379 (16)0.0060 (14)0.0108 (14)0.0105 (14)
C40.054 (2)0.0364 (18)0.0481 (18)0.0060 (15)0.0094 (15)0.0004 (15)
C50.054 (2)0.0407 (18)0.0376 (16)0.0011 (15)0.0102 (14)0.0026 (14)
C60.0447 (18)0.0358 (16)0.0336 (15)0.0023 (14)0.0144 (13)0.0054 (13)
C70.0361 (16)0.0382 (17)0.0275 (14)0.0048 (13)0.0078 (12)0.0029 (12)
C80.0359 (16)0.0367 (16)0.0296 (14)0.0006 (12)0.0103 (12)0.0025 (12)
C90.0310 (15)0.0357 (16)0.0321 (14)0.0045 (12)0.0081 (12)0.0012 (13)
O10.0521 (13)0.0464 (13)0.0453 (12)0.0009 (10)0.0245 (10)0.0084 (10)
C100.0316 (15)0.0308 (15)0.0268 (13)0.0004 (12)0.0024 (11)0.0014 (12)
C110.0415 (17)0.0350 (17)0.0310 (14)0.0024 (13)0.0085 (13)0.0031 (12)
C120.0448 (18)0.050 (2)0.0348 (15)0.0050 (15)0.0106 (13)0.0025 (15)
C130.061 (2)0.044 (2)0.0353 (16)0.0149 (16)0.0037 (15)0.0074 (15)
C140.069 (2)0.0337 (18)0.0433 (18)0.0035 (16)0.0036 (16)0.0000 (14)
C150.0487 (19)0.0356 (17)0.0356 (15)0.0025 (14)0.0065 (14)0.0013 (13)
N10.0308 (13)0.0458 (14)0.0300 (11)0.0047 (11)0.0092 (10)0.0054 (11)
S10.0408 (4)0.0434 (5)0.0324 (4)0.0028 (3)0.0070 (3)0.0039 (3)
O20.0667 (15)0.0398 (12)0.0338 (10)0.0078 (10)0.0112 (10)0.0038 (9)
O30.0428 (13)0.0633 (15)0.0489 (12)0.0159 (11)0.0043 (10)0.0154 (11)
C160.0346 (16)0.0450 (18)0.0279 (14)0.0004 (13)0.0047 (12)0.0019 (13)
C170.0419 (18)0.069 (2)0.0302 (15)0.0050 (16)0.0111 (13)0.0014 (15)
C180.0402 (19)0.072 (3)0.0471 (19)0.0184 (17)0.0051 (15)0.0167 (18)
C190.0378 (18)0.050 (2)0.0449 (18)0.0093 (15)0.0058 (14)0.0130 (16)
C200.0419 (18)0.0417 (18)0.0423 (17)0.0013 (14)0.0039 (14)0.0037 (14)
C210.0328 (16)0.0405 (17)0.0355 (15)0.0025 (13)0.0078 (12)0.0018 (13)
C220.062 (2)0.056 (2)0.068 (2)0.0236 (18)0.0084 (18)0.0161 (19)
Geometric parameters (Å, º) top
C1—C61.399 (3)C13—C141.373 (4)
C1—C21.409 (3)C13—H130.9500
C1—C71.459 (4)C14—C151.379 (4)
C2—C31.384 (4)C14—H140.9500
C2—N11.430 (3)C15—H150.9500
C3—C41.380 (4)N1—S11.638 (2)
C3—H30.9500N1—H10.8800
C4—C51.390 (4)S1—O21.4259 (19)
C4—H40.9500S1—O31.427 (2)
C5—C61.375 (4)S1—C161.757 (3)
C5—H50.9500C16—C211.382 (4)
C6—H60.9500C16—C171.391 (4)
C7—C81.330 (3)C17—C181.379 (4)
C7—H70.9500C17—H170.9500
C8—C91.463 (4)C18—C191.393 (4)
C8—H80.9500C18—H180.9500
C9—O11.234 (3)C19—C201.384 (4)
C9—C101.484 (4)C19—C221.509 (4)
C10—C111.391 (4)C20—C211.386 (4)
C10—C151.395 (4)C20—H200.9500
C11—C121.383 (4)C21—H210.9500
C11—H110.9500C22—H22A0.9800
C12—C131.381 (4)C22—H22B0.9800
C12—H120.9500C22—H22C0.9800
C6—C1—C2117.7 (2)C13—C14—C15120.3 (3)
C6—C1—C7121.6 (2)C13—C14—H14119.9
C2—C1—C7120.6 (2)C15—C14—H14119.9
C3—C2—C1120.3 (2)C14—C15—C10120.3 (3)
C3—C2—N1119.0 (2)C14—C15—H15119.9
C1—C2—N1120.7 (2)C10—C15—H15119.9
C4—C3—C2121.1 (3)C2—N1—S1121.59 (18)
C4—C3—H3119.5C2—N1—H1119.2
C2—C3—H3119.5S1—N1—H1119.2
C3—C4—C5119.2 (3)O2—S1—O3120.81 (13)
C3—C4—H4120.4O2—S1—N1104.87 (12)
C5—C4—H4120.4O3—S1—N1107.27 (12)
C6—C5—C4120.2 (3)O2—S1—C16108.42 (12)
C6—C5—H5119.9O3—S1—C16107.69 (13)
C4—C5—H5119.9N1—S1—C16107.05 (12)
C5—C6—C1121.5 (3)C21—C16—C17119.9 (3)
C5—C6—H6119.2C21—C16—S1120.1 (2)
C1—C6—H6119.2C17—C16—S1120.1 (2)
C8—C7—C1128.1 (2)C18—C17—C16119.7 (3)
C8—C7—H7115.9C18—C17—H17120.1
C1—C7—H7115.9C16—C17—H17120.1
C7—C8—C9120.8 (2)C17—C18—C19121.2 (3)
C7—C8—H8119.6C17—C18—H18119.4
C9—C8—H8119.6C19—C18—H18119.4
O1—C9—C8120.1 (2)C20—C19—C18118.2 (3)
O1—C9—C10119.2 (2)C20—C19—C22122.0 (3)
C8—C9—C10120.6 (2)C18—C19—C22119.7 (3)
C11—C10—C15118.6 (2)C19—C20—C21121.3 (3)
C11—C10—C9123.0 (2)C19—C20—H20119.4
C15—C10—C9118.4 (2)C21—C20—H20119.4
C12—C11—C10120.9 (3)C16—C21—C20119.7 (3)
C12—C11—H11119.6C16—C21—H21120.1
C10—C11—H11119.6C20—C21—H21120.1
C13—C12—C11119.4 (3)C19—C22—H22A109.5
C13—C12—H12120.3C19—C22—H22B109.5
C11—C12—H12120.3H22A—C22—H22B109.5
C14—C13—C12120.5 (3)C19—C22—H22C109.5
C14—C13—H13119.8H22A—C22—H22C109.5
C12—C13—H13119.8H22B—C22—H22C109.5
C6—C1—C2—C30.8 (4)C13—C14—C15—C100.2 (4)
C7—C1—C2—C3174.3 (3)C11—C10—C15—C141.3 (4)
C6—C1—C2—N1178.2 (2)C9—C10—C15—C14177.4 (3)
C7—C1—C2—N13.1 (4)C3—C2—N1—S1103.3 (3)
C1—C2—C3—C40.6 (4)C1—C2—N1—S179.2 (3)
N1—C2—C3—C4176.9 (3)C2—N1—S1—O2179.0 (2)
C2—C3—C4—C51.2 (4)C2—N1—S1—O351.4 (2)
C3—C4—C5—C60.5 (5)C2—N1—S1—C1664.0 (2)
C4—C5—C6—C10.8 (5)O2—S1—C16—C2119.3 (3)
C2—C1—C6—C51.5 (4)O3—S1—C16—C21151.6 (2)
C7—C1—C6—C5173.6 (3)N1—S1—C16—C2193.3 (2)
C6—C1—C7—C815.1 (4)O2—S1—C16—C17159.2 (2)
C2—C1—C7—C8170.0 (3)O3—S1—C16—C1726.9 (3)
C1—C7—C8—C9174.9 (2)N1—S1—C16—C1788.2 (2)
C7—C8—C9—O10.7 (4)C21—C16—C17—C180.5 (4)
C7—C8—C9—C10179.2 (2)S1—C16—C17—C18179.0 (2)
O1—C9—C10—C11160.3 (2)C16—C17—C18—C190.6 (5)
C8—C9—C10—C1119.6 (4)C17—C18—C19—C200.2 (4)
O1—C9—C10—C1518.4 (4)C17—C18—C19—C22179.8 (3)
C8—C9—C10—C15161.7 (2)C18—C19—C20—C210.3 (4)
C15—C10—C11—C121.7 (4)C22—C19—C20—C21179.7 (3)
C9—C10—C11—C12177.0 (2)C17—C16—C21—C200.0 (4)
C10—C11—C12—C130.5 (4)S1—C16—C21—C20178.5 (2)
C11—C12—C13—C141.1 (4)C19—C20—C21—C160.4 (4)
C12—C13—C14—C151.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.882.242.839 (3)125
C4—H4···O2i0.952.513.272 (4)137
C18—H18···O3ii0.952.443.373 (3)167
C22—H22B···O1iii0.982.583.466 (4)150
Symmetry codes: (i) x+5/2, y+1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.882.242.839 (3)125
C4—H4···O2i0.952.513.272 (4)137
C18—H18···O3ii0.952.443.373 (3)167
C22—H22B···O1iii0.982.583.466 (4)150
Symmetry codes: (i) x+5/2, y+1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x, y+1, z.
 

Acknowledgements

This work was supported by Kyonggi University Research Grant 2014.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChohan, Z. H., Moulay, H., Youssoufi, M. H., Jarrahpour, A. & Hadda, T. B. (2010). Eur. J. Med. Chem. 45, 1189–1199.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEl-Sayed, N. S., El-Bendary, E. R., El-Ashry, S. M. & El-Kerdawy, M. M. (2011). Eur. J. Med. Chem. 46, 3714–3720.  Web of Science CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMughal, S. Y., Khan, I. U., Harrison, W. T. A., Khan, M. H. & Tahir, M. N. (2012). Acta Cryst. E68, o3013.  CSD CrossRef IUCr Journals Google Scholar
First citationMurugavel, S., Manikandan, N., Kannan, D. & Bakthadoss, M. (2012). Acta Cryst. E68, o1009–o1010.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSeri, K., Sanai, K., Kurashima, K., Imamura, Y. & Akita, H. (2000). Eur. J. Pharmacol. 389, 253–256.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuparan, C. T., Briganti, F., Tilli, S., Chegwidden, W. R. & Scozzafava, A. (2000). Bioorg. Med. Chem. 9, 703–714.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, G.-Y., Chen, D.-J., Guo, X.-Y., Wang, S.-H. & Chang, J.-G. (2010). Acta Cryst. E66, o346.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds