organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 4-amino-2-chloro­pyrimidine-5-carboxyl­ate

aDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Nanjing 210048, People's Republic of China
*Correspondence e-mail: adsony05@163.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 12 June 2014; accepted 10 July 2014; online 17 July 2014)

In the title compound, C6H6ClN3O2, all non-H atoms are approximately coplanar [maximum deviation = 0.012 (4) Å]; an intra­molecular N—H⋯O hydrogen bond occurs between the amino group and the carbonyl group. In the crystal, mol­ecules are linked by N—H⋯N hydrogen bonds into supra­molecular chains propagated along [101].

Keywords: crystal structure.

Related literature

For related structures, see: He & Kang (2006[He, L. & Kang, T.-R. (2006). Acta Cryst. E62, o5068-o5069.]); He et al. (2007[He, W., Sun, H.-S., Xu, Y., Tang, S. & Guo, C. (2007). Acta Cryst. E63, o4157.]). For the synthesis, see: Ballard & Johnson (1942[Ballard, E. & Johnson, T. (1942). J. Am. Chem. Soc. 64, 794-798.]).

[Scheme 1]

Experimental

Crystal data
  • C6H6ClN3O2

  • Mr = 187.59

  • Monoclinic, P c

  • a = 3.9110 (8) Å

  • b = 10.136 (2) Å

  • c = 9.848 (2) Å

  • β = 98.71 (3)°

  • V = 385.89 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.15 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 1474 measured reflections

  • 817 independent reflections

  • 673 reflections with I > 2σ(I)

  • Rint = 0.041

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.109

  • S = 1.01

  • 817 reflections

  • 109 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.36 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 106 Friedel pairs

  • Absolute structure parameter: 0.07 (17)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N2i 0.86 2.10 2.955 (7) 171
N3—H3B⋯O2 0.86 2.11 2.745 (7) 130
Symmetry code: (i) [x+1, -y, z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enra-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound,(I), is an intermediate for preparation of tuberculosis. We herein report its crystal structure.

The molecular structure of (I) is shown in Fig. 1. The bond lengths and angles are within normal ranges (He & Kang, 2006; He et al., 2007). The pyrimidine ring is almost planar.

In the crystal, molecules are linked each other to form chains framework via intermolecular N—H···N hydrogen bonds, which with intramolecular N—H···O hydrogen bonds may be effective in the stabilization of the crystal structure.

Related literature top

For related structures, see: He & Kang (2006); He et al. (2007). For the synthesis, see: Ballard & Johnson (1942).

Experimental top

The title compound was synthesized according to the reported procedure (Ballard & Johnson, 1942). Crystals suitable for X-ray analysis were obtained by dissolving it (0.5 g) in dichloromethane (50 ml) and evaporating the solvent slowly at room temperature for about 5 d.

Refinement top

H atoms were positioned geometrically with N—H = 0.86 and C—H = 0.93–0.96 Å, and refined in riding mode, Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C,N) for the others.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I).
Methyl 4-amino-2-chloropyrimidine-5-carboxylate top
Crystal data top
C6H6ClN3O2F(000) = 192
Mr = 187.59Dx = 1.614 Mg m3
Monoclinic, PcMelting point: 433 K
Hall symbol: p -2ycMo Kα radiation, λ = 0.71073 Å
a = 3.9110 (8) ÅCell parameters from 25 reflections
b = 10.136 (2) Åθ = 9–13°
c = 9.848 (2) ŵ = 0.45 mm1
β = 98.71 (3)°T = 293 K
V = 385.89 (13) Å3Block, colorless
Z = 20.20 × 0.20 × 0.15 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.041
Radiation source: fine-focus sealed tubeθmax = 25.4°, θmin = 2.0°
Graphite monochromatorh = 04
ω/2θ scansk = 1212
1474 measured reflectionsl = 1111
817 independent reflections3 standard reflections every 200 reflections
673 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.065P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
817 reflectionsΔρmax = 0.25 e Å3
109 parametersΔρmin = 0.36 e Å3
2 restraintsAbsolute structure: Flack (1983), 106 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (17)
Crystal data top
C6H6ClN3O2V = 385.89 (13) Å3
Mr = 187.59Z = 2
Monoclinic, PcMo Kα radiation
a = 3.9110 (8) ŵ = 0.45 mm1
b = 10.136 (2) ÅT = 293 K
c = 9.848 (2) Å0.20 × 0.20 × 0.15 mm
β = 98.71 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.041
1474 measured reflections3 standard reflections every 200 reflections
817 independent reflections intensity decay: 1%
673 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.109Δρmax = 0.25 e Å3
S = 1.01Δρmin = 0.36 e Å3
817 reflectionsAbsolute structure: Flack (1983), 106 Friedel pairs
109 parametersAbsolute structure parameter: 0.07 (17)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl1.0210 (5)0.25325 (18)0.5060 (2)0.0602 (4)
O10.6389 (12)0.3421 (3)0.3059 (4)0.0559 (11)
C11.1205 (14)0.1186 (6)0.5586 (5)0.0363 (14)
N11.1550 (12)0.0104 (6)0.5759 (4)0.0411 (11)
O20.9976 (15)0.3988 (3)0.4968 (5)0.0597 (12)
C20.9749 (16)0.0851 (5)0.4819 (5)0.0399 (13)
N20.7645 (13)0.0485 (4)0.3675 (5)0.0423 (12)
N31.3017 (15)0.1949 (5)0.6544 (5)0.0480 (12)
H3A1.43220.15940.72290.058*
H3B1.28780.27930.64760.058*
C30.7362 (14)0.0804 (4)0.3525 (5)0.0381 (13)
H3C0.59230.11180.27540.046*
C40.9020 (14)0.1715 (5)0.4414 (5)0.0339 (12)
C50.8591 (15)0.3139 (6)0.4214 (6)0.0409 (13)
C60.576 (2)0.4789 (6)0.2751 (8)0.0626 (18)
H6A0.41740.48710.19110.094*
H6B0.79040.52150.26500.094*
H6C0.47950.51990.34850.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0703 (9)0.0469 (7)0.0553 (8)0.0003 (8)0.0160 (6)0.0032 (7)
O10.067 (3)0.051 (2)0.040 (2)0.008 (2)0.023 (2)0.000 (2)
C10.031 (3)0.046 (3)0.029 (3)0.002 (3)0.006 (2)0.003 (2)
N10.041 (3)0.052 (3)0.026 (2)0.002 (2)0.008 (2)0.000 (2)
O20.070 (3)0.046 (2)0.053 (2)0.008 (3)0.023 (2)0.007 (2)
C20.039 (3)0.050 (3)0.030 (3)0.003 (3)0.002 (3)0.003 (2)
N20.041 (3)0.051 (3)0.031 (2)0.003 (2)0.008 (2)0.003 (2)
N30.057 (3)0.049 (2)0.031 (2)0.004 (3)0.016 (2)0.004 (2)
C30.039 (3)0.046 (3)0.026 (3)0.001 (3)0.006 (2)0.003 (3)
C40.032 (3)0.040 (3)0.028 (3)0.006 (2)0.003 (2)0.006 (2)
C50.040 (3)0.048 (3)0.032 (3)0.004 (3)0.005 (2)0.004 (2)
C60.060 (4)0.051 (3)0.067 (4)0.008 (3)0.023 (3)0.012 (3)
Geometric parameters (Å, º) top
Cl—C21.726 (5)N2—C31.318 (6)
O1—C51.350 (7)N3—H3A0.8600
O1—C61.433 (7)N3—H3B0.8600
C1—N11.324 (8)C3—C41.367 (7)
C1—N31.337 (7)C3—H3C0.9300
C1—C41.432 (7)C4—C51.464 (7)
N1—C21.315 (7)C6—H6A0.9600
O2—C51.210 (7)C6—H6B0.9600
C2—N21.343 (8)C6—H6C0.9600
C5—O1—C6116.7 (5)C4—C3—H3C117.5
N1—C1—N3116.6 (5)C3—C4—C1115.5 (4)
N1—C1—C4120.7 (5)C3—C4—C5123.1 (4)
N3—C1—C4122.7 (5)C1—C4—C5121.3 (4)
C2—N1—C1116.4 (5)O2—C5—O1122.4 (5)
N1—C2—N2128.8 (5)O2—C5—C4126.0 (5)
N1—C2—Cl116.0 (4)O1—C5—C4111.6 (4)
N2—C2—Cl115.2 (4)O1—C6—H6A109.5
C3—N2—C2113.5 (5)O1—C6—H6B109.5
C1—N3—H3A120.0H6A—C6—H6B109.5
C1—N3—H3B120.0O1—C6—H6C109.5
H3A—N3—H3B120.0H6A—C6—H6C109.5
N2—C3—C4125.0 (5)H6B—C6—H6C109.5
N2—C3—H3C117.5
N3—C1—N1—C2179.6 (6)N3—C1—C4—C3179.6 (6)
C4—C1—N1—C21.1 (9)N1—C1—C4—C5179.5 (5)
C1—N1—C2—N21.9 (10)N3—C1—C4—C51.3 (8)
C1—N1—C2—Cl179.8 (4)C6—O1—C5—O20.4 (10)
N1—C2—N2—C31.5 (10)C6—O1—C5—C4179.9 (6)
Cl—C2—N2—C3179.9 (5)C3—C4—C5—O2179.7 (7)
C2—N2—C3—C40.5 (8)C1—C4—C5—O20.6 (9)
N2—C3—C4—C10.0 (8)C3—C4—C5—O10.0 (8)
N2—C3—C4—C5179.2 (6)C1—C4—C5—O1179.1 (6)
N1—C1—C4—C30.4 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N2i0.862.102.955 (7)171
N3—H3B···O20.862.112.745 (7)130
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N2i0.862.102.955 (7)171
N3—H3B···O20.862.112.745 (7)130
Symmetry code: (i) x+1, y, z+1/2.
 

Acknowledgements

Diffraction data were collected at the Center of Testing and Analysis, Nanjing University, China.

References

First citationBallard, E. & Johnson, T. (1942). J. Am. Chem. Soc. 64, 794–798.  CrossRef CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enra–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHe, L. & Kang, T.-R. (2006). Acta Cryst. E62, o5068–o5069.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHe, W., Sun, H.-S., Xu, Y., Tang, S. & Guo, C. (2007). Acta Cryst. E63, o4157.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds