organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-methyl­sulfanyl-2-phenyl­quinazoline

aChemistry Department, College of Sciences and Humanities, Salman bin Abdulaziz University, PO Box 83, Al-Kharij 11942, Saudi Arabia, bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK, and cCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia
*Correspondence e-mail: gelhiti@ksu.edu.sa

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 2 July 2014; accepted 4 July 2014; online 23 July 2014)

In the title compound, C15H12N2S, the methylthioquinazoline group is planar with the methyl C displaced by only 0.116 (3) Å from the plane of the quinazoline moiety. The dihedral angle between the phenyl ring and the quinazoline ring system is 13.95 (5)°. In the crystal, each molecule is linked by ππ stacking between to two adjacent inversion-related molecules. On one side, the inverted quinazoline groups interact with a centroid–centroid distance of 3.7105 (9) Å. On the other side, the quinazoline group interacts with the pyrimidine and phenyl rings of the second neighbour with centroid–centroid distances of 3.5287 (8) and 3.8601 (9) Å, respectively.

Related literature

For the synthesis of 4-alkythio­qinazolines, see: Leonard & Curtin (1946[Leonard, N. J. & Curtin, D. Y. (1946). J. Org. Chem. 11, 349-352.]); Hearn et al. (1951[Hearn, J. M., Morton, R. A. & Simpson, J. C. E. (1951). J. Chem. Soc. pp. 3318-3329.]); Meerwein et al. (1956[Meerwein, H., Laasch, P., Mersch, R. & Nentwig, J. (1956). Chem. Ber. 89, 224-238.]); Blatter & Lukaszewski (1964[Blatter, H. M. & Lukaszewski, H. (1964). Tetrahedron Lett. pp. 855-861.]); Segarra et al. (1998[Segarra, V., Crespo, M. I., Pujol, F., Beleta, J., Domenech, T., Miralpeix, M., Palacios, J. M., Castro, A. & Martinez, A. (1998). Bioorg. Med. Chem. Lett. 8, 505-510.]); Smith et al. (2005a[Smith, K., El-Hiti, G. A. & Hegazy, A. S. (2005a). J. Sulfur Chem. 26, 121-131.],b[Smith, K., El-Hiti, G. A. & Hegazy, A. S. (2005b). Synthesis, pp. 2951-2961.]).

[Scheme 1]

Experimental

Crystal data

  • C15H12N2S

  • Mr = 252.33

  • Monoclinic, P 21 /n

  • a = 10.1951 (3) Å

  • b = 7.3545 (2) Å

  • c = 16.5300 (5) Å

  • β = 102.860 (3)°

  • V = 1208.33 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 150 K

  • 0.23 × 0.18 × 0.15 mm

Data collection

  • Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.848, Tmax = 1.000

  • 11140 measured reflections

  • 3025 independent reflections

  • 2558 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement

  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.097

  • S = 1.08

  • 3025 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Structural commentary top

In the 4-(methyl­thio)-2-phenyl­quinazoline molecule (Fig 1), the angle between the planes through the phenyl and phenyl­quinazoline ring systems is 13.95 (5)°. The molecules are stacked in the [010] direction with approximately parallel molecular planes. With no strong H-bond donors, one N atom accepts a long C—H···N contact linking molecules along [101]. The second N atom is not involved. 4-Methyl­thio­quinazoline derivatives can be obtained from reaction of the potassium salt of 3H-quinazoline-4-thio­nes with iodo­methane (Leonard & Curtin, 1946; Meerwein et al., 1956). Quinazoline-4-thio­nes are produced from the corresponding 3H-quinazoline-4-ones using phospho­rus penta­sulfide (Hearn, et al., 1951), Lawesson's reagent (Segarra et al., 1998) or iso­thio­cyanates (Blatter & Lukaszewski, 1964). In a continuation of our research focused on new synthetic routes towards novel substituted 4-alkyl­thio­quinazoline derivatives (Smith et al., 2005a,b) we have synthesized 4-(methyl­thio)-2-phenyl­quinazoline in a high yield (Smith et al., 2005a).

Synthesis and crystallization top

To a solution of 2-phenyl-3H-quinazoline-4-thione (4.81 g, 20.2 mmol) in a 1:1 mixture of MeOH and water (50 ml) containing KOH (3.0 g), was added iodo­methane (3.41 g, 24.0 mmol). The reaction mixture was stirred for 20 min at room temperature and the solid obtained was filtered, washed with H2O (3 × 30 ml), dried and recrystallized from Et2O to give 4-(methyl­thio)-2-phenyl­quinazoline (4.63 g, 18.3 mmol, 91%) as colourless crystals, m.p. 93-94 °C [lit. 94 °C (H2O); Meerwein et al., 1956). 1H NMR (400 MHz, CDCl3, δ, p.p.m.) 8.70-8.66 (m, 2 H, ArH), 8.10-8.03 (m, 2 H, ArH), 7.83 (app. dt, J = 1, 8 Hz, 1 H, H-7), 7.58-7.51 (m, 4 H, ArH), 2.85 (s, 3 H, CH3). 13C NMR (100 MHz, CDCl3, d, p.p.m.) 171.8 (s, C-2), 159.2 (s, C-4), 149.1 (s, C-8a), 138.5 (s, C-1 of Ph), 133.9 (d, C-7), 131.0 (d, C-4 of Ph), 129.4 (d, C-8), 129.0 (d, C-3/C-5 of Ph), 128.9 (d, C-2/C-6 of Ph), 127.1 (d, C-6), 124.1 (d, C-5), 123.0 (s, C-4a), 13.0 (q, CH3). EI—MS (m/z, %): 252 (M+, 100), 251 (72), 205 (60), 102 (47), 77 (61), 51 (33). CI—MS (m/z, %): 253 (MH+, 100), 207 (3). HRMS (CI): Calculated for C15H13N2S [MH] 253.0794; found, 253.0789.

Refinement top

H atoms were placed in calculated positions with C—H = 0.95 and 0.98 Å and refined in riding mode, Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for aromatic H atoms.

Related literature top

For the synthesis of 4-alkythioqinazolines, see: Leonard & Curtin (1946); Hearn et al. (1951); Meerwein et al. (1956); Blatter & Lukaszewski (1964); Segarra et al. (1998); Smith et al. (2005a,b).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A molecule showing atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Packing diagram.
4-Methylsulfanyl-2-phenylquinazoline top
Crystal data top
C15H12N2SF(000) = 528
Mr = 252.33Dx = 1.387 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.1951 (3) ÅCell parameters from 2558 reflections
b = 7.3545 (2) Åθ = 3.1–29.7°
c = 16.5300 (5) ŵ = 0.25 mm1
β = 102.860 (3)°T = 150 K
V = 1208.33 (6) Å3Block, colourless
Z = 40.23 × 0.18 × 0.15 mm
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
3025 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2558 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.030
ω scansθmax = 29.7°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
h = 1312
Tmin = 0.848, Tmax = 1.000k = 910
11140 measured reflectionsl = 1722
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0323P)2 + 0.6772P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3025 reflectionsΔρmax = 0.29 e Å3
164 parametersΔρmin = 0.34 e Å3
Crystal data top
C15H12N2SV = 1208.33 (6) Å3
Mr = 252.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.1951 (3) ŵ = 0.25 mm1
b = 7.3545 (2) ÅT = 150 K
c = 16.5300 (5) Å0.23 × 0.18 × 0.15 mm
β = 102.860 (3)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
3025 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
2558 reflections with I > 2σ(I)
Tmin = 0.848, Tmax = 1.000Rint = 0.030
11140 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.08Δρmax = 0.29 e Å3
3025 reflectionsΔρmin = 0.34 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.09137 (15)0.6738 (2)0.06125 (9)0.0182 (3)
C20.06916 (15)0.7676 (2)0.06700 (9)0.0189 (3)
C30.07074 (14)0.8041 (2)0.03446 (9)0.0183 (3)
C40.11800 (15)0.7663 (2)0.05066 (9)0.0196 (3)
C50.16032 (16)0.8695 (2)0.08196 (10)0.0229 (3)
H50.12850.89500.13930.027*
C60.29284 (16)0.8957 (2)0.04503 (10)0.0257 (3)
H60.35310.93910.07700.031*
C70.34049 (16)0.8591 (2)0.03973 (11)0.0266 (4)
H70.43280.87830.06460.032*
C80.25564 (15)0.7960 (2)0.08710 (10)0.0246 (3)
H80.28920.77230.14450.030*
C90.18424 (15)0.5989 (2)0.11089 (9)0.0188 (3)
C100.13360 (15)0.5219 (2)0.18889 (9)0.0213 (3)
H100.03940.52220.21160.026*
C110.22001 (16)0.4449 (2)0.23338 (9)0.0237 (3)
H110.18460.39130.28600.028*
C120.35767 (16)0.4460 (2)0.20139 (10)0.0253 (3)
H120.41660.39390.23210.030*
C130.40914 (16)0.5234 (2)0.12434 (10)0.0250 (3)
H130.50360.52490.10250.030*
C140.32309 (15)0.5986 (2)0.07900 (9)0.0225 (3)
H140.35890.65020.02600.027*
C150.30675 (16)0.7320 (3)0.18247 (10)0.0289 (4)
H15A0.30700.60360.16660.043*
H15B0.35640.74640.24010.043*
H15C0.34980.80480.14600.043*
N10.14809 (12)0.70406 (17)0.02073 (8)0.0191 (3)
N20.03494 (12)0.70111 (17)0.09896 (8)0.0200 (3)
S10.13627 (4)0.80726 (6)0.17278 (2)0.02388 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0219 (7)0.0154 (7)0.0174 (7)0.0014 (5)0.0049 (6)0.0015 (6)
C20.0237 (7)0.0172 (7)0.0156 (7)0.0014 (6)0.0042 (6)0.0017 (6)
C30.0216 (7)0.0147 (7)0.0191 (7)0.0010 (5)0.0058 (6)0.0020 (6)
C40.0218 (7)0.0173 (7)0.0202 (7)0.0011 (6)0.0055 (6)0.0014 (6)
C50.0282 (8)0.0212 (8)0.0208 (8)0.0013 (6)0.0088 (6)0.0005 (6)
C60.0254 (8)0.0229 (8)0.0316 (9)0.0035 (6)0.0126 (7)0.0004 (7)
C70.0195 (7)0.0261 (8)0.0335 (9)0.0018 (6)0.0043 (6)0.0005 (7)
C80.0222 (8)0.0274 (9)0.0231 (8)0.0008 (6)0.0024 (6)0.0016 (7)
C90.0232 (7)0.0161 (7)0.0176 (7)0.0008 (6)0.0059 (6)0.0026 (6)
C100.0229 (7)0.0216 (8)0.0195 (7)0.0004 (6)0.0048 (6)0.0022 (6)
C110.0318 (8)0.0225 (8)0.0174 (7)0.0004 (6)0.0067 (6)0.0011 (6)
C120.0300 (8)0.0234 (8)0.0256 (8)0.0037 (6)0.0131 (7)0.0006 (7)
C130.0226 (8)0.0258 (9)0.0274 (8)0.0019 (6)0.0071 (6)0.0017 (7)
C140.0252 (8)0.0230 (8)0.0188 (7)0.0001 (6)0.0039 (6)0.0002 (6)
C150.0241 (8)0.0406 (10)0.0202 (8)0.0037 (7)0.0011 (6)0.0014 (7)
N10.0209 (6)0.0198 (6)0.0171 (6)0.0007 (5)0.0050 (5)0.0019 (5)
N20.0218 (6)0.0200 (6)0.0185 (6)0.0005 (5)0.0051 (5)0.0009 (5)
S10.0248 (2)0.0308 (2)0.0159 (2)0.00122 (15)0.00423 (15)0.00238 (16)
Geometric parameters (Å, º) top
C1—N21.3153 (19)C8—H80.9500
C1—N11.3680 (19)C9—C141.396 (2)
C1—C91.4897 (19)C9—C101.398 (2)
C2—N11.3134 (18)C10—C111.388 (2)
C2—C31.433 (2)C10—H100.9500
C2—S11.7544 (15)C11—C121.385 (2)
C3—C41.410 (2)C11—H110.9500
C3—C51.414 (2)C12—C131.387 (2)
C4—N21.3730 (18)C12—H120.9500
C4—C81.415 (2)C13—C141.389 (2)
C5—C61.367 (2)C13—H130.9500
C5—H50.9500C14—H140.9500
C6—C71.403 (2)C15—S11.7970 (16)
C6—H60.9500C15—H15A0.9800
C7—C81.370 (2)C15—H15B0.9800
C7—H70.9500C15—H15C0.9800
N2—C1—N1126.73 (13)C10—C9—C1120.56 (13)
N2—C1—C9118.08 (13)C11—C10—C9120.43 (14)
N1—C1—C9115.18 (13)C11—C10—H10119.8
N1—C2—C3122.39 (13)C9—C10—H10119.8
N1—C2—S1119.07 (11)C12—C11—C10120.27 (15)
C3—C2—S1118.54 (11)C12—C11—H11119.9
C4—C3—C5120.11 (14)C10—C11—H11119.9
C4—C3—C2115.34 (13)C11—C12—C13119.80 (14)
C5—C3—C2124.53 (14)C11—C12—H12120.1
N2—C4—C3122.09 (13)C13—C12—H12120.1
N2—C4—C8119.20 (14)C12—C13—C14120.23 (15)
C3—C4—C8118.71 (13)C12—C13—H13119.9
C6—C5—C3119.75 (15)C14—C13—H13119.9
C6—C5—H5120.1C13—C14—C9120.38 (14)
C3—C5—H5120.1C13—C14—H14119.8
C5—C6—C7120.47 (14)C9—C14—H14119.8
C5—C6—H6119.8S1—C15—H15A109.5
C7—C6—H6119.8S1—C15—H15B109.5
C8—C7—C6120.88 (15)H15A—C15—H15B109.5
C8—C7—H7119.6S1—C15—H15C109.5
C6—C7—H7119.6H15A—C15—H15C109.5
C7—C8—C4120.08 (15)H15B—C15—H15C109.5
C7—C8—H8120.0C2—N1—C1117.13 (13)
C4—C8—H8120.0C1—N2—C4116.31 (13)
C14—C9—C10118.88 (13)C2—S1—C15101.10 (7)
C14—C9—C1120.52 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15B···N2i0.982.673.648 (2)173
Symmetry code: (i) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H12N2S
Mr252.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)10.1951 (3), 7.3545 (2), 16.5300 (5)
β (°) 102.860 (3)
V3)1208.33 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.23 × 0.18 × 0.15
Data collection
DiffractometerAgilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2013)
Tmin, Tmax0.848, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11140, 3025, 2558
Rint0.030
(sin θ/λ)max1)0.698
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.097, 1.08
No. of reflections3025
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.34

Computer programs: CrysAlis PRO (Agilent, 2013), SHELXTL (Sheldrick, 2008).

 

Footnotes

Additional correspondence author, e-mail: kariukib@cardiff.ac.uk.

Acknowledgements

This project was supported by the Deanship of Scientific Research at Salman bin Abdulaziz University under research project 2013/01/8.

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBlatter, H. M. & Lukaszewski, H. (1964). Tetrahedron Lett. pp. 855–861.  CrossRef Google Scholar
First citationHearn, J. M., Morton, R. A. & Simpson, J. C. E. (1951). J. Chem. Soc. pp. 3318–3329.  CrossRef Web of Science Google Scholar
First citationLeonard, N. J. & Curtin, D. Y. (1946). J. Org. Chem. 11, 349–352.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMeerwein, H., Laasch, P., Mersch, R. & Nentwig, J. (1956). Chem. Ber. 89, 224–238.  CrossRef CAS Web of Science Google Scholar
First citationSegarra, V., Crespo, M. I., Pujol, F., Beleta, J., Domenech, T., Miralpeix, M., Palacios, J. M., Castro, A. & Martinez, A. (1998). Bioorg. Med. Chem. Lett. 8, 505–510.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, K., El-Hiti, G. A. & Hegazy, A. S. (2005a). J. Sulfur Chem. 26, 121–131.  CrossRef CAS Google Scholar
First citationSmith, K., El-Hiti, G. A. & Hegazy, A. S. (2005b). Synthesis, pp. 2951–2961.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds