organic compounds
Methyl 4-amino-2-chloropyrimidine-5-carboxylate
aDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Nanjing 210048, People's Republic of China
*Correspondence e-mail: adsony05@163.com
In the title compound, C6H6ClN3O2, all non-H atoms are approximately coplanar [maximum deviation = 0.012 (4) Å]; an intramolecular N—H⋯O hydrogen bond occurs between the amino group and the carbonyl group. In the crystal, molecules are linked by N—H⋯N hydrogen bonds into supramolecular chains propagated along [101].
Keywords: crystal structure.
CCDC reference: 1013300
Related literature
For related structures, see: He & Kang (2006); He et al. (2007). For the synthesis, see: Ballard & Johnson (1942).
Experimental
Crystal data
|
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
CCDC reference: 1013300
10.1107/S1600536814016080/xu5799sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814016080/xu5799Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814016080/xu5799Isup3.cml
The title compound was synthesized according to the reported procedure (Ballard & Johnson, 1942). Crystals suitable for X-ray analysis were obtained by dissolving it (0.5 g) in dichloromethane (50 ml) and evaporating the solvent slowly at room temperature for about 5 d.
H atoms were positioned geometrically with N—H = 0.86 and C—H = 0.93–0.96 Å, and refined in riding mode, Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C,N) for the others.
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. A packing diagram of (I). |
C6H6ClN3O2 | F(000) = 192 |
Mr = 187.59 | Dx = 1.614 Mg m−3 |
Monoclinic, Pc | Melting point: 433 K |
Hall symbol: p -2yc | Mo Kα radiation, λ = 0.71073 Å |
a = 3.9110 (8) Å | Cell parameters from 25 reflections |
b = 10.136 (2) Å | θ = 9–13° |
c = 9.848 (2) Å | µ = 0.45 mm−1 |
β = 98.71 (3)° | T = 293 K |
V = 385.89 (13) Å3 | Block, colorless |
Z = 2 | 0.20 × 0.20 × 0.15 mm |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.041 |
Radiation source: fine-focus sealed tube | θmax = 25.4°, θmin = 2.0° |
Graphite monochromator | h = 0→4 |
ω/2θ scans | k = −12→12 |
1474 measured reflections | l = −11→11 |
817 independent reflections | 3 standard reflections every 200 reflections |
673 reflections with I > 2σ(I) | intensity decay: 1% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.046 | H-atom parameters constrained |
wR(F2) = 0.109 | w = 1/[σ2(Fo2) + (0.065P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max < 0.001 |
817 reflections | Δρmax = 0.25 e Å−3 |
109 parameters | Δρmin = −0.36 e Å−3 |
2 restraints | Absolute structure: Flack (1983), 106 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.07 (17) |
C6H6ClN3O2 | V = 385.89 (13) Å3 |
Mr = 187.59 | Z = 2 |
Monoclinic, Pc | Mo Kα radiation |
a = 3.9110 (8) Å | µ = 0.45 mm−1 |
b = 10.136 (2) Å | T = 293 K |
c = 9.848 (2) Å | 0.20 × 0.20 × 0.15 mm |
β = 98.71 (3)° |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.041 |
1474 measured reflections | 3 standard reflections every 200 reflections |
817 independent reflections | intensity decay: 1% |
673 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.046 | H-atom parameters constrained |
wR(F2) = 0.109 | Δρmax = 0.25 e Å−3 |
S = 1.01 | Δρmin = −0.36 e Å−3 |
817 reflections | Absolute structure: Flack (1983), 106 Friedel pairs |
109 parameters | Absolute structure parameter: 0.07 (17) |
2 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl | 1.0210 (5) | −0.25325 (18) | 0.5060 (2) | 0.0602 (4) | |
O1 | 0.6389 (12) | 0.3421 (3) | 0.3059 (4) | 0.0559 (11) | |
C1 | 1.1205 (14) | 0.1186 (6) | 0.5586 (5) | 0.0363 (14) | |
N1 | 1.1550 (12) | −0.0104 (6) | 0.5759 (4) | 0.0411 (11) | |
O2 | 0.9976 (15) | 0.3988 (3) | 0.4968 (5) | 0.0597 (12) | |
C2 | 0.9749 (16) | −0.0851 (5) | 0.4819 (5) | 0.0399 (13) | |
N2 | 0.7645 (13) | −0.0485 (4) | 0.3675 (5) | 0.0423 (12) | |
N3 | 1.3017 (15) | 0.1949 (5) | 0.6544 (5) | 0.0480 (12) | |
H3A | 1.4322 | 0.1594 | 0.7229 | 0.058* | |
H3B | 1.2878 | 0.2793 | 0.6476 | 0.058* | |
C3 | 0.7362 (14) | 0.0804 (4) | 0.3525 (5) | 0.0381 (13) | |
H3C | 0.5923 | 0.1118 | 0.2754 | 0.046* | |
C4 | 0.9020 (14) | 0.1715 (5) | 0.4414 (5) | 0.0339 (12) | |
C5 | 0.8591 (15) | 0.3139 (6) | 0.4214 (6) | 0.0409 (13) | |
C6 | 0.576 (2) | 0.4789 (6) | 0.2751 (8) | 0.0626 (18) | |
H6A | 0.4174 | 0.4871 | 0.1911 | 0.094* | |
H6B | 0.7904 | 0.5215 | 0.2650 | 0.094* | |
H6C | 0.4795 | 0.5199 | 0.3485 | 0.094* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl | 0.0703 (9) | 0.0469 (7) | 0.0553 (8) | −0.0003 (8) | −0.0160 (6) | 0.0032 (7) |
O1 | 0.067 (3) | 0.051 (2) | 0.040 (2) | 0.008 (2) | −0.023 (2) | 0.000 (2) |
C1 | 0.031 (3) | 0.046 (3) | 0.029 (3) | −0.002 (3) | −0.006 (2) | −0.003 (2) |
N1 | 0.041 (3) | 0.052 (3) | 0.026 (2) | 0.002 (2) | −0.008 (2) | 0.000 (2) |
O2 | 0.070 (3) | 0.046 (2) | 0.053 (2) | −0.008 (3) | −0.023 (2) | −0.007 (2) |
C2 | 0.039 (3) | 0.050 (3) | 0.030 (3) | 0.003 (3) | 0.002 (3) | −0.003 (2) |
N2 | 0.041 (3) | 0.051 (3) | 0.031 (2) | −0.003 (2) | −0.008 (2) | −0.003 (2) |
N3 | 0.057 (3) | 0.049 (2) | 0.031 (2) | −0.004 (3) | −0.016 (2) | −0.004 (2) |
C3 | 0.039 (3) | 0.046 (3) | 0.026 (3) | 0.001 (3) | −0.006 (2) | −0.003 (3) |
C4 | 0.032 (3) | 0.040 (3) | 0.028 (3) | 0.006 (2) | −0.003 (2) | 0.006 (2) |
C5 | 0.040 (3) | 0.048 (3) | 0.032 (3) | 0.004 (3) | −0.005 (2) | 0.004 (2) |
C6 | 0.060 (4) | 0.051 (3) | 0.067 (4) | 0.008 (3) | −0.023 (3) | 0.012 (3) |
Cl—C2 | 1.726 (5) | N2—C3 | 1.318 (6) |
O1—C5 | 1.350 (7) | N3—H3A | 0.8600 |
O1—C6 | 1.433 (7) | N3—H3B | 0.8600 |
C1—N1 | 1.324 (8) | C3—C4 | 1.367 (7) |
C1—N3 | 1.337 (7) | C3—H3C | 0.9300 |
C1—C4 | 1.432 (7) | C4—C5 | 1.464 (7) |
N1—C2 | 1.315 (7) | C6—H6A | 0.9600 |
O2—C5 | 1.210 (7) | C6—H6B | 0.9600 |
C2—N2 | 1.343 (8) | C6—H6C | 0.9600 |
C5—O1—C6 | 116.7 (5) | C4—C3—H3C | 117.5 |
N1—C1—N3 | 116.6 (5) | C3—C4—C1 | 115.5 (4) |
N1—C1—C4 | 120.7 (5) | C3—C4—C5 | 123.1 (4) |
N3—C1—C4 | 122.7 (5) | C1—C4—C5 | 121.3 (4) |
C2—N1—C1 | 116.4 (5) | O2—C5—O1 | 122.4 (5) |
N1—C2—N2 | 128.8 (5) | O2—C5—C4 | 126.0 (5) |
N1—C2—Cl | 116.0 (4) | O1—C5—C4 | 111.6 (4) |
N2—C2—Cl | 115.2 (4) | O1—C6—H6A | 109.5 |
C3—N2—C2 | 113.5 (5) | O1—C6—H6B | 109.5 |
C1—N3—H3A | 120.0 | H6A—C6—H6B | 109.5 |
C1—N3—H3B | 120.0 | O1—C6—H6C | 109.5 |
H3A—N3—H3B | 120.0 | H6A—C6—H6C | 109.5 |
N2—C3—C4 | 125.0 (5) | H6B—C6—H6C | 109.5 |
N2—C3—H3C | 117.5 | ||
N3—C1—N1—C2 | 179.6 (6) | N3—C1—C4—C3 | 179.6 (6) |
C4—C1—N1—C2 | −1.1 (9) | N1—C1—C4—C5 | 179.5 (5) |
C1—N1—C2—N2 | 1.9 (10) | N3—C1—C4—C5 | −1.3 (8) |
C1—N1—C2—Cl | −179.8 (4) | C6—O1—C5—O2 | 0.4 (10) |
N1—C2—N2—C3 | −1.5 (10) | C6—O1—C5—C4 | −179.9 (6) |
Cl—C2—N2—C3 | −179.9 (5) | C3—C4—C5—O2 | 179.7 (7) |
C2—N2—C3—C4 | 0.5 (8) | C1—C4—C5—O2 | 0.6 (9) |
N2—C3—C4—C1 | 0.0 (8) | C3—C4—C5—O1 | 0.0 (8) |
N2—C3—C4—C5 | −179.2 (6) | C1—C4—C5—O1 | −179.1 (6) |
N1—C1—C4—C3 | 0.4 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···N2i | 0.86 | 2.10 | 2.955 (7) | 171 |
N3—H3B···O2 | 0.86 | 2.11 | 2.745 (7) | 130 |
Symmetry code: (i) x+1, −y, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···N2i | 0.86 | 2.10 | 2.955 (7) | 171 |
N3—H3B···O2 | 0.86 | 2.11 | 2.745 (7) | 130 |
Symmetry code: (i) x+1, −y, z+1/2. |
Acknowledgements
Diffraction data were collected at the Center of Testing and Analysis, Nanjing University, China.
References
Ballard, E. & Johnson, T. (1942). J. Am. Chem. Soc. 64, 794–798. CrossRef CAS Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enra–Nonius, Delft, The Netherlands. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
He, L. & Kang, T.-R. (2006). Acta Cryst. E62, o5068–o5069. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
He, W., Sun, H.-S., Xu, Y., Tang, S. & Guo, C. (2007). Acta Cryst. E63, o4157. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound,(I), is an intermediate for preparation of tuberculosis. We herein report its crystal structure.
The molecular structure of (I) is shown in Fig. 1. The bond lengths and angles are within normal ranges (He & Kang, 2006; He et al., 2007). The pyrimidine ring is almost planar.
In the crystal, molecules are linked each other to form chains framework via intermolecular N—H···N hydrogen bonds, which with intramolecular N—H···O hydrogen bonds may be effective in the stabilization of the crystal structure.