organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Pelanserin: 3-[3-(4-phenyl­piperazin-1-yl)prop­yl]quinazoline-2,4(1H,3H)-dione

aCentro de Graduados e Investigación del Instituto Tecnológico de Tijuana, Apdo. Postal 1166, 22500 Tijuana, B.C., Mexico, and bDEP Facultad de Ciencias Químicas, UANL, Guerrero y Progreso S/N, Col. Treviño, 64570 Monterrey, N.L., Mexico
*Correspondence e-mail: gaguirre777@gmail.com

Edited by G. Smith, Queensland University of Technology, Australia (Received 11 June 2014; accepted 9 July 2014; online 23 July 2014)

The title compound, C21H24N4O2, is a potent serotonin 5-HT2 and α1-adrenoceptor antagonist. The n-propyl chain links the quinazolinedione heterocycle and the phenyl­piperazine group in which the benzene ring is equatorially located and the piperazine ring has the expected chair conformation. The dihedral angle between the planes of the benzene ring and the quinazolinedione ring system is 74.1 (1)°. In the crystal, mol­ecules form centrosymmetric dimers through R22(8) hydrogen-bonded rings involving the amine and one carbonyl group of the quinazolinedione moiety. These dimers are extended into chains extending along the a-axis direction through expanded centrosymmetric cyclic C—H⋯O associations involving the second carbonyl group, giving R22(20) and R12(7) motifs.

Keywords: crystal structure.

Related literature

For the synthesis of pelanserin, see: Cortez et al. (1991[Cortez, R., Rivero, I. A., Somanathan, R., Aguirre, G., Ramirez, F. & Hong, E. (1991). Synth. Commun. 21, 285-292.]); Garcia et al. (2000[Garcia, J. D., Somanathan, R., Rivero, I. A., Aguirre, G. & Hellberg, L. H. (2000). Synth. Commun. 30, 2707-2711.]); Li et al. (2011[Li, X., Lee, Y. R. & Kim, S. H. (2011). Bull. Korean Chem. Soc. 32, 3480-3482.]). For the pharmacology of pelanserin, see: Flores-Murrieta et al. (1990[Flores-Murrieta, F. J., Castañeda Hernández, G. & Hong, E. (1990). Arch. Inst. Cardiol. Mex. 60, 347-351.], 1992[Flores-Murrieta, F. J., Herrera, J. E., Castañeda-Hernández, G. & Hong, E. (1992). Proc. West. Pharmacol. Soc. 35, 113-116.]); Villalobos-Molina et al. (1995[Villalobos-Molina, R., Ibarra, M. & Hong, E. (1995). Eur. J. Pharmacol. 277, 181-185.]). For the structure of quinazoline-2,4(1H,3H)-dione, see: Liu (2008[Liu, G. (2008). Acta Cryst. E64, o1677.]).

[Scheme 1]

Experimental

Crystal data
  • C21H24N4O2

  • Mr = 364.44

  • Monoclinic, P 21 /c

  • a = 15.7531 (17) Å

  • b = 5.4345 (10) Å

  • c = 22.756 (3) Å

  • β = 104.506 (9)°

  • V = 1886.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.60 × 0.30 × 0.10 mm

Data collection
  • Bruker P4 diffractometer

  • 3452 measured reflections

  • 3323 independent reflections

  • 1301 reflections with I > 2σ(I)

  • Rint = 0.077

  • 3 standard reflections every 97 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.148

  • S = 0.99

  • 3323 reflections

  • 247 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O2i 0.95 (4) 1.85 (4) 2.799 (5) 171 (4)
C18—H18A⋯O10ii 0.97 2.71 3.625 (6) 157
C25—H25A⋯O10ii 0.93 2.59 3.404 (6) 147
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y, -z+1.

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL2013.

Supporting information


Comment top

Quinazolinediones are important heterocycles, which have been shown to possess pharmacologically interesting properties, displaying for example anti-hypertensive, or antidiabetic activity. Among these, synthetic pelanserin (TR-2515) is a well-established potent antihypertensive agent, a feature attributed to its 5-HT2 and α1-adrenoceptor antagonist activity (Flores-Murrieta et al., 1990, 1992; Villalobos-Molina et al., 1995). Indeed, this molecule presents an activity comparable to that of ketanserin, a clinically used drug. Both molecules also share the quinazoline-2,4-dione scaffold.

We synthesized pelanserin via a ring closure procedure we have developed, based on the reaction between an o-aminobenzamide and triphosgene (Cortez et al., 1991; Garcia et al., 2000). Such a strategy has also been used starting from isatoic anhydride and a readily available primary amine, with triphosgene as ring closure agent (Li et al., 2011).

The title compound has the expected conformation, with the extended n-propyl chain linking the heterocyclic systems (Fig. 1). The quinazolinedione group has the same geometry as that observed for free quinazoline-2,4(1H,3H)-dione (Liu, 2008), and the piperazine ring is found in the chair conformation, with the phenyl substituent group equatorially located. Both lone pairs in the piperazine ring are thus placed in axial positions. The dihedral angle between phenyl and quinazolinedione rings is 74.1 (1)°, giving a twisted conformation for the overall molecule. The crystal structure is dominated by common intermolecular R22(8) hydrogen-bonded ring motifs formed through N3—H···O2i hydrogen bonds (Table 2). These centrosymmetric dimers are extended through weak C—H···O hydrogen-bonding associations involving the second carbonyl group in a bifurcated R12(7) motif (C18—H···O10ii, C25—H···O10ii), giving an expanded cyclic R22(20) motif in one-dimensional chains extending along a (Fig. 2).

Related literature top

For the synthesis of pelanserin, see: Cortez et al. (1991); Garcia et al. (2000); Li et al. (2011). For the pharmacology of pelanserin, see: Flores-Murrieta et al. (1990, 1992); Villalobos-Molina et al. (1995). For the structure of quinazoline-2,4(1H,3H)-dione, see: Liu (2008).

Experimental top

2-Amino-N-[3-(4-phenhylpiperazin-1-yl)propyl]benzamide (1.7 g, 5 mmol) was stirred in CH2Cl2 (50 ml) at room temperature and triphosgene (0.5 g, 1.7 mmol) in CH2Cl2 (10 ml) was added. The mixture was refluxed for 2 h. The organic phase was washed with water and dried over MgSO4. The solvent was removed under reduced pressure, to give a solid product, which was recrystallized from ethanol, affording pure pelanserin. M.p. 190–192 °C, yield 88%; IR (KBr): 3358 (NH), 2982 (CH), 1737 cm-1 (CO). 1H-NMR (200 MHz, CDCl3, p.p.m.): δ 10.70 (s, 1H), 8.12 (d, 1H, J = 8.0 Hz), 7.0 (t, 1H, J = 8.4 Hz), 7.25 (m, 4H), 6.87 (m, 3H), 4.19 (t, 2H, J = 6.9 Hz), 3.12 (t, 4H, J = 6.0 Hz), 2.61 (m, 6H), 1.95 (q, 2H); 13C-NMR (50 MHz, CDCl3, p.p.m.): δ 162, 152, 151, 139, 135, 129, 128, 123, 119, 116, 114, 56, 53, 49, 30, 25. EIMS (m/z): 364 [M+, 3], 175 [100]. Anal. calcd. for C21H24N4O2: C 69.21, H 6.64%; found: C 69.23, H 6.58%.

Refinement top

Crystals were thin plates (0.1 mm) and as a consequence, only poorly diffracting samples were obtained, hence room-temperature collected data had resolution limited to sin(θ)/λ = 0.59 Å-1, with 97.5% completeness. All H atoms bonded to C atoms were placed in idealized positions and refined as riding on their carrier atoms, with bond lengths fixed to 0.93 Å (aromatic CH) or 0.97 Å (methylene CH2). The amine H atom (H3) was found in a difference map and refined freely. For all H atoms, isotropic displacement parameters were calculated as Uiso(H) = 1.2Ueq(carrier atom).

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with 30% probability level displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Part of the crystal structure, showing hydrogen bonds as dashed lines.
3-[3-(4-Phenylpiperazin-1-yl)propyl]quinazoline-2,4(1H,3H)-dione top
Crystal data top
C21H24N4O2Dx = 1.283 Mg m3
Mr = 364.44Melting point = 463–465 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.7531 (17) ÅCell parameters from 33 reflections
b = 5.4345 (10) Åθ = 4.7–10.7°
c = 22.756 (3) ŵ = 0.09 mm1
β = 104.506 (9)°T = 296 K
V = 1886.0 (5) Å3Plate, yellow
Z = 40.60 × 0.30 × 0.10 mm
F(000) = 776
Data collection top
Bruker P4
diffractometer
Rint = 0.077
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.5°
Graphite monochromatorh = 018
2θ/ω scansk = 06
3452 measured reflectionsl = 2726
3323 independent reflections3 standard reflections every 97 reflections
1301 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: mixed
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0399P)2]
where P = (Fo2 + 2Fc2)/3
3323 reflections(Δ/σ)max < 0.001
247 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.19 e Å3
0 constraints
Crystal data top
C21H24N4O2V = 1886.0 (5) Å3
Mr = 364.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.7531 (17) ŵ = 0.09 mm1
b = 5.4345 (10) ÅT = 296 K
c = 22.756 (3) Å0.60 × 0.30 × 0.10 mm
β = 104.506 (9)°
Data collection top
Bruker P4
diffractometer
Rint = 0.077
3452 measured reflections3 standard reflections every 97 reflections
3323 independent reflections intensity decay: 1%
1301 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.18 e Å3
3323 reflectionsΔρmin = 0.19 e Å3
247 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.8261 (2)0.4446 (7)0.56297 (15)0.0441 (10)
C20.8955 (3)0.4694 (10)0.5359 (2)0.0476 (13)
O20.90428 (19)0.3299 (6)0.49494 (13)0.0615 (10)
N30.9524 (2)0.6547 (8)0.55692 (17)0.0510 (11)
H31.004 (3)0.669 (8)0.5430 (17)0.061*
C40.9477 (3)0.8081 (9)0.60436 (19)0.0437 (12)
C51.0100 (3)0.9929 (9)0.6239 (2)0.0530 (14)
H5A1.05561.01360.60510.064*
C61.0035 (3)1.1443 (10)0.6712 (2)0.0602 (14)
H6A1.04471.26810.68420.072*
C70.9361 (3)1.1131 (10)0.6995 (2)0.0592 (14)
H7A0.93261.21430.73180.071*
C80.8741 (3)0.9326 (9)0.6800 (2)0.0536 (14)
H8A0.82820.91450.69860.064*
C90.8798 (3)0.7762 (9)0.63228 (18)0.0416 (12)
C100.8130 (3)0.5898 (9)0.61014 (19)0.0457 (12)
O100.7479 (2)0.5615 (6)0.62947 (13)0.0649 (10)
C110.7659 (3)0.2377 (9)0.54229 (18)0.0488 (13)
H11A0.74470.17880.57630.059*
H11B0.79820.10450.52960.059*
C120.6878 (3)0.3001 (9)0.49053 (18)0.0506 (13)
H12A0.70750.37400.45750.061*
H12B0.65020.41690.50410.061*
C130.6375 (3)0.0642 (9)0.46908 (18)0.0502 (13)
H13A0.67370.04160.45100.060*
H13B0.62710.02110.50410.060*
N140.5535 (2)0.1028 (7)0.42500 (15)0.0435 (10)
C150.5664 (3)0.1797 (9)0.36668 (18)0.0551 (14)
H15A0.60140.05730.35240.066*
H15B0.59850.33370.37170.066*
C160.4801 (3)0.2128 (9)0.31949 (19)0.0605 (14)
H16A0.44760.34710.33170.073*
H16B0.49170.25650.28090.073*
N170.4269 (2)0.0093 (7)0.31190 (15)0.0432 (10)
C180.4153 (3)0.0908 (9)0.37070 (18)0.0528 (13)
H18A0.38330.24510.36570.063*
H18B0.38110.03020.38620.063*
C190.5027 (3)0.1247 (9)0.41534 (19)0.0555 (14)
H19A0.49350.18050.45380.067*
H19B0.53560.25070.40040.067*
C200.3524 (3)0.0201 (9)0.26258 (19)0.0446 (12)
C210.3356 (3)0.1559 (10)0.2177 (2)0.0651 (16)
H21A0.37230.29190.22090.078*
C220.2645 (3)0.1331 (11)0.1677 (2)0.0708 (17)
H22A0.25450.25410.13780.085*
C230.2089 (3)0.0630 (11)0.1614 (2)0.0643 (15)
H23A0.16140.07770.12780.077*
C240.2254 (3)0.2380 (11)0.2063 (2)0.0656 (15)
H24A0.18780.37220.20310.079*
C250.2961 (3)0.2202 (10)0.2562 (2)0.0559 (14)
H25A0.30610.34280.28570.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.033 (2)0.057 (3)0.043 (2)0.005 (2)0.0113 (18)0.003 (2)
C20.032 (3)0.069 (4)0.038 (3)0.001 (3)0.000 (2)0.000 (3)
O20.059 (2)0.079 (3)0.0492 (19)0.012 (2)0.0193 (17)0.019 (2)
N30.037 (2)0.065 (3)0.052 (2)0.010 (2)0.013 (2)0.008 (2)
C40.039 (3)0.049 (3)0.040 (3)0.002 (3)0.005 (2)0.001 (3)
C50.040 (3)0.063 (4)0.053 (3)0.001 (3)0.005 (2)0.012 (3)
C60.057 (3)0.056 (4)0.061 (3)0.002 (3)0.002 (3)0.002 (3)
C70.065 (3)0.056 (4)0.054 (3)0.006 (3)0.010 (3)0.005 (3)
C80.047 (3)0.063 (4)0.050 (3)0.014 (3)0.011 (2)0.007 (3)
C90.039 (3)0.048 (3)0.034 (2)0.012 (3)0.003 (2)0.007 (2)
C100.042 (3)0.051 (3)0.042 (3)0.006 (3)0.007 (2)0.004 (3)
O100.054 (2)0.079 (3)0.073 (2)0.009 (2)0.0345 (18)0.008 (2)
C110.036 (3)0.061 (3)0.049 (3)0.001 (3)0.010 (2)0.004 (3)
C120.044 (3)0.052 (3)0.048 (3)0.005 (3)0.002 (2)0.002 (3)
C130.048 (3)0.051 (3)0.048 (3)0.001 (3)0.005 (2)0.003 (3)
N140.044 (2)0.046 (3)0.039 (2)0.006 (2)0.0074 (18)0.005 (2)
C150.051 (3)0.064 (4)0.048 (3)0.015 (3)0.008 (2)0.000 (3)
C160.059 (3)0.064 (4)0.055 (3)0.016 (3)0.007 (3)0.006 (3)
N170.045 (2)0.048 (3)0.038 (2)0.010 (2)0.0131 (18)0.000 (2)
C180.047 (3)0.062 (4)0.048 (3)0.018 (3)0.008 (2)0.001 (3)
C190.060 (3)0.060 (4)0.045 (3)0.011 (3)0.012 (2)0.000 (3)
C200.044 (3)0.050 (3)0.039 (3)0.002 (3)0.008 (2)0.010 (3)
C210.077 (4)0.067 (4)0.044 (3)0.011 (3)0.000 (3)0.002 (3)
C220.076 (4)0.076 (4)0.051 (3)0.001 (4)0.000 (3)0.008 (3)
C230.049 (3)0.087 (4)0.054 (3)0.000 (4)0.007 (3)0.011 (3)
C240.053 (3)0.079 (4)0.064 (3)0.022 (3)0.015 (3)0.016 (4)
C250.049 (3)0.058 (4)0.056 (3)0.005 (3)0.004 (3)0.006 (3)
Geometric parameters (Å, º) top
N1—C21.389 (5)C13—H13B0.9700
N1—C101.389 (5)N14—C151.453 (5)
N1—C111.470 (5)N14—C191.459 (5)
C2—O21.235 (5)C15—C161.518 (5)
C2—N31.353 (5)C15—H15A0.9700
N3—C41.381 (5)C15—H15B0.9700
N3—H30.95 (4)C16—N171.454 (5)
C4—C91.385 (5)C16—H16A0.9700
C4—C51.397 (6)C16—H16B0.9700
C5—C61.379 (6)N17—C201.407 (5)
C5—H5A0.9300N17—C181.464 (5)
C6—C71.384 (6)C18—C191.504 (5)
C6—H6A0.9300C18—H18A0.9700
C7—C81.377 (6)C18—H18B0.9700
C7—H7A0.9300C19—H19A0.9700
C8—C91.400 (6)C19—H19B0.9700
C8—H8A0.9300C20—C211.375 (6)
C9—C101.456 (6)C20—C251.388 (6)
C10—O101.223 (5)C21—C221.388 (6)
C11—C121.513 (5)C21—H21A0.9300
C11—H11A0.9700C22—C231.364 (6)
C11—H11B0.9700C22—H22A0.9300
C12—C131.522 (6)C23—C241.373 (6)
C12—H12A0.9700C23—H23A0.9300
C12—H12B0.9700C24—C251.381 (5)
C13—N141.462 (5)C24—H24A0.9300
C13—H13A0.9700C25—H25A0.9300
C2—N1—C10125.0 (4)C15—N14—C19107.6 (3)
C2—N1—C11116.7 (4)C15—N14—C13111.0 (3)
C10—N1—C11118.2 (4)C19—N14—C13110.5 (4)
O2—C2—N3122.3 (4)N14—C15—C16112.0 (4)
O2—C2—N1121.6 (5)N14—C15—H15A109.2
N3—C2—N1116.1 (5)C16—C15—H15A109.2
C2—N3—C4124.4 (4)N14—C15—H15B109.2
C2—N3—H3119 (3)C16—C15—H15B109.2
C4—N3—H3115 (3)H15A—C15—H15B107.9
N3—C4—C9118.8 (5)N17—C16—C15111.9 (4)
N3—C4—C5120.7 (5)N17—C16—H16A109.2
C9—C4—C5120.4 (5)C15—C16—H16A109.2
C6—C5—C4119.6 (5)N17—C16—H16B109.2
C6—C5—H5A120.2C15—C16—H16B109.2
C4—C5—H5A120.2H16A—C16—H16B107.9
C5—C6—C7120.4 (5)C20—N17—C16118.0 (4)
C5—C6—H6A119.8C20—N17—C18116.5 (3)
C7—C6—H6A119.8C16—N17—C18110.1 (3)
C8—C7—C6120.1 (5)N17—C18—C19110.6 (3)
C8—C7—H7A119.9N17—C18—H18A109.5
C6—C7—H7A119.9C19—C18—H18A109.5
C7—C8—C9120.3 (5)N17—C18—H18B109.5
C7—C8—H8A119.8C19—C18—H18B109.5
C9—C8—H8A119.8H18A—C18—H18B108.1
C4—C9—C8119.1 (5)N14—C19—C18111.9 (4)
C4—C9—C10120.1 (4)N14—C19—H19A109.2
C8—C9—C10120.6 (5)C18—C19—H19A109.2
O10—C10—N1120.5 (5)N14—C19—H19B109.2
O10—C10—C9124.1 (5)C18—C19—H19B109.2
N1—C10—C9115.4 (4)H19A—C19—H19B107.9
N1—C11—C12114.3 (4)C21—C20—C25117.9 (4)
N1—C11—H11A108.7C21—C20—N17122.0 (5)
C12—C11—H11A108.7C25—C20—N17119.9 (4)
N1—C11—H11B108.7C20—C21—C22120.8 (5)
C12—C11—H11B108.7C20—C21—H21A119.6
H11A—C11—H11B107.6C22—C21—H21A119.6
C11—C12—C13108.5 (4)C23—C22—C21121.4 (5)
C11—C12—H12A110.0C23—C22—H22A119.3
C13—C12—H12A110.0C21—C22—H22A119.3
C11—C12—H12B110.0C22—C23—C24117.8 (5)
C13—C12—H12B110.0C22—C23—H23A121.1
H12A—C12—H12B108.4C24—C23—H23A121.1
N14—C13—C12114.1 (4)C23—C24—C25121.8 (5)
N14—C13—H13A108.7C23—C24—H24A119.1
C12—C13—H13A108.7C25—C24—H24A119.1
N14—C13—H13B108.7C24—C25—C20120.2 (5)
C12—C13—H13B108.7C24—C25—H25A119.9
H13A—C13—H13B107.6C20—C25—H25A119.9
C10—N1—C2—O2178.3 (4)C10—N1—C11—C1292.2 (4)
C11—N1—C2—O22.5 (6)N1—C11—C12—C13173.4 (4)
C10—N1—C2—N31.7 (6)C11—C12—C13—N14171.7 (3)
C11—N1—C2—N3177.5 (4)C12—C13—N14—C1571.1 (5)
O2—C2—N3—C4176.9 (4)C12—C13—N14—C19169.6 (4)
N1—C2—N3—C43.1 (6)C19—N14—C15—C1657.1 (5)
C2—N3—C4—C91.2 (6)C13—N14—C15—C16178.1 (4)
C2—N3—C4—C5179.0 (4)N14—C15—C16—N1756.3 (5)
N3—C4—C5—C6179.7 (4)C15—C16—N17—C20169.2 (4)
C9—C4—C5—C60.1 (6)C15—C16—N17—C1853.8 (5)
C4—C5—C6—C70.4 (7)C20—N17—C18—C19167.0 (4)
C5—C6—C7—C81.0 (7)C16—N17—C18—C1955.2 (5)
C6—C7—C8—C91.3 (7)C15—N14—C19—C1859.3 (5)
N3—C4—C9—C8179.4 (4)C13—N14—C19—C18179.4 (3)
C5—C4—C9—C80.5 (6)N17—C18—C19—N1459.6 (5)
N3—C4—C9—C102.3 (6)C16—N17—C20—C218.9 (6)
C5—C4—C9—C10177.5 (4)C18—N17—C20—C21143.2 (4)
C7—C8—C9—C41.1 (6)C16—N17—C20—C25175.1 (4)
C7—C8—C9—C10178.1 (4)C18—N17—C20—C2540.7 (6)
C2—N1—C10—O10176.8 (4)C25—C20—C21—C220.1 (7)
C11—N1—C10—O107.4 (6)N17—C20—C21—C22176.1 (4)
C2—N1—C10—C91.5 (6)C20—C21—C22—C230.3 (8)
C11—N1—C10—C9174.3 (3)C21—C22—C23—C240.1 (8)
C4—C9—C10—O10174.7 (4)C22—C23—C24—C250.7 (8)
C8—C9—C10—O102.3 (7)C23—C24—C25—C200.9 (7)
C4—C9—C10—N13.5 (6)C21—C20—C25—C240.5 (7)
C8—C9—C10—N1179.5 (4)N17—C20—C25—C24176.7 (4)
C2—N1—C11—C1291.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O2i0.95 (4)1.85 (4)2.799 (5)171 (4)
C18—H18A···O10ii0.972.713.625 (6)157
C25—H25A···O10ii0.932.593.404 (6)147
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O2i0.95 (4)1.85 (4)2.799 (5)171 (4)
C18—H18A···O10ii0.972.713.625 (6)157
C25—H25A···O10ii0.932.593.404 (6)147
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z+1.
 

Footnotes

Currently unaffiliated to UANL.

References

First citationCortez, R., Rivero, I. A., Somanathan, R., Aguirre, G., Ramirez, F. & Hong, E. (1991). Synth. Commun. 21, 285–292.  CrossRef CAS Web of Science Google Scholar
First citationFlores-Murrieta, F. J., Castañeda Hernández, G. & Hong, E. (1990). Arch. Inst. Cardiol. Mex. 60, 347–351.  CAS PubMed Google Scholar
First citationFlores-Murrieta, F. J., Herrera, J. E., Castañeda-Hernández, G. & Hong, E. (1992). Proc. West. Pharmacol. Soc. 35, 113–116.  PubMed CAS Google Scholar
First citationGarcia, J. D., Somanathan, R., Rivero, I. A., Aguirre, G. & Hellberg, L. H. (2000). Synth. Commun. 30, 2707–2711.  Web of Science CrossRef CAS Google Scholar
First citationLi, X., Lee, Y. R. & Kim, S. H. (2011). Bull. Korean Chem. Soc. 32, 3480–3482.  Web of Science CrossRef CAS Google Scholar
First citationLiu, G. (2008). Acta Cryst. E64, o1677.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationVillalobos-Molina, R., Ibarra, M. & Hong, E. (1995). Eur. J. Pharmacol. 277, 181–185.  CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds