organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-1-(4-Chloro­phen­yl)-3-[4-(propan-2-yl)phen­yl]prop-2-en-1-one

aDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, bDepartment of Studies in Chemistry, Industrial Chemistry Section, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

Edited by G. Smith, Queensland University of Technology, Australia (Received 26 May 2014; accepted 30 June 2014; online 5 July 2014)

In the title compound, C18H17ClO, the dihedral angle between the benzene rings is 53.5 (1)°. The mean plane of the prop-2-en-1-one group is twisted by 24.5 (8) and 33.5 (3)° from the chloro- and propanyl-substituted rings, respectively.

Keywords: crystal structure.

Related literature

For the non-linear optical properties of the chalcones, see: Sarojini et al. (2006[Sarojini, B. K., Nrayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54-59.]); Poornesh et al. (2009[Poornesh, P., Shettigar, S., Umesh, G., Manjunatha, K. B., Kamath, K. P., Sarojini, B. K. & Narayana, B. (2009). Opt. Mater. 31, 854-859.]) and for their biological activity, see: Nielsen et al. (1998[Nielsen, S. F., Christensen, S. B., Cruciani, G., Kharazmi, A. & Liljefors, T. (1998). J. Med. Chem. 41, 4819-4832.]); Mai et al. (2014[Mai, C. W., Yaeghoobi, M., Abd-Rahman, N., Kang, Y. B. & Pichika, M. R. (2014). Eur. J. Med. Chem. 77, 378-387.]); Insuasty et al. (2013[Insuasty, B., Montoya, A., Becerra, D., Quiroga, J., Abonia, R., Robledo, S., Velez, I. D., Upegui, Y., Nogueras, M. & Cobo, J. (2013). Eur. J. Med. Chem. 67, 252-262.]). For related structures, see: Jasinski et al. (2009[Jasinski, J. P., Butcher, R. J., Veena, K., Narayana, B. & Yathirajan, H. S. (2009). Acta Cryst. E65, o1965-o1966.], 2012[Jasinski, J. P., Golen, J. A., Nayak, P. S., Narayana, B. & Yathirajan, H. S. (2012). Acta Cryst. E68, o366.]); Butcher et al. (2007[Butcher, R. J., Yathirajan, H. S., Narayana, B., Mithun, A. & Sarojini, B. K. (2007). Acta Cryst. E63, o30-o32.]); Harrison et al. (2006[Harrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Vijaya Raj, K. K. (2006). Acta Cryst. E62, o1578-o1579.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C18H17ClO

  • Mr = 284.76

  • Monoclinic, P 21 /c

  • a = 8.8547 (5) Å

  • b = 5.8455 (3) Å

  • c = 28.8034 (17) Å

  • β = 97.396 (6)°

  • V = 1478.46 (14) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.21 mm−1

  • T = 173 K

  • 0.41 × 0.32 × 0.14 mm

Data collection
  • Agilent Eos Gemini diffractometer

  • Absorption correction: multi-scan CrysAlis PRO and CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.370, Tmax = 1.000

  • 8687 measured reflections

  • 2868 independent reflections

  • 2269 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.093

  • wR(F2) = 0.286

  • S = 1.04

  • 2868 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus et al., 2012[Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575-580.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Chalcones are an important class of natural compounds and have been widely applied as synthons in synthetic organic chemistry. The nonlinear optical properties of the different chalcone derivatives have been reported (Sarojini et al., 2006; Poornesh et al., 2009). These α,β-unsaturated ketones also possess a wide variety of biological activities, including anti-leishmanial (Nielsen et al., 1998), anticancer (Mai et al., 2014) and antitumor activity (Insuasty et al., 2013). The crystal structures of some chalcone derivatives viz., a second polymorph of (2E)-1-(4-fluorophenyl)-3-(3, 4, 5-trimethoxyphenyl)prop-2-en- 1-one, (2E)-1-(3,4-dichlorophenyl)-3-(2-hydroxyphenyl)prop-2-en- 1-one (Jasinski et al., 2009, 2012), (2E)-1-(2,4-dichlorophenyl)-3-[4-(methylsulfanyl)phenyl] prop-2-en-1-one (Butcher et al., 2007) and 2-bromo-1-chlorophenyl-3-(4-methoxyphenyl) prop-2-en-1-one (Harrison et al., 2006) have been reported. In view of the importance of chalcone derivatives, we report herein the crystal structure of the title compound, C18H17ClO.

In the title compound, the dihedral angle between the mean planes of the phenyl rings is 53.5 (1)°. The mean plane of the prop-2-en-1-one group (C1/C2/O1/C8) is twisted away from the two phenyl rings by 24.5 (8)° (C2–C7) and 33.5 (3)° (C10–C15) (Fig. 1). Bond lengths are in normal ranges (Allen et al., 1987). No classical hyrogen bonds are observed.

Related literature top

For the non-linear optical properties of the chalcones, see: Sarojini et al. (2006); Poornesh et al. (2009)and for their biological activity, see: Nielsen et al. (1998); Mai et al. (2014); Insuasty et al. (2013). For related structures, see: Jasinski et al. (2009, 2012); Butcher et al. (2007); Harrison et al. (2006). For standard bond lengths, see: Allen et al. (1987).

Experimental top

To a mixture of cuminaldehyde (1.5 mL, 0.01 mol) and 4-chloroacetophenone (1.3 mL, 0.01 mol) in ethanol (50 mL), 15 mL of 10 % sodium hydroxide solution was added and stirred at 273–278 K for 3 h (Fig. 2). The precipitate formed was collected by filtration. Single crystals were grown from ethanol by slow the evaporation method (m.p.: 343–345 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with atom—H bond lengths of 0.95– 1.00 Å or 0.98 Å (CH3). Isotropic displacement parameters for these atoms were set to 1.2 (CH) or 1.5 (CH3) times Ueq of the parent atom. The Me group was refined as an ideally rotating group. No twinning has been observed.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus et al., 2012); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of C18H17ClO, showing the atom labeling scheme, with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Synthesis of C18H17ClO.
(2E)-1-(4-Chlorophenyl)-3-[4-(propan-2-yl)phenyl]prop-2-en-1-one top
Crystal data top
C18H17ClODx = 1.279 Mg m3
Mr = 284.76Melting point = 343–345 K
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 8.8547 (5) ÅCell parameters from 2529 reflections
b = 5.8455 (3) Åθ = 4.6–72.0°
c = 28.8034 (17) ŵ = 2.21 mm1
β = 97.396 (6)°T = 173 K
V = 1478.46 (14) Å3Prism, colourless
Z = 40.41 × 0.32 × 0.14 mm
F(000) = 600
Data collection top
Agilent Eos Gemini
diffractometer
2868 independent reflections
Radiation source: Enhance (Cu) X-ray Source2269 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 16.0416 pixels mm-1θmax = 72.1°, θmin = 5.0°
ω scansh = 1010
Absorption correction: multi-scan
CrysAlis PRO and CrysAlis RED (Agilent, 2012)
k = 76
Tmin = 0.370, Tmax = 1.000l = 3529
8687 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.093H-atom parameters constrained
wR(F2) = 0.286 w = 1/[σ2(Fo2) + (0.1595P)2 + 1.6733P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2868 reflectionsΔρmax = 0.87 e Å3
183 parametersΔρmin = 0.44 e Å3
0 restraints
Crystal data top
C18H17ClOV = 1478.46 (14) Å3
Mr = 284.76Z = 4
Monoclinic, P21/cCu Kα radiation
a = 8.8547 (5) ŵ = 2.21 mm1
b = 5.8455 (3) ÅT = 173 K
c = 28.8034 (17) Å0.41 × 0.32 × 0.14 mm
β = 97.396 (6)°
Data collection top
Agilent Eos Gemini
diffractometer
2868 independent reflections
Absorption correction: multi-scan
CrysAlis PRO and CrysAlis RED (Agilent, 2012)
2269 reflections with I > 2σ(I)
Tmin = 0.370, Tmax = 1.000Rint = 0.023
8687 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0930 restraints
wR(F2) = 0.286H-atom parameters constrained
S = 1.04Δρmax = 0.87 e Å3
2868 reflectionsΔρmin = 0.44 e Å3
183 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.25150 (13)0.8390 (2)0.33097 (5)0.0819 (5)
O10.2335 (4)0.2755 (5)0.48768 (11)0.0695 (8)
C10.2184 (5)0.4826 (7)0.48178 (13)0.0576 (10)
C20.1070 (4)0.5752 (6)0.44409 (14)0.0550 (9)
C30.0602 (5)0.4451 (7)0.40431 (15)0.0625 (10)
H30.10340.29810.40120.075*
C40.0468 (5)0.5249 (8)0.36970 (16)0.0675 (11)
H40.07550.43580.34240.081*
C50.1133 (5)0.7368 (8)0.37462 (16)0.0638 (11)
C60.0724 (5)0.8693 (8)0.41294 (17)0.0691 (12)
H60.11921.01370.41610.083*
C70.0386 (5)0.7896 (7)0.44713 (16)0.0677 (12)
H70.06960.88330.47360.081*
C80.3018 (5)0.6508 (8)0.51427 (16)0.0671 (11)
H80.30470.80730.50550.080*
C90.3719 (5)0.5833 (8)0.55524 (17)0.0676 (11)
H90.35980.42700.56300.081*
C100.4664 (5)0.7227 (8)0.59013 (16)0.0652 (11)
C110.5252 (5)0.9341 (8)0.57874 (15)0.0676 (11)
H110.50260.99250.54780.081*
C120.6155 (5)1.0579 (7)0.61201 (14)0.0612 (10)
H120.65461.20160.60380.073*
C130.6505 (4)0.9774 (6)0.65722 (13)0.0529 (9)
C140.5907 (5)0.7645 (7)0.66783 (15)0.0613 (10)
H140.61160.70550.69870.074*
C150.5034 (5)0.6414 (7)0.63453 (17)0.0694 (12)
H150.46710.49530.64240.083*
C160.7492 (5)1.1144 (7)0.69393 (15)0.0614 (10)
H160.78411.25480.67860.074*
C170.6624 (6)1.1896 (8)0.73356 (16)0.0706 (12)
H17A0.57501.28340.72090.106*
H17B0.72991.27940.75630.106*
H17C0.62651.05450.74900.106*
C180.8911 (5)0.9757 (10)0.7134 (2)0.0834 (14)
H18A0.85990.84060.72990.125*
H18B0.95831.07090.73510.125*
H18C0.94540.92730.68750.125*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0684 (8)0.0788 (8)0.1002 (10)0.0040 (5)0.0173 (6)0.0148 (6)
O10.0799 (19)0.0492 (16)0.0811 (19)0.0082 (14)0.0161 (15)0.0158 (14)
C10.064 (2)0.053 (2)0.061 (2)0.0177 (17)0.0283 (18)0.0123 (17)
C20.059 (2)0.0465 (19)0.065 (2)0.0154 (16)0.0298 (18)0.0121 (16)
C30.073 (3)0.047 (2)0.071 (2)0.0081 (18)0.022 (2)0.0150 (18)
C40.081 (3)0.055 (2)0.068 (2)0.010 (2)0.016 (2)0.0130 (19)
C50.059 (2)0.058 (2)0.079 (3)0.0136 (18)0.029 (2)0.001 (2)
C60.066 (3)0.053 (2)0.092 (3)0.0027 (19)0.027 (2)0.011 (2)
C70.077 (3)0.053 (2)0.078 (3)0.013 (2)0.028 (2)0.022 (2)
C80.071 (3)0.061 (2)0.073 (3)0.011 (2)0.022 (2)0.010 (2)
C90.067 (2)0.059 (2)0.081 (3)0.009 (2)0.027 (2)0.013 (2)
C100.065 (2)0.057 (2)0.076 (3)0.0096 (19)0.016 (2)0.0076 (19)
C110.076 (3)0.064 (3)0.065 (2)0.021 (2)0.015 (2)0.0024 (19)
C120.066 (2)0.055 (2)0.065 (2)0.0173 (18)0.0215 (19)0.0001 (18)
C130.0468 (18)0.0501 (19)0.066 (2)0.0054 (15)0.0211 (16)0.0031 (16)
C140.060 (2)0.053 (2)0.071 (2)0.0070 (18)0.0101 (18)0.0066 (18)
C150.072 (3)0.050 (2)0.086 (3)0.0152 (19)0.006 (2)0.013 (2)
C160.060 (2)0.057 (2)0.069 (2)0.0092 (18)0.0171 (19)0.0049 (18)
C170.079 (3)0.066 (3)0.069 (3)0.002 (2)0.020 (2)0.008 (2)
C180.053 (2)0.092 (4)0.105 (4)0.004 (2)0.010 (2)0.021 (3)
Geometric parameters (Å, º) top
Cl1—C51.743 (5)C10—C151.364 (6)
O1—C11.228 (5)C11—H110.9500
C1—C21.472 (6)C11—C121.372 (6)
C1—C81.486 (6)C12—H120.9500
C2—C31.393 (5)C12—C131.382 (6)
C2—C71.400 (6)C13—C141.401 (5)
C3—H30.9500C13—C161.512 (5)
C3—C41.366 (6)C14—H140.9500
C4—H40.9500C14—C151.358 (6)
C4—C51.386 (6)C15—H150.9500
C5—C61.359 (6)C16—H161.0000
C6—H60.9500C16—C171.521 (6)
C6—C71.379 (7)C16—C181.538 (7)
C7—H70.9500C17—H17A0.9800
C8—H80.9500C17—H17B0.9800
C8—C91.321 (7)C17—H17C0.9800
C9—H90.9500C18—H18A0.9800
C9—C101.469 (6)C18—H18B0.9800
C10—C111.396 (6)C18—H18C0.9800
O1—C1—C2121.0 (3)C12—C11—H11119.9
O1—C1—C8121.9 (4)C11—C12—H12119.4
C2—C1—C8116.9 (4)C11—C12—C13121.2 (4)
C3—C2—C1120.4 (4)C13—C12—H12119.4
C3—C2—C7117.0 (4)C12—C13—C14117.6 (4)
C7—C2—C1122.5 (4)C12—C13—C16121.2 (3)
C2—C3—H3119.4C14—C13—C16121.2 (4)
C4—C3—C2121.3 (4)C13—C14—H14119.6
C4—C3—H3119.4C15—C14—C13120.9 (4)
C3—C4—H4120.2C15—C14—H14119.6
C3—C4—C5119.6 (4)C10—C15—H15119.2
C5—C4—H4120.2C14—C15—C10121.6 (4)
C4—C5—Cl1120.0 (4)C14—C15—H15119.2
C6—C5—Cl1118.7 (4)C13—C16—H16108.0
C6—C5—C4121.3 (4)C13—C16—C17112.1 (3)
C5—C6—H6120.7C13—C16—C18110.3 (4)
C5—C6—C7118.6 (4)C17—C16—H16108.0
C7—C6—H6120.7C17—C16—C18110.3 (4)
C2—C7—H7118.9C18—C16—H16108.0
C6—C7—C2122.1 (4)C16—C17—H17A109.5
C6—C7—H7118.9C16—C17—H17B109.5
C1—C8—H8119.9C16—C17—H17C109.5
C9—C8—C1120.2 (4)H17A—C17—H17B109.5
C9—C8—H8119.9H17A—C17—H17C109.5
C8—C9—H9116.3H17B—C17—H17C109.5
C8—C9—C10127.3 (4)C16—C18—H18A109.5
C10—C9—H9116.3C16—C18—H18B109.5
C11—C10—C9121.8 (4)C16—C18—H18C109.5
C15—C10—C9119.7 (4)H18A—C18—H18B109.5
C15—C10—C11118.5 (4)H18A—C18—H18C109.5
C10—C11—H11119.9H18B—C18—H18C109.5
C12—C11—C10120.3 (4)
Cl1—C5—C6—C7179.1 (3)C8—C9—C10—C1116.7 (7)
O1—C1—C2—C325.1 (5)C8—C9—C10—C15165.8 (5)
O1—C1—C2—C7152.0 (4)C9—C10—C11—C12178.8 (4)
O1—C1—C8—C913.1 (6)C9—C10—C15—C14179.8 (4)
C1—C2—C3—C4177.8 (4)C10—C11—C12—C130.1 (7)
C1—C2—C7—C6176.0 (4)C11—C10—C15—C142.3 (7)
C1—C8—C9—C10176.1 (4)C11—C12—C13—C140.1 (6)
C2—C1—C8—C9162.2 (4)C11—C12—C13—C16179.6 (4)
C2—C3—C4—C51.7 (6)C12—C13—C14—C150.9 (6)
C3—C2—C7—C61.1 (6)C12—C13—C16—C17115.4 (4)
C3—C4—C5—Cl1179.3 (3)C12—C13—C16—C18121.2 (4)
C3—C4—C5—C61.1 (6)C13—C14—C15—C102.1 (7)
C4—C5—C6—C70.5 (6)C14—C13—C16—C1764.3 (5)
C5—C6—C7—C21.7 (6)C14—C13—C16—C1859.0 (5)
C7—C2—C3—C40.6 (6)C15—C10—C11—C121.3 (7)
C8—C1—C2—C3159.6 (4)C16—C13—C14—C15179.4 (4)
C8—C1—C2—C723.4 (5)

Experimental details

Crystal data
Chemical formulaC18H17ClO
Mr284.76
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)8.8547 (5), 5.8455 (3), 28.8034 (17)
β (°) 97.396 (6)
V3)1478.46 (14)
Z4
Radiation typeCu Kα
µ (mm1)2.21
Crystal size (mm)0.41 × 0.32 × 0.14
Data collection
DiffractometerAgilent Eos Gemini
diffractometer
Absorption correctionMulti-scan
CrysAlis PRO and CrysAlis RED (Agilent, 2012)
Tmin, Tmax0.370, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8687, 2868, 2269
Rint0.023
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.093, 0.286, 1.04
No. of reflections2868
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.87, 0.44

Computer programs: CrysAlis PRO (Agilent, 2012), CrysAlis RED (Agilent, 2012), SUPERFLIP (Palatinus et al., 2012), SHELXL2012 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

BN thanks the UGC for financial assistance through a BSR one-time grant for the purchase of chemicals. VVS thanks the DST for financial assistance through a PURSE grant. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationButcher, R. J., Yathirajan, H. S., Narayana, B., Mithun, A. & Sarojini, B. K. (2007). Acta Cryst. E63, o30–o32.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Vijaya Raj, K. K. (2006). Acta Cryst. E62, o1578–o1579.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationInsuasty, B., Montoya, A., Becerra, D., Quiroga, J., Abonia, R., Robledo, S., Velez, I. D., Upegui, Y., Nogueras, M. & Cobo, J. (2013). Eur. J. Med. Chem. 67, 252–262.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJasinski, J. P., Butcher, R. J., Veena, K., Narayana, B. & Yathirajan, H. S. (2009). Acta Cryst. E65, o1965–o1966.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJasinski, J. P., Golen, J. A., Nayak, P. S., Narayana, B. & Yathirajan, H. S. (2012). Acta Cryst. E68, o366.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMai, C. W., Yaeghoobi, M., Abd-Rahman, N., Kang, Y. B. & Pichika, M. R. (2014). Eur. J. Med. Chem. 77, 378–387.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNielsen, S. F., Christensen, S. B., Cruciani, G., Kharazmi, A. & Liljefors, T. (1998). J. Med. Chem. 41, 4819–4832.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPalatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPoornesh, P., Shettigar, S., Umesh, G., Manjunatha, K. B., Kamath, K. P., Sarojini, B. K. & Narayana, B. (2009). Opt. Mater. 31, 854–859.  Web of Science CrossRef CAS Google Scholar
First citationSarojini, B. K., Nrayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54–59.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds