organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl-N-[2-(pyridin-2-yl)ethyl­carbamo­thio­yl]benzamide

aSchool of Chemical Sciences, 11800, USM Pulau Pinang, Malaysia, and bCollege of Sciences and Arts, Rabigh, King Abdulaziz University, Saudi Arabia
*Correspondence e-mail: farook@usm.my

Edited by G. Smith, Queensland University of Technology, Australia (Received 15 June 2014; accepted 15 July 2014; online 31 July 2014)

In the title compound, C16H17N3OS, the dihedral angle between the planes of the benzene and pyridine rings is 71.33 (15)°. An intra­molecular N—H⋯O hydrogen bond is present. In the crystal, weak aromatic C—H⋯O hydrogen bonds link the mol­ecules into chains extending along a.

Related literature

For related structures, see: Saeed & Flörke (2007[Saeed, A. & Flörke, U. (2007). Acta Cryst. E63, o4259.]); Yusof et al. (2008[Yusof, M. S. M., Muharam, S. H., Kassim, M. B. & Yamin, B. M. (2008). Acta Cryst. E64, o1137.], 2011[Yusof, M. S. M., Wong, S. T. & Yamin, B. M. (2011). Acta Cryst. E67, o2483.]); Shoukat et al. (2007[Shoukat, N., Rauf, M. K., Bolte, M. & Badshah, A. (2007). Acta Cryst. E63, o3207.]); Hassan et al. (2008a[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008a). Acta Cryst. E64, o1727.],b[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008b). Acta Cryst. E64, o2083.],c[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008c). Acta Cryst. E64, o2167.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For graph-set analysis, see Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17N3OS

  • Mr = 299.39

  • Monoclinic, P 21 /c

  • a = 16.0467 (12) Å

  • b = 4.8824 (4) Å

  • c = 23.0403 (18) Å

  • β = 124.997 (5)°

  • V = 1478.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 100 K

  • 0.47 × 0.20 × 0.14 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.903, Tmax = 0.980

  • 12777 measured reflections

  • 3409 independent reflections

  • 2221 reflections with I > 2σ(I)

  • Rint = 0.082

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.182

  • S = 1.04

  • 3409 reflections

  • 199 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O2 0.87 (4) 1.90 (3) 2.645 (3) 143 (3)
C14—H14A⋯O2i 0.95 2.51 3.421 (4) 161
Symmetry code: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In the title compound, C16H17N3SO (Fig. 1), the bond lengths and angles are generally normal compared to those in N-alkyl-N-benzoyl­thio­urea compounds (Allen et al., 1987). The bond lengths of the carbonyl and thio­carbonyl groups [C7—O2 = 1.229 (5) Å and C8—S1 = 1.677 (4) Å, respectively] have typical CO and CS double-bond character (Yusof et al. 2011). However, the thio­carbonyl is longer compared to the typical CS bond which is 1.660 (2) Å. The C—N bond lengths for the title compound [C7—N1 = 1.375 (4) Å, C8—N1 = 1.397 (4) Å, C9—N2 = 1.460 (4) Å, C11—N3 = 1.335 (4), C15—N3 = 1.351 (4) Å] are all shorter than the average C—N single bond length [1.472 (5) Å], thus showing varying degrees of single bond character (Yusof et al. 2008). These bond features in the structure are presumed as a result of the intra­molecular H-bonding inter­actions "locking" the molecule into a planar six-membered ring structure and are consistent with the expected delocalization in the title compound, confimed by the C9—N2—C8 and C8—N1—C7 bond angles [125.0 (3) and 128.8 (3)°, respectively], showing sp2 hybridization on the N2 and N1 atoms. The molecule maintains its cis–trans configuration with respect to the position of the methyl benzene and ethyl pyridine groups relative to the thio­carbonyl sulfur atom across the N1—C7 and N2—C8 bonds, respectively (Hassan et al. (2008b,2008c)). The conformation of the molecule with respect to the thio­carbonyl and carbonyl moieties is twisted, as refleced by the torsion angles [C8–N1–C7–O2, C7–N1–C8–N2 and C7—N1—C8—S1: 2.1 (5), -4.4 (4) and 175.9 (2)°, respectively. The angle between the benzene and pyridine rings is 71.33 (15)°. The N2 H-atom forms bifurcated intra­molecular inter­actions with both a carbonyl O-atom and the pyridine N-atom (Table 1): a hydrogen bond with O2 (N2—H···O2) and an inter­action with N3 (N2—H···N3), giving cyclic motifs [graph sets S6 (Bernstein et al., 1995)]. Present also are weak intra­molecular C1—H···O2 and C9—H···S1 inter­actions [graph set S(5)]. In the crystal, molecules are connected through weak inter­molecular C14—H···O2 hydrogen-bonding inter­actions, giving one-dimensional chain structures extending along x (Fig. 2). The N1—H1N1 group has no acceptor in the crystal.

Experimental top

Synthesis and crystallization top

Freshly prepared substituted p-benzoyl chloride (13 mmol) was added dropwise to a stirred acetone solution (30 ml) of ammonium thio­cyanate (13 mmol). The mixture was stirred for 10 min. A solution of 2-(2-amine­thyl­pyridine) in acetone was added and the reaction mixture was refluxed for 3 h., after which the solution was poured into a beaker containing some ice cubes. The resulting precipitate was collected by filtration, washed several times with a cold ethanol/water mixture and purified by recrystallization from ethanol (Hassan et al., 2008a). Yield 65%; white transparent crystals, m.p. 126.3 °C. Anal Calc. for C16 H17 N3 O S: C, 64.9; H, 5.6; N, 15.9; S, 8.2%. Found: C, 64.8; H, 5.7; N, 14.8; S, 8.7%.

Refinement top

The H-atoms on the N atoms were located in a difference-Fourier and were fully refined. All other H-atoms were positioned geometrically and refined using a riding model with C—H = 0.95–0.99 Å and Uiso(H) = 1.2Ueq(aromatic C), 1.5Ueq(methyl C) and 1.2Ueq(methyl­ene C).

Related literature top

For related structures, see: Saeed & Flörke (2007); Yusof et al. (2008); Shoukat et al. (2007). For standard bond lengths, see: Allen et al. (1987). For related literature, see: Hassan et al. (2008a,b,c); Saeed & Flörke (2007); Yusof et al. (2011). For graph-set analysis, see Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Intramolecular interactions are shown as dashed lines.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the c axis. Hydrogen bonds are shown as dashed lines.
(I) top
Crystal data top
C16H17N3OSF(000) = 632
Mr = 299.39Dx = 1.345 Mg m3
Monoclinic, P21/cMelting point: 399.3 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 16.0467 (12) Åθ = 2.6–25.5°
b = 4.8824 (4) ŵ = 0.22 mm1
c = 23.0403 (18) ÅT = 100 K
β = 124.997 (5)°Block, colourless
V = 1478.7 (2) Å30.47 × 0.20 × 0.14 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3409 independent reflections
Radiation source: fine-focus sealed tube2221 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
ϕ and ω scansθmax = 27.6°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1720
Tmin = 0.903, Tmax = 0.980k = 66
12777 measured reflectionsl = 3024
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0899P)2]
where P = (Fo2 + 2Fc2)/3
3409 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C16H17N3OSV = 1478.7 (2) Å3
Mr = 299.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.0467 (12) ŵ = 0.22 mm1
b = 4.8824 (4) ÅT = 100 K
c = 23.0403 (18) Å0.47 × 0.20 × 0.14 mm
β = 124.997 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
3409 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2221 reflections with I > 2σ(I)
Tmin = 0.903, Tmax = 0.980Rint = 0.082
12777 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.182H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.66 e Å3
3409 reflectionsΔρmin = 0.44 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.72652 (6)0.04528 (17)0.87044 (4)0.0286 (3)
O20.78657 (14)0.5226 (4)0.72802 (11)0.0272 (5)
N10.69712 (19)0.3898 (5)0.77218 (13)0.0227 (6)
N20.84392 (17)0.1337 (5)0.82384 (13)0.0211 (5)
N31.02858 (17)0.3126 (5)0.84401 (12)0.0229 (6)
C10.6442 (2)0.9043 (6)0.63777 (15)0.0236 (7)
H1A0.70340.87590.63860.028*
C20.5737 (2)1.0965 (6)0.59246 (15)0.0250 (7)
H2A0.58531.19960.56270.030*
C30.4852 (2)1.1422 (6)0.58956 (15)0.0227 (6)
C40.4718 (2)0.9901 (6)0.63468 (16)0.0246 (7)
H4A0.41281.01990.63410.030*
C50.5426 (2)0.7954 (6)0.68073 (15)0.0245 (7)
H5A0.53150.69330.71080.029*
C60.6301 (2)0.7508 (6)0.68249 (14)0.0200 (6)
C70.7113 (2)0.5479 (6)0.72911 (14)0.0203 (6)
C80.7611 (2)0.1903 (6)0.82127 (15)0.0218 (6)
C90.9261 (2)0.0462 (6)0.87572 (15)0.0240 (7)
H9A0.95080.15560.85230.029*
H9B0.90010.17430.89520.029*
C101.0135 (2)0.1207 (6)0.93572 (15)0.0242 (7)
H10A0.98740.23300.95780.029*
H10B1.06500.00660.97230.029*
C111.0649 (2)0.3085 (6)0.91261 (15)0.0224 (6)
C121.1454 (2)0.4739 (6)0.96253 (16)0.0282 (7)
H12A1.17070.46331.01120.034*
C131.1880 (2)0.6550 (7)0.93981 (18)0.0315 (8)
H13A1.24260.77100.97280.038*
C141.1503 (2)0.6643 (6)0.86918 (18)0.0323 (8)
H14A1.17750.78820.85230.039*
C151.0716 (2)0.4885 (6)0.82314 (17)0.0269 (7)
H15A1.04660.49190.77450.032*
C160.4073 (2)1.3480 (6)0.53901 (16)0.0279 (7)
H16C0.35791.37830.55050.042*
H16D0.37211.27870.49040.042*
H16A0.44121.52110.54310.042*
H1N20.852 (2)0.242 (7)0.7974 (17)0.039 (10)*
H1N10.651 (3)0.424 (9)0.775 (2)0.078 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0251 (4)0.0384 (5)0.0310 (5)0.0068 (3)0.0211 (4)0.0085 (3)
O20.0175 (11)0.0343 (12)0.0359 (12)0.0052 (9)0.0189 (10)0.0070 (9)
N10.0166 (13)0.0302 (14)0.0268 (14)0.0042 (10)0.0157 (12)0.0023 (10)
N20.0151 (12)0.0249 (14)0.0253 (14)0.0030 (10)0.0127 (11)0.0040 (10)
N30.0185 (13)0.0269 (14)0.0266 (14)0.0036 (10)0.0149 (11)0.0030 (10)
C10.0173 (14)0.0322 (17)0.0246 (16)0.0003 (12)0.0140 (13)0.0001 (12)
C20.0212 (15)0.0317 (17)0.0258 (16)0.0013 (12)0.0156 (13)0.0055 (13)
C30.0184 (15)0.0252 (16)0.0234 (16)0.0012 (12)0.0114 (13)0.0001 (12)
C40.0180 (15)0.0286 (16)0.0311 (17)0.0010 (12)0.0163 (13)0.0005 (13)
C50.0235 (16)0.0284 (17)0.0273 (16)0.0017 (12)0.0180 (14)0.0038 (13)
C60.0154 (14)0.0229 (15)0.0214 (15)0.0028 (11)0.0104 (12)0.0031 (11)
C70.0165 (14)0.0234 (15)0.0212 (15)0.0030 (11)0.0109 (12)0.0029 (12)
C80.0173 (14)0.0265 (16)0.0222 (15)0.0005 (12)0.0116 (12)0.0002 (12)
C90.0208 (15)0.0247 (16)0.0303 (17)0.0046 (12)0.0169 (14)0.0056 (12)
C100.0180 (15)0.0315 (17)0.0238 (16)0.0037 (12)0.0124 (13)0.0037 (12)
C110.0156 (15)0.0248 (16)0.0285 (16)0.0051 (12)0.0137 (13)0.0030 (12)
C120.0216 (16)0.0360 (18)0.0268 (17)0.0014 (13)0.0137 (14)0.0002 (13)
C130.0214 (16)0.0293 (17)0.044 (2)0.0020 (13)0.0185 (15)0.0035 (14)
C140.0265 (17)0.0298 (18)0.052 (2)0.0030 (14)0.0292 (17)0.0059 (15)
C150.0246 (16)0.0330 (18)0.0327 (17)0.0063 (13)0.0220 (14)0.0052 (13)
C160.0229 (16)0.0327 (18)0.0286 (17)0.0048 (13)0.0150 (14)0.0027 (13)
Geometric parameters (Å, º) top
S1—C81.678 (3)C5—H5A0.9500
O2—C71.228 (3)C6—C71.493 (4)
N1—C71.376 (4)C9—C101.523 (4)
N1—C81.397 (4)C9—H9A0.9900
N1—H1N10.80 (5)C9—H9B0.9900
N2—C81.325 (3)C10—C111.519 (4)
N2—C91.460 (3)C10—H10A0.9900
N2—H1N20.87 (3)C10—H10B0.9900
N3—C111.335 (4)C11—C121.392 (4)
N3—C151.351 (4)C12—C131.391 (4)
C1—C21.376 (4)C12—H12A0.9500
C1—C61.393 (4)C13—C141.374 (4)
C1—H1A0.9500C13—H13A0.9500
C2—C31.402 (4)C14—C151.386 (4)
C2—H2A0.9500C14—H14A0.9500
C3—C41.390 (4)C15—H15A0.9500
C3—C161.502 (4)C16—H16C0.9800
C4—C51.391 (4)C16—H16D0.9800
C4—H4A0.9500C16—H16A0.9800
C5—C61.399 (4)
C7—N1—C8128.8 (2)N2—C9—H9A109.5
C7—N1—H1N1119 (3)C10—C9—H9A109.5
C8—N1—H1N1111 (3)N2—C9—H9B109.5
C8—N2—C9125.0 (2)C10—C9—H9B109.5
C8—N2—H1N2113 (2)H9A—C9—H9B108.1
C9—N2—H1N2121 (2)C11—C10—C9114.1 (2)
C11—N3—C15117.7 (3)C11—C10—H10A108.7
C2—C1—C6121.1 (3)C9—C10—H10A108.7
C2—C1—H1A119.4C11—C10—H10B108.7
C6—C1—H1A119.4C9—C10—H10B108.7
C1—C2—C3120.9 (3)H10A—C10—H10B107.6
C1—C2—H2A119.5N3—C11—C12122.6 (3)
C3—C2—H2A119.5N3—C11—C10117.9 (3)
C4—C3—C2117.8 (3)C12—C11—C10119.5 (3)
C4—C3—C16121.4 (3)C13—C12—C11118.7 (3)
C2—C3—C16120.8 (3)C13—C12—H12A120.6
C3—C4—C5121.8 (3)C11—C12—H12A120.6
C3—C4—H4A119.1C14—C13—C12119.3 (3)
C5—C4—H4A119.1C14—C13—H13A120.3
C4—C5—C6119.7 (3)C12—C13—H13A120.3
C4—C5—H5A120.2C13—C14—C15118.4 (3)
C6—C5—H5A120.2C13—C14—H14A120.8
C1—C6—C5118.7 (3)C15—C14—H14A120.8
C1—C6—C7116.4 (2)N3—C15—C14123.3 (3)
C5—C6—C7124.9 (2)N3—C15—H15A118.4
O2—C7—N1122.0 (3)C14—C15—H15A118.4
O2—C7—C6121.0 (3)C3—C16—H16C109.5
N1—C7—C6117.0 (2)C3—C16—H16D109.5
N2—C8—N1115.7 (2)H16C—C16—H16D109.5
N2—C8—S1126.4 (2)C3—C16—H16A109.5
N1—C8—S1117.8 (2)H16C—C16—H16A109.5
N2—C9—C10110.5 (2)H16D—C16—H16A109.5
C6—C1—C2—C30.5 (5)C9—N2—C8—N1173.5 (3)
C1—C2—C3—C41.0 (4)C9—N2—C8—S16.9 (4)
C1—C2—C3—C16178.7 (3)C7—N1—C8—N24.4 (4)
C2—C3—C4—C50.9 (4)C7—N1—C8—S1175.9 (2)
C16—C3—C4—C5178.8 (3)C8—N2—C9—C1098.0 (3)
C3—C4—C5—C60.4 (4)N2—C9—C10—C1163.9 (3)
C2—C1—C6—C50.1 (4)C15—N3—C11—C121.0 (4)
C2—C1—C6—C7179.8 (3)C15—N3—C11—C10177.2 (3)
C4—C5—C6—C10.1 (4)C9—C10—C11—N31.1 (4)
C4—C5—C6—C7179.7 (3)C9—C10—C11—C12179.4 (3)
C8—N1—C7—O22.1 (5)N3—C11—C12—C131.5 (4)
C8—N1—C7—C6178.7 (3)C10—C11—C12—C13176.6 (3)
C1—C6—C7—O20.8 (4)C11—C12—C13—C140.5 (4)
C5—C6—C7—O2179.3 (3)C12—C13—C14—C150.9 (4)
C1—C6—C7—N1178.3 (3)C11—N3—C15—C140.5 (4)
C5—C6—C7—N11.5 (4)C13—C14—C15—N31.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O20.87 (4)1.90 (3)2.645 (3)143 (3)
N2—H1N2···N30.87 (4)2.41 (4)2.860 (4)113 (3)
C1—H1A···O20.952.422.751 (4)100
C9—H9B···S10.992.723.166 (4)108
C14—H14A···O2i0.952.513.421 (4)161
Symmetry code: (i) x+2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O20.87 (4)1.90 (3)2.645 (3)143 (3)
C14—H14A···O2i0.952.513.421 (4)161
Symmetry code: (i) x+2, y+1/2, z+3/2.
 

Footnotes

Additional address: Department of Chemistry, International University of Africa, Sudan

Acknowledgements

The authors thank Universiti Sains Malaysia for a research grant (No. PKIMIA846017) which partially supported this work.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2008a). Acta Cryst. E64, o1727.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2008b). Acta Cryst. E64, o2083.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2008c). Acta Cryst. E64, o2167.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, A. & Flörke, U. (2007). Acta Cryst. E63, o4259.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShoukat, N., Rauf, M. K., Bolte, M. & Badshah, A. (2007). Acta Cryst. E63, o3207.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYusof, M. S. M., Muharam, S. H., Kassim, M. B. & Yamin, B. M. (2008). Acta Cryst. E64, o1137.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYusof, M. S. M., Wong, S. T. & Yamin, B. M. (2011). Acta Cryst. E67, o2483.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds