organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(2-Fluoro­phen­yl)-2-meth­­oxy-5,6,7,8,9,10-hexa­hydro­cyclo­octa­[b]pyridine-3-carbo­nitrile

aDepartment of Physics, The Madura College, Madurai 625 011, India, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cDepartment of Food Science and Technology, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: plakshmannilantha@ymail.com

Edited by O. Blacque, University of Zürich, Switzerland (Received 1 May 2014; accepted 15 July 2014; online 23 July 2014)

In the title compound, C19H19FN2O, the cyclo­octene ring adopts a twisted boat–chair conformation. The dihedral angle between the plane of the fluorophenyl substituent and that of the pyridine ring is 76.39 (8)°. The F and ortho-H atoms of the fluoro­benzene ring are disordered, with occupancy factors of 0.226 (5) and 0.774 (5). In the crystal, no significant inter­actions are observed between the mol­ecules beyond van der Waals contacts.

Related literature

For the biological activities of substituted pyridine derivatives, see: Bossert & Vater (1989[Bossert, F. & Vater, W. (1989). Med. Res. Rev, 9, 291-324.]); Bossert et al. (1981[Bossert, F., Meyer, H. & Wehinger, E. (1981). Angew. Chem. Int. Ed. Engl. 20, 762-764.]); Wang et al. (1989[Wang, S. D., Herbette, L. G. & Rhodes, D. G. (1989). Acta Cryst. C45, 1748-1751.]); Alajarin et al. (1995[Alajarin, R., Vaquero, J. J., Alvarez-Builla, J., Pastor, M., Sunkel, C., de Casa- Juana, M. F., Priego, J., Statkow, P. R., Sanz-Aparicio, J. & Fonseca, I. (1995). J. Med. Chem. 38, 2830-2841.]). For similar structures, see: Ramesh et al. (2009a[Ramesh, P., Subbiahpandi, A., Thirumurugan, P., Perumal, P. T. & Ponnuswamy, M. N. (2009a). Acta Cryst. E65, o450.],b[Ramesh, P., Sundaresan, S. S., Thirumurugan, P., Perumal, P. T. & Ponnuswamy, M. N. (2009b). Acta Cryst. E65, o996-o997.]).

[Scheme 1]

Experimental

Crystal data
  • C19H19FN2O

  • Mr = 310.36

  • Monoclinic, P 21 /n

  • a = 9.5219 (3) Å

  • b = 13.8808 (4) Å

  • c = 12.1140 (3) Å

  • β = 97.829 (1)°

  • V = 1586.20 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.28 × 0.25 × 0.23 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.977, Tmax = 0.981

  • 37690 measured reflections

  • 3475 independent reflections

  • 2812 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.155

  • S = 1.08

  • 3475 reflections

  • 220 parameters

  • 10 restraints

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.61 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The synthesis of hydrogenated compounds has been extensively studied due to their interesting biological properties. For example, derivatives of 1,4-dihydropyridine exhibit high biological activities as calcium channel blockers (Bossert et al., 1981) and as calcium agonists or antagonists (Bossert & Vater, 1989; Wang et al.,1989; Alajarin et al., 1995). Our interest in preparing pharmacologically active pyridine-related compounds led us to the title compound, derived from a 1,4-dihydropyridine and we have undertaken X-ray crystal structure determination of substituted pyridine scaffolds in order to establish its molecular conformation.

The molecular structure of the title compound is shown in Fig 1. The cyclooctane ring (C1–C8) adopts twisted boat chair conformation. The central pyridine component is planar, with a maximum deviation from the mean plane that of 0.0207 (1) Å for atom C1. The phenyl substituent at C9 of the pyridine ring has a (+) synclinal conformation, which is evidenced by the C15–C14–C9–C10 torsion angle 77.10 (18)°. The shortening of the C–N distances [1.347 (2) and 1.312 (2) Å] and the opening of the N1–C11–C10 angle [122.98 (16)°] may be attributed to the size of the substituent at C1. There is a long Csp2—Csp1 bond (C10–C12 1.433 (3) Å), due to conjugation as found in similar related structures (Ramesh et al., 2009a, 2009b). The dihedral angle between the pseudo-axial phenyl substituent and the plane of the pyridine ring is 76.39 (8)°. Due to conjugation, the bond length C11—O1 (1.342 (2) Å) is shorter than the bond length C13—O1 (1.434 (2) Å).

No significant intermolecular hydrogen bonds, ππ stacking interactions between neighboring aromatic rings or C—H···π interactions towards them are observed.

Related literature top

For the biological activities of substituted pyridine derivatives, see: Bossert & Vater (1989); Bossert et al. (1981); Wang et al. (1989); Alajarin et al. (1995). For similar related structures, see: Ramesh et al. (2009a,b).

Experimental top

A mixture of cyclooctanone (1 mmol), 2-fluorobenzaldehyde (1 mmol) and malononitrile (1 mmol) were taken in methanol (10 ml) to which lithium ethoxide (1 equiv) was added. The reaction mixture was heated under reflux for 2–3 h. After completion of the reaction (TLC), the reaction mixture was poured into crushed ice and extracted with ethyl acetate. The excess solvent was removed under vacuum and the residue was subjected to column chromatography using petroleum ether/ethyl acetate mixture (95:5 v/v) as eluent to obtain pure product. Melting point: 161–162 °C, yield: 67%.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were placed in calculated positions and allowed to ride on their carrier atoms with C—H = 0.93 (aromatic CH), 0.96 (methyl CH3) and 0.97 Å (methylene CH2). Isotropic displacement parameters for H atoms were calculated as Uiso = 1.5Ueq(C) for CH3 groups and Uiso = 1.2Ueq(carrier atom) for all other H atoms. The F and H atoms of the fluorobenzene rings are disordered over two sets of sites in the ratio 0.226(): 0.774 (5).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.
4-(2-Fluorophenyl)-2-methoxy-5,6,7,8,9,10-hexahydrocycloocta[b]pyridine-3-carbonitrile top
Crystal data top
C19H19FN2OF(000) = 656
Mr = 310.36Dx = 1.300 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2000 reflections
a = 9.5219 (3) Åθ = 2–27°
b = 13.8808 (4) ŵ = 0.09 mm1
c = 12.1140 (3) ÅT = 293 K
β = 97.829 (1)°Block, colourless
V = 1586.20 (8) Å30.28 × 0.25 × 0.23 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
3475 independent reflections
Radiation source: fine-focus sealed tube2812 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 0 pixels mm-1θmax = 27.0°, θmin = 2.2°
ω and ϕ scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1717
Tmin = 0.977, Tmax = 0.981l = 1515
37690 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.155 w = 1/[σ2(Fo2) + (0.0648P)2 + 0.7644P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3475 reflectionsΔρmax = 0.65 e Å3
220 parametersΔρmin = 0.61 e Å3
10 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.010 (2)
Crystal data top
C19H19FN2OV = 1586.20 (8) Å3
Mr = 310.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.5219 (3) ŵ = 0.09 mm1
b = 13.8808 (4) ÅT = 293 K
c = 12.1140 (3) Å0.28 × 0.25 × 0.23 mm
β = 97.829 (1)°
Data collection top
Bruker Kappa APEXII
diffractometer
3475 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2812 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.981Rint = 0.027
37690 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05310 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.08Δρmax = 0.65 e Å3
3475 reflectionsΔρmin = 0.61 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.48826 (19)0.14942 (13)0.47836 (14)0.0386 (4)
C20.5667 (2)0.18410 (14)0.38693 (15)0.0454 (4)
H2A0.56350.13440.33030.054*
H2B0.66530.19420.41700.054*
C30.5073 (2)0.27694 (16)0.33279 (17)0.0537 (5)
H3A0.56950.29830.28060.064*
H3B0.41560.26310.29030.064*
C40.4896 (2)0.35887 (16)0.41229 (19)0.0575 (5)
H4A0.41630.34130.45690.069*
H4B0.45660.41520.36890.069*
C50.6229 (3)0.38643 (15)0.49078 (18)0.0566 (5)
H5A0.70470.36360.45880.068*
H5B0.62860.45620.49430.068*
C60.6324 (3)0.34781 (16)0.60938 (18)0.0593 (6)
H6A0.54580.36510.63840.071*
H6B0.70980.38070.65460.071*
C70.6549 (2)0.23933 (16)0.62511 (16)0.0496 (5)
H7A0.73080.22000.58390.059*
H7B0.68710.22740.70340.059*
C80.52873 (18)0.17526 (13)0.58972 (14)0.0384 (4)
C90.45081 (18)0.13641 (12)0.66895 (14)0.0370 (4)
C100.33770 (18)0.07500 (12)0.63392 (14)0.0380 (4)
C110.30274 (19)0.05759 (13)0.51926 (14)0.0396 (4)
C120.2597 (2)0.02745 (14)0.71119 (15)0.0438 (4)
C130.1466 (3)0.01094 (17)0.37142 (17)0.0565 (5)
H13A0.06700.05390.35960.085*
H13B0.22370.03730.33760.085*
H13C0.12030.05050.33850.085*
C140.48547 (16)0.15856 (14)0.79050 (14)0.0421 (4)
C150.55536 (16)0.09561 (12)0.86460 (16)0.0557 (5)
H150.57830.03560.83800.067*0.226 (5)
F1B0.3841 (3)0.3087 (4)0.7588 (5)0.115 (4)0.226 (5)
C160.5944 (2)0.1143 (2)0.97544 (19)0.0741 (8)
H160.64190.06861.02270.089*
C170.5606 (3)0.2033 (3)1.0142 (2)0.0807 (9)
H170.58610.21851.08910.097*
C180.4901 (3)0.2696 (2)0.9439 (2)0.0737 (8)
H180.46720.32960.97080.088*
C190.4532 (2)0.24716 (17)0.83331 (18)0.0571 (5)
H190.40540.29260.78590.069*0.774 (5)
F1A0.5857 (2)0.00848 (12)0.82521 (14)0.0769 (8)0.774 (5)
N10.37525 (17)0.09332 (11)0.44417 (12)0.0417 (4)
N20.1995 (2)0.01308 (16)0.77174 (16)0.0628 (5)
O10.18988 (15)0.00092 (11)0.48868 (11)0.0518 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0420 (9)0.0375 (9)0.0364 (9)0.0037 (7)0.0055 (7)0.0002 (7)
C20.0526 (11)0.0467 (10)0.0383 (9)0.0006 (8)0.0116 (8)0.0020 (8)
C30.0626 (12)0.0571 (12)0.0401 (10)0.0043 (10)0.0021 (9)0.0066 (9)
C40.0647 (13)0.0491 (11)0.0588 (13)0.0085 (10)0.0090 (10)0.0078 (10)
C50.0719 (14)0.0432 (10)0.0570 (12)0.0088 (10)0.0170 (10)0.0035 (9)
C60.0699 (14)0.0607 (13)0.0486 (11)0.0243 (11)0.0127 (10)0.0139 (10)
C70.0431 (10)0.0664 (13)0.0378 (9)0.0106 (9)0.0002 (7)0.0045 (9)
C80.0380 (9)0.0400 (9)0.0366 (8)0.0014 (7)0.0025 (7)0.0022 (7)
C90.0380 (9)0.0381 (8)0.0340 (8)0.0039 (7)0.0019 (6)0.0003 (7)
C100.0405 (9)0.0383 (9)0.0349 (8)0.0019 (7)0.0043 (7)0.0005 (7)
C110.0427 (9)0.0374 (9)0.0374 (9)0.0001 (7)0.0010 (7)0.0009 (7)
C120.0447 (10)0.0489 (10)0.0377 (9)0.0029 (8)0.0058 (7)0.0039 (8)
C130.0626 (13)0.0613 (13)0.0414 (10)0.0116 (10)0.0081 (9)0.0042 (9)
C140.0396 (9)0.0516 (10)0.0350 (9)0.0050 (8)0.0046 (7)0.0034 (7)
C150.0576 (12)0.0679 (14)0.0404 (10)0.0027 (10)0.0024 (9)0.0012 (9)
F1B0.133 (8)0.091 (6)0.122 (7)0.054 (5)0.026 (6)0.025 (5)
C160.0668 (15)0.113 (2)0.0402 (11)0.0049 (15)0.0012 (10)0.0109 (13)
C170.0796 (17)0.123 (3)0.0404 (12)0.0294 (17)0.0112 (11)0.0250 (15)
C180.0838 (17)0.0808 (17)0.0614 (15)0.0219 (14)0.0281 (13)0.0317 (14)
C190.0610 (13)0.0617 (13)0.0516 (11)0.0084 (10)0.0183 (10)0.0141 (10)
F1A0.1046 (16)0.0693 (12)0.0548 (11)0.0386 (10)0.0034 (9)0.0068 (8)
N10.0484 (9)0.0409 (8)0.0350 (7)0.0002 (6)0.0034 (6)0.0010 (6)
N20.0648 (12)0.0756 (13)0.0504 (10)0.0147 (10)0.0164 (9)0.0009 (9)
O10.0554 (8)0.0587 (8)0.0388 (7)0.0169 (6)0.0025 (6)0.0006 (6)
Geometric parameters (Å, º) top
C1—N11.347 (2)C9—C141.496 (2)
C1—C81.398 (2)C10—C111.404 (2)
C1—C21.497 (2)C10—C121.433 (3)
C2—C31.520 (3)C11—N11.312 (2)
C2—H2A0.9700C11—O11.342 (2)
C2—H2B0.9700C12—N21.139 (3)
C3—C41.514 (3)C13—O11.434 (2)
C3—H3A0.9700C13—H13A0.9600
C3—H3B0.9700C13—H13B0.9600
C4—C51.527 (3)C13—H13C0.9600
C4—H4A0.9700C14—C151.360 (3)
C4—H4B0.9700C14—C191.385 (3)
C5—C61.524 (3)C15—F1A1.3459 (10)
C5—H5A0.9700C15—C161.368 (3)
C5—H5B0.9700C15—H150.9300
C6—C71.529 (3)F1B—C191.3477 (10)
C6—H6A0.9700C16—C171.375 (4)
C6—H6B0.9700C16—H160.9300
C7—C81.509 (3)C17—C181.367 (4)
C7—H7A0.9700C17—H170.9300
C7—H7B0.9700C18—C191.374 (3)
C8—C91.399 (2)C18—H180.9300
C9—C101.394 (2)C19—H190.9300
N1—C1—C8123.26 (16)C9—C8—C7120.56 (15)
N1—C1—C2114.61 (15)C10—C9—C8119.14 (15)
C8—C1—C2122.11 (16)C10—C9—C14118.89 (15)
C1—C2—C3113.46 (16)C8—C9—C14121.97 (15)
C1—C2—H2A108.9C9—C10—C11118.40 (16)
C3—C2—H2A108.9C9—C10—C12122.05 (16)
C1—C2—H2B108.9C11—C10—C12119.52 (16)
C3—C2—H2B108.9N1—C11—O1120.49 (16)
H2A—C2—H2B107.7N1—C11—C10122.98 (16)
C4—C3—C2115.43 (16)O1—C11—C10116.53 (16)
C4—C3—H3A108.4N2—C12—C10177.8 (2)
C2—C3—H3A108.4O1—C13—H13A109.5
C4—C3—H3B108.4O1—C13—H13B109.5
C2—C3—H3B108.4H13A—C13—H13B109.5
H3A—C3—H3B107.5O1—C13—H13C109.5
C3—C4—C5115.42 (19)H13A—C13—H13C109.5
C3—C4—H4A108.4H13B—C13—H13C109.5
C5—C4—H4A108.4C15—C14—C19115.90 (18)
C3—C4—H4B108.4C15—C14—C9122.68 (17)
C5—C4—H4B108.4C19—C14—C9121.36 (18)
H4A—C4—H4B107.5F1A—C15—C14116.92 (17)
C6—C5—C4115.89 (18)F1A—C15—C16118.4 (2)
C6—C5—H5A108.3C14—C15—C16124.7 (2)
C4—C5—H5A108.3C14—C15—H15117.7
C6—C5—H5B108.3C16—C15—H15117.7
C4—C5—H5B108.3C15—C16—C17117.5 (3)
H5A—C5—H5B107.4C15—C16—H16121.3
C5—C6—C7116.94 (17)C17—C16—H16121.3
C5—C6—H6A108.1C18—C17—C16120.7 (2)
C7—C6—H6A108.1C18—C17—H17119.7
C5—C6—H6B108.1C16—C17—H17119.7
C7—C6—H6B108.1C17—C18—C19119.5 (3)
H6A—C6—H6B107.3C17—C18—H18120.2
C8—C7—C6116.88 (17)C19—C18—H18120.2
C8—C7—H7A108.1F1B—C19—C18123.1 (4)
C6—C7—H7A108.1F1B—C19—C14115.2 (4)
C8—C7—H7B108.1C18—C19—C14121.8 (2)
C6—C7—H7B108.1C18—C19—H19119.1
H7A—C7—H7B107.3C14—C19—H19119.1
C1—C8—C9117.45 (16)C11—N1—C1118.64 (15)
C1—C8—C7121.95 (16)C11—O1—C13116.85 (15)
N1—C1—C2—C387.0 (2)C10—C9—C14—C1577.10 (18)
C8—C1—C2—C391.8 (2)C8—C9—C14—C15102.71 (18)
C1—C2—C3—C452.0 (2)C10—C9—C14—C19105.84 (18)
C2—C3—C4—C554.9 (3)C8—C9—C14—C1974.3 (2)
C3—C4—C5—C6100.7 (2)C19—C14—C15—F1A178.92 (13)
C4—C5—C6—C769.8 (3)C9—C14—C15—F1A3.88 (17)
C5—C6—C7—C874.8 (3)C19—C14—C15—C160.02 (14)
N1—C1—C8—C93.2 (3)C9—C14—C15—C16177.18 (17)
C2—C1—C8—C9178.04 (16)F1A—C15—C16—C17179.13 (17)
N1—C1—C8—C7179.21 (17)C14—C15—C16—C170.2 (2)
C2—C1—C8—C70.4 (3)C15—C16—C17—C180.4 (3)
C6—C7—C8—C180.7 (2)C16—C17—C18—C190.3 (3)
C6—C7—C8—C9101.8 (2)C17—C18—C19—F1B179.75 (17)
C1—C8—C9—C100.3 (2)C17—C18—C19—C140.1 (3)
C7—C8—C9—C10177.92 (17)C15—C14—C19—F1B179.93 (8)
C1—C8—C9—C14179.53 (16)C9—C14—C19—F1B2.7 (2)
C7—C8—C9—C141.9 (3)C15—C14—C19—C180.08 (18)
C8—C9—C10—C112.5 (3)C9—C14—C19—C18177.16 (17)
C14—C9—C10—C11177.63 (16)O1—C11—N1—C1179.64 (16)
C8—C9—C10—C12175.57 (17)C10—C11—N1—C10.1 (3)
C14—C9—C10—C124.2 (3)C8—C1—N1—C113.0 (3)
C9—C10—C11—N12.9 (3)C2—C1—N1—C11178.14 (16)
C12—C10—C11—N1175.29 (17)N1—C11—O1—C135.3 (3)
C9—C10—C11—O1177.58 (16)C10—C11—O1—C13175.14 (17)
C12—C10—C11—O14.2 (3)

Experimental details

Crystal data
Chemical formulaC19H19FN2O
Mr310.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.5219 (3), 13.8808 (4), 12.1140 (3)
β (°) 97.829 (1)
V3)1586.20 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.28 × 0.25 × 0.23
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.977, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
37690, 3475, 2812
Rint0.027
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.155, 1.08
No. of reflections3475
No. of parameters220
No. of restraints10
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.61

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

JS and RV thank the management of Madura College for their encouragement and support. RRK thanks the University Grants Commission, New Delhi, for funds through Major Research Project F. No. 42–242/2013 (SR)

References

First citationAlajarin, R., Vaquero, J. J., Alvarez-Builla, J., Pastor, M., Sunkel, C., de Casa- Juana, M. F., Priego, J., Statkow, P. R., Sanz-Aparicio, J. & Fonseca, I. (1995). J. Med. Chem. 38, 2830–2841.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationBossert, F., Meyer, H. & Wehinger, E. (1981). Angew. Chem. Int. Ed. Engl. 20, 762–764.  CrossRef Web of Science Google Scholar
First citationBossert, F. & Vater, W. (1989). Med. Res. Rev, 9, 291–324.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRamesh, P., Subbiahpandi, A., Thirumurugan, P., Perumal, P. T. & Ponnuswamy, M. N. (2009a). Acta Cryst. E65, o450.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRamesh, P., Sundaresan, S. S., Thirumurugan, P., Perumal, P. T. & Ponnuswamy, M. N. (2009b). Acta Cryst. E65, o996–o997.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S. D., Herbette, L. G. & Rhodes, D. G. (1989). Acta Cryst. C45, 1748–1751.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds