organic compounds
(2E)-1-(4-Chlorophenyl)-3-[4-(propan-2-yl)phenyl]prop-2-en-1-one
aDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, bDepartment of Studies in Chemistry, Industrial Chemistry Section, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu
In the title compound, C18H17ClO, the dihedral angle between the benzene rings is 53.5 (1)°. The mean plane of the prop-2-en-1-one group is twisted by 24.5 (8) and 33.5 (3)° from the chloro- and propanyl-substituted rings, respectively.
Keywords: crystal structure.
CCDC reference: 1011011
Related literature
For the non-linear optical properties of the et al. (2006); Poornesh et al. (2009) and for their biological activity, see: Nielsen et al. (1998); Mai et al. (2014); Insuasty et al. (2013). For related structures, see: Jasinski et al. (2009, 2012); Butcher et al. (2007); Harrison et al. (2006). For standard bond lengths, see: Allen et al. (1987).
see: SarojiniExperimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus et al., 2012); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.
Supporting information
CCDC reference: 1011011
10.1107/S1600536814015281/zs2302sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814015281/zs2302Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814015281/zs2302Isup3.cml
To a mixture of cuminaldehyde (1.5 mL, 0.01 mol) and 4-chloroacetophenone (1.3 mL, 0.01 mol) in ethanol (50 mL), 15 mL of 10 % sodium hydroxide solution was added and stirred at 273–278 K for 3 h (Fig. 2). The precipitate formed was collected by filtration. Single crystals were grown from ethanol by slow the evaporation method (m.p.: 343–345 K).
All of the H atoms were placed in their calculated positions and then refined using the riding model with atom—H bond lengths of 0.95– 1.00 Å or 0.98 Å (CH3). Isotropic displacement parameters for these atoms were set to 1.2 (CH) or 1.5 (CH3) times Ueq of the parent atom. The Me group was refined as an ideally rotating group. No
has been observed.Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus et al., 2012); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).Fig. 1. ORTEP drawing of C18H17ClO, showing the atom labeling scheme, with 30% probability displacement ellipsoids. | |
Fig. 2. Synthesis of C18H17ClO. |
C18H17ClO | Dx = 1.279 Mg m−3 |
Mr = 284.76 | Melting point = 343–345 K |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 8.8547 (5) Å | Cell parameters from 2529 reflections |
b = 5.8455 (3) Å | θ = 4.6–72.0° |
c = 28.8034 (17) Å | µ = 2.21 mm−1 |
β = 97.396 (6)° | T = 173 K |
V = 1478.46 (14) Å3 | Prism, colourless |
Z = 4 | 0.41 × 0.32 × 0.14 mm |
F(000) = 600 |
Agilent Eos Gemini diffractometer | 2868 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 2269 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
Detector resolution: 16.0416 pixels mm-1 | θmax = 72.1°, θmin = 5.0° |
ω scans | h = −10→10 |
Absorption correction: multi-scan CrysAlis PRO and CrysAlis RED (Agilent, 2012) | k = −7→6 |
Tmin = 0.370, Tmax = 1.000 | l = −35→29 |
8687 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.093 | H-atom parameters constrained |
wR(F2) = 0.286 | w = 1/[σ2(Fo2) + (0.1595P)2 + 1.6733P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
2868 reflections | Δρmax = 0.87 e Å−3 |
183 parameters | Δρmin = −0.44 e Å−3 |
0 restraints |
C18H17ClO | V = 1478.46 (14) Å3 |
Mr = 284.76 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 8.8547 (5) Å | µ = 2.21 mm−1 |
b = 5.8455 (3) Å | T = 173 K |
c = 28.8034 (17) Å | 0.41 × 0.32 × 0.14 mm |
β = 97.396 (6)° |
Agilent Eos Gemini diffractometer | 2868 independent reflections |
Absorption correction: multi-scan CrysAlis PRO and CrysAlis RED (Agilent, 2012) | 2269 reflections with I > 2σ(I) |
Tmin = 0.370, Tmax = 1.000 | Rint = 0.023 |
8687 measured reflections |
R[F2 > 2σ(F2)] = 0.093 | 0 restraints |
wR(F2) = 0.286 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.87 e Å−3 |
2868 reflections | Δρmin = −0.44 e Å−3 |
183 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | −0.25150 (13) | 0.8390 (2) | 0.33097 (5) | 0.0819 (5) | |
O1 | 0.2335 (4) | 0.2755 (5) | 0.48768 (11) | 0.0695 (8) | |
C1 | 0.2184 (5) | 0.4826 (7) | 0.48178 (13) | 0.0576 (10) | |
C2 | 0.1070 (4) | 0.5752 (6) | 0.44409 (14) | 0.0550 (9) | |
C3 | 0.0602 (5) | 0.4451 (7) | 0.40431 (15) | 0.0625 (10) | |
H3 | 0.1034 | 0.2981 | 0.4012 | 0.075* | |
C4 | −0.0468 (5) | 0.5249 (8) | 0.36970 (16) | 0.0675 (11) | |
H4 | −0.0755 | 0.4358 | 0.3424 | 0.081* | |
C5 | −0.1133 (5) | 0.7368 (8) | 0.37462 (16) | 0.0638 (11) | |
C6 | −0.0724 (5) | 0.8693 (8) | 0.41294 (17) | 0.0691 (12) | |
H6 | −0.1192 | 1.0137 | 0.4161 | 0.083* | |
C7 | 0.0386 (5) | 0.7896 (7) | 0.44713 (16) | 0.0677 (12) | |
H7 | 0.0696 | 0.8833 | 0.4736 | 0.081* | |
C8 | 0.3018 (5) | 0.6508 (8) | 0.51427 (16) | 0.0671 (11) | |
H8 | 0.3047 | 0.8073 | 0.5055 | 0.080* | |
C9 | 0.3719 (5) | 0.5833 (8) | 0.55524 (17) | 0.0676 (11) | |
H9 | 0.3598 | 0.4270 | 0.5630 | 0.081* | |
C10 | 0.4664 (5) | 0.7227 (8) | 0.59013 (16) | 0.0652 (11) | |
C11 | 0.5252 (5) | 0.9341 (8) | 0.57874 (15) | 0.0676 (11) | |
H11 | 0.5026 | 0.9925 | 0.5478 | 0.081* | |
C12 | 0.6155 (5) | 1.0579 (7) | 0.61201 (14) | 0.0612 (10) | |
H12 | 0.6546 | 1.2016 | 0.6038 | 0.073* | |
C13 | 0.6505 (4) | 0.9774 (6) | 0.65722 (13) | 0.0529 (9) | |
C14 | 0.5907 (5) | 0.7645 (7) | 0.66783 (15) | 0.0613 (10) | |
H14 | 0.6116 | 0.7055 | 0.6987 | 0.074* | |
C15 | 0.5034 (5) | 0.6414 (7) | 0.63453 (17) | 0.0694 (12) | |
H15 | 0.4671 | 0.4953 | 0.6424 | 0.083* | |
C16 | 0.7492 (5) | 1.1144 (7) | 0.69393 (15) | 0.0614 (10) | |
H16 | 0.7841 | 1.2548 | 0.6786 | 0.074* | |
C17 | 0.6624 (6) | 1.1896 (8) | 0.73356 (16) | 0.0706 (12) | |
H17A | 0.5750 | 1.2834 | 0.7209 | 0.106* | |
H17B | 0.7299 | 1.2794 | 0.7563 | 0.106* | |
H17C | 0.6265 | 1.0545 | 0.7490 | 0.106* | |
C18 | 0.8911 (5) | 0.9757 (10) | 0.7134 (2) | 0.0834 (14) | |
H18A | 0.8599 | 0.8406 | 0.7299 | 0.125* | |
H18B | 0.9583 | 1.0709 | 0.7351 | 0.125* | |
H18C | 0.9454 | 0.9273 | 0.6875 | 0.125* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0684 (8) | 0.0788 (8) | 0.1002 (10) | −0.0040 (5) | 0.0173 (6) | 0.0148 (6) |
O1 | 0.0799 (19) | 0.0492 (16) | 0.0811 (19) | −0.0082 (14) | 0.0161 (15) | −0.0158 (14) |
C1 | 0.064 (2) | 0.053 (2) | 0.061 (2) | −0.0177 (17) | 0.0283 (18) | −0.0123 (17) |
C2 | 0.059 (2) | 0.0465 (19) | 0.065 (2) | −0.0154 (16) | 0.0298 (18) | −0.0121 (16) |
C3 | 0.073 (3) | 0.047 (2) | 0.071 (2) | −0.0081 (18) | 0.022 (2) | −0.0150 (18) |
C4 | 0.081 (3) | 0.055 (2) | 0.068 (2) | −0.010 (2) | 0.016 (2) | −0.0130 (19) |
C5 | 0.059 (2) | 0.058 (2) | 0.079 (3) | −0.0136 (18) | 0.029 (2) | −0.001 (2) |
C6 | 0.066 (3) | 0.053 (2) | 0.092 (3) | −0.0027 (19) | 0.027 (2) | −0.011 (2) |
C7 | 0.077 (3) | 0.053 (2) | 0.078 (3) | −0.013 (2) | 0.028 (2) | −0.022 (2) |
C8 | 0.071 (3) | 0.061 (2) | 0.073 (3) | −0.011 (2) | 0.022 (2) | −0.010 (2) |
C9 | 0.067 (2) | 0.059 (2) | 0.081 (3) | −0.009 (2) | 0.027 (2) | −0.013 (2) |
C10 | 0.065 (2) | 0.057 (2) | 0.076 (3) | −0.0096 (19) | 0.016 (2) | −0.0076 (19) |
C11 | 0.076 (3) | 0.064 (3) | 0.065 (2) | −0.021 (2) | 0.015 (2) | 0.0024 (19) |
C12 | 0.066 (2) | 0.055 (2) | 0.065 (2) | −0.0173 (18) | 0.0215 (19) | 0.0001 (18) |
C13 | 0.0468 (18) | 0.0501 (19) | 0.066 (2) | −0.0054 (15) | 0.0211 (16) | −0.0031 (16) |
C14 | 0.060 (2) | 0.053 (2) | 0.071 (2) | −0.0070 (18) | 0.0101 (18) | 0.0066 (18) |
C15 | 0.072 (3) | 0.050 (2) | 0.086 (3) | −0.0152 (19) | 0.006 (2) | 0.013 (2) |
C16 | 0.060 (2) | 0.057 (2) | 0.069 (2) | −0.0092 (18) | 0.0171 (19) | −0.0049 (18) |
C17 | 0.079 (3) | 0.066 (3) | 0.069 (3) | 0.002 (2) | 0.020 (2) | −0.008 (2) |
C18 | 0.053 (2) | 0.092 (4) | 0.105 (4) | −0.004 (2) | 0.010 (2) | −0.021 (3) |
Cl1—C5 | 1.743 (5) | C10—C15 | 1.364 (6) |
O1—C1 | 1.228 (5) | C11—H11 | 0.9500 |
C1—C2 | 1.472 (6) | C11—C12 | 1.372 (6) |
C1—C8 | 1.486 (6) | C12—H12 | 0.9500 |
C2—C3 | 1.393 (5) | C12—C13 | 1.382 (6) |
C2—C7 | 1.400 (6) | C13—C14 | 1.401 (5) |
C3—H3 | 0.9500 | C13—C16 | 1.512 (5) |
C3—C4 | 1.366 (6) | C14—H14 | 0.9500 |
C4—H4 | 0.9500 | C14—C15 | 1.358 (6) |
C4—C5 | 1.386 (6) | C15—H15 | 0.9500 |
C5—C6 | 1.359 (6) | C16—H16 | 1.0000 |
C6—H6 | 0.9500 | C16—C17 | 1.521 (6) |
C6—C7 | 1.379 (7) | C16—C18 | 1.538 (7) |
C7—H7 | 0.9500 | C17—H17A | 0.9800 |
C8—H8 | 0.9500 | C17—H17B | 0.9800 |
C8—C9 | 1.321 (7) | C17—H17C | 0.9800 |
C9—H9 | 0.9500 | C18—H18A | 0.9800 |
C9—C10 | 1.469 (6) | C18—H18B | 0.9800 |
C10—C11 | 1.396 (6) | C18—H18C | 0.9800 |
O1—C1—C2 | 121.0 (3) | C12—C11—H11 | 119.9 |
O1—C1—C8 | 121.9 (4) | C11—C12—H12 | 119.4 |
C2—C1—C8 | 116.9 (4) | C11—C12—C13 | 121.2 (4) |
C3—C2—C1 | 120.4 (4) | C13—C12—H12 | 119.4 |
C3—C2—C7 | 117.0 (4) | C12—C13—C14 | 117.6 (4) |
C7—C2—C1 | 122.5 (4) | C12—C13—C16 | 121.2 (3) |
C2—C3—H3 | 119.4 | C14—C13—C16 | 121.2 (4) |
C4—C3—C2 | 121.3 (4) | C13—C14—H14 | 119.6 |
C4—C3—H3 | 119.4 | C15—C14—C13 | 120.9 (4) |
C3—C4—H4 | 120.2 | C15—C14—H14 | 119.6 |
C3—C4—C5 | 119.6 (4) | C10—C15—H15 | 119.2 |
C5—C4—H4 | 120.2 | C14—C15—C10 | 121.6 (4) |
C4—C5—Cl1 | 120.0 (4) | C14—C15—H15 | 119.2 |
C6—C5—Cl1 | 118.7 (4) | C13—C16—H16 | 108.0 |
C6—C5—C4 | 121.3 (4) | C13—C16—C17 | 112.1 (3) |
C5—C6—H6 | 120.7 | C13—C16—C18 | 110.3 (4) |
C5—C6—C7 | 118.6 (4) | C17—C16—H16 | 108.0 |
C7—C6—H6 | 120.7 | C17—C16—C18 | 110.3 (4) |
C2—C7—H7 | 118.9 | C18—C16—H16 | 108.0 |
C6—C7—C2 | 122.1 (4) | C16—C17—H17A | 109.5 |
C6—C7—H7 | 118.9 | C16—C17—H17B | 109.5 |
C1—C8—H8 | 119.9 | C16—C17—H17C | 109.5 |
C9—C8—C1 | 120.2 (4) | H17A—C17—H17B | 109.5 |
C9—C8—H8 | 119.9 | H17A—C17—H17C | 109.5 |
C8—C9—H9 | 116.3 | H17B—C17—H17C | 109.5 |
C8—C9—C10 | 127.3 (4) | C16—C18—H18A | 109.5 |
C10—C9—H9 | 116.3 | C16—C18—H18B | 109.5 |
C11—C10—C9 | 121.8 (4) | C16—C18—H18C | 109.5 |
C15—C10—C9 | 119.7 (4) | H18A—C18—H18B | 109.5 |
C15—C10—C11 | 118.5 (4) | H18A—C18—H18C | 109.5 |
C10—C11—H11 | 119.9 | H18B—C18—H18C | 109.5 |
C12—C11—C10 | 120.3 (4) | ||
Cl1—C5—C6—C7 | −179.1 (3) | C8—C9—C10—C11 | −16.7 (7) |
O1—C1—C2—C3 | −25.1 (5) | C8—C9—C10—C15 | 165.8 (5) |
O1—C1—C2—C7 | 152.0 (4) | C9—C10—C11—C12 | −178.8 (4) |
O1—C1—C8—C9 | −13.1 (6) | C9—C10—C15—C14 | 179.8 (4) |
C1—C2—C3—C4 | 177.8 (4) | C10—C11—C12—C13 | 0.1 (7) |
C1—C2—C7—C6 | −176.0 (4) | C11—C10—C15—C14 | 2.3 (7) |
C1—C8—C9—C10 | 176.1 (4) | C11—C12—C13—C14 | 0.1 (6) |
C2—C1—C8—C9 | 162.2 (4) | C11—C12—C13—C16 | −179.6 (4) |
C2—C3—C4—C5 | −1.7 (6) | C12—C13—C14—C15 | 0.9 (6) |
C3—C2—C7—C6 | 1.1 (6) | C12—C13—C16—C17 | 115.4 (4) |
C3—C4—C5—Cl1 | −179.3 (3) | C12—C13—C16—C18 | −121.2 (4) |
C3—C4—C5—C6 | 1.1 (6) | C13—C14—C15—C10 | −2.1 (7) |
C4—C5—C6—C7 | 0.5 (6) | C14—C13—C16—C17 | −64.3 (5) |
C5—C6—C7—C2 | −1.7 (6) | C14—C13—C16—C18 | 59.0 (5) |
C7—C2—C3—C4 | 0.6 (6) | C15—C10—C11—C12 | −1.3 (7) |
C8—C1—C2—C3 | 159.6 (4) | C16—C13—C14—C15 | −179.4 (4) |
C8—C1—C2—C7 | −23.4 (5) |
Experimental details
Crystal data | |
Chemical formula | C18H17ClO |
Mr | 284.76 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 173 |
a, b, c (Å) | 8.8547 (5), 5.8455 (3), 28.8034 (17) |
β (°) | 97.396 (6) |
V (Å3) | 1478.46 (14) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 2.21 |
Crystal size (mm) | 0.41 × 0.32 × 0.14 |
Data collection | |
Diffractometer | Agilent Eos Gemini diffractometer |
Absorption correction | Multi-scan CrysAlis PRO and CrysAlis RED (Agilent, 2012) |
Tmin, Tmax | 0.370, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8687, 2868, 2269 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.093, 0.286, 1.04 |
No. of reflections | 2868 |
No. of parameters | 183 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.87, −0.44 |
Computer programs: CrysAlis PRO (Agilent, 2012), CrysAlis RED (Agilent, 2012), SUPERFLIP (Palatinus et al., 2012), SHELXL2012 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).
Acknowledgements
BN thanks the UGC for financial assistance through a BSR one-time grant for the purchase of chemicals. VVS thanks the DST for financial assistance through a PURSE grant. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.
References
Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England. Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Butcher, R. J., Yathirajan, H. S., Narayana, B., Mithun, A. & Sarojini, B. K. (2007). Acta Cryst. E63, o30–o32. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Harrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Vijaya Raj, K. K. (2006). Acta Cryst. E62, o1578–o1579. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Insuasty, B., Montoya, A., Becerra, D., Quiroga, J., Abonia, R., Robledo, S., Velez, I. D., Upegui, Y., Nogueras, M. & Cobo, J. (2013). Eur. J. Med. Chem. 67, 252–262. Web of Science CrossRef CAS PubMed Google Scholar
Jasinski, J. P., Butcher, R. J., Veena, K., Narayana, B. & Yathirajan, H. S. (2009). Acta Cryst. E65, o1965–o1966. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Jasinski, J. P., Golen, J. A., Nayak, P. S., Narayana, B. & Yathirajan, H. S. (2012). Acta Cryst. E68, o366. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mai, C. W., Yaeghoobi, M., Abd-Rahman, N., Kang, Y. B. & Pichika, M. R. (2014). Eur. J. Med. Chem. 77, 378–387. Web of Science CrossRef CAS PubMed Google Scholar
Nielsen, S. F., Christensen, S. B., Cruciani, G., Kharazmi, A. & Liljefors, T. (1998). J. Med. Chem. 41, 4819–4832. Web of Science CrossRef CAS PubMed Google Scholar
Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580. Web of Science CrossRef CAS IUCr Journals Google Scholar
Poornesh, P., Shettigar, S., Umesh, G., Manjunatha, K. B., Kamath, K. P., Sarojini, B. K. & Narayana, B. (2009). Opt. Mater. 31, 854–859. Web of Science CrossRef CAS Google Scholar
Sarojini, B. K., Nrayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54–59. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Chalcones are an important class of natural compounds and have been widely applied as synthons in synthetic organic chemistry. The nonlinear optical properties of the different chalcone derivatives have been reported (Sarojini et al., 2006; Poornesh et al., 2009). These α,β-unsaturated ketones also possess a wide variety of biological activities, including anti-leishmanial (Nielsen et al., 1998), anticancer (Mai et al., 2014) and antitumor activity (Insuasty et al., 2013). The crystal structures of some chalcone derivatives viz., a second polymorph of (2E)-1-(4-fluorophenyl)-3-(3, 4, 5-trimethoxyphenyl)prop-2-en- 1-one, (2E)-1-(3,4-dichlorophenyl)-3-(2-hydroxyphenyl)prop-2-en- 1-one (Jasinski et al., 2009, 2012), (2E)-1-(2,4-dichlorophenyl)-3-[4-(methylsulfanyl)phenyl] prop-2-en-1-one (Butcher et al., 2007) and 2-bromo-1-chlorophenyl-3-(4-methoxyphenyl) prop-2-en-1-one (Harrison et al., 2006) have been reported. In view of the importance of chalcone derivatives, we report herein the crystal structure of the title compound, C18H17ClO.
In the title compound, the dihedral angle between the mean planes of the phenyl rings is 53.5 (1)°. The mean plane of the prop-2-en-1-one group (C1/C2/O1/C8) is twisted away from the two phenyl rings by 24.5 (8)° (C2–C7) and 33.5 (3)° (C10–C15) (Fig. 1). Bond lengths are in normal ranges (Allen et al., 1987). No classical hyrogen bonds are observed.