organic compounds
4-Methyl-N-[2-(pyridin-2-yl)ethylcarbamothioyl]benzamide
aSchool of Chemical Sciences, 11800, USM Pulau Pinang, Malaysia, and bCollege of Sciences and Arts, Rabigh, King Abdulaziz University, Saudi Arabia
*Correspondence e-mail: farook@usm.my
In the title compound, C16H17N3OS, the dihedral angle between the planes of the benzene and pyridine rings is 71.33 (15)°. An intramolecular N—H⋯O hydrogen bond is present. In the crystal, weak aromatic C—H⋯O hydrogen bonds link the molecules into chains extending along a.
Keywords: crystal structure; hydrogen bonding; thiourea compounds; thiocarbonyl groups; benzamide.
CCDC reference: 1014035
Related literature
For related structures, see: Saeed & Flörke (2007); Yusof et al. (2008, 2011); Shoukat et al. (2007); Hassan et al. (2008a,b,c). For standard bond lengths, see: Allen et al. (1987). For graph-set analysis, see Bernstein et al. (1995).
Experimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
CCDC reference: 1014035
10.1107/S1600536814016377/zs2306sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814016377/zs2306Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814016377/zs2306Isup3.cml
In the title compound, C16H17N3SO (Fig. 1), the bond lengths and angles are generally normal compared to those in N-alkyl-N-benzoylthiourea compounds (Allen et al., 1987). The bond lengths of the carbonyl and thiocarbonyl groups [C7—O2 = 1.229 (5) Å and C8—S1 = 1.677 (4) Å, respectively] have typical C═O and C═S double-bond character (Yusof et al. 2011). However, the thiocarbonyl is longer compared to the typical C═S bond which is 1.660 (2) Å. The C—N bond lengths for the title compound [C7—N1 = 1.375 (4) Å, C8—N1 = 1.397 (4) Å, C9—N2 = 1.460 (4) Å, C11—N3 = 1.335 (4), C15—N3 = 1.351 (4) Å] are all shorter than the average C—N single bond length [1.472 (5) Å], thus showing varying degrees of single bond character (Yusof et al. 2008). These bond features in the structure are presumed as a result of the intramolecular H-bonding interactions "locking" the molecule into a planar six-membered ring structure and are consistent with the expected delocalization in the title compound, confimed by the C9—N2—C8 and C8—N1—C7 bond angles [125.0 (3) and 128.8 (3)°, respectively], showing sp2 on the N2 and N1 atoms. The molecule maintains its cis–trans configuration with respect to the position of the methyl benzene and ethyl pyridine groups relative to the thiocarbonyl sulfur atom across the N1—C7 and N2—C8 bonds, respectively (Hassan et al. (2008b,2008c)). The conformation of the molecule with respect to the thiocarbonyl and carbonyl moieties is twisted, as refleced by the torsion angles [C8–N1–C7–O2, C7–N1–C8–N2 and C7—N1—C8—S1: 2.1 (5), -4.4 (4) and 175.9 (2)°, respectively. The angle between the benzene and pyridine rings is 71.33 (15)°. The N2 H-atom forms bifurcated intramolecular interactions with both a carbonyl O-atom and the pyridine N-atom (Table 1): a hydrogen bond with O2 (N2—H···O2) and an interaction with N3 (N2—H···N3), giving cyclic motifs [graph sets S6 (Bernstein et al., 1995)]. Present also are weak intramolecular C1—H···O2 and C9—H···S1 interactions [graph set S(5)]. In the crystal, molecules are connected through weak intermolecular C14—H···O2 hydrogen-bonding interactions, giving one-dimensional chain structures extending along x (Fig. 2). The N1—H1N1 group has no acceptor in the crystal.
Freshly prepared substituted p-benzoyl chloride (13 mmol) was added dropwise to a stirred acetone solution (30 ml) of ammonium thiocyanate (13 mmol). The mixture was stirred for 10 min. A solution of 2-(2-aminethylpyridine) in acetone was added and the reaction mixture was refluxed for 3 h., after which the solution was poured into a beaker containing some ice cubes. The resulting precipitate was collected by filtration, washed several times with a cold ethanol/water mixture and purified by recrystallization from ethanol (Hassan et al., 2008a). Yield 65%; white transparent crystals, m.p. 126.3 °C. Anal Calc. for C16 H17 N3 O S: C, 64.9; H, 5.6; N, 15.9; S, 8.2%. Found: C, 64.8; H, 5.7; N, 14.8; S, 8.7%.
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C16H17N3OS | F(000) = 632 |
Mr = 299.39 | Dx = 1.345 Mg m−3 |
Monoclinic, P21/c | Melting point: 399.3 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 16.0467 (12) Å | θ = 2.6–25.5° |
b = 4.8824 (4) Å | µ = 0.22 mm−1 |
c = 23.0403 (18) Å | T = 100 K |
β = 124.997 (5)° | Block, colourless |
V = 1478.7 (2) Å3 | 0.47 × 0.20 × 0.14 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 3409 independent reflections |
Radiation source: fine-focus sealed tube | 2221 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.082 |
ϕ and ω scans | θmax = 27.6°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −17→20 |
Tmin = 0.903, Tmax = 0.980 | k = −6→6 |
12777 measured reflections | l = −30→24 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.068 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.182 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0899P)2] where P = (Fo2 + 2Fc2)/3 |
3409 reflections | (Δ/σ)max < 0.001 |
199 parameters | Δρmax = 0.66 e Å−3 |
0 restraints | Δρmin = −0.44 e Å−3 |
C16H17N3OS | V = 1478.7 (2) Å3 |
Mr = 299.39 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 16.0467 (12) Å | µ = 0.22 mm−1 |
b = 4.8824 (4) Å | T = 100 K |
c = 23.0403 (18) Å | 0.47 × 0.20 × 0.14 mm |
β = 124.997 (5)° |
Bruker APEXII CCD diffractometer | 3409 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 2221 reflections with I > 2σ(I) |
Tmin = 0.903, Tmax = 0.980 | Rint = 0.082 |
12777 measured reflections |
R[F2 > 2σ(F2)] = 0.068 | 0 restraints |
wR(F2) = 0.182 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.66 e Å−3 |
3409 reflections | Δρmin = −0.44 e Å−3 |
199 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.72652 (6) | 0.04528 (17) | 0.87044 (4) | 0.0286 (3) | |
O2 | 0.78657 (14) | 0.5226 (4) | 0.72802 (11) | 0.0272 (5) | |
N1 | 0.69712 (19) | 0.3898 (5) | 0.77218 (13) | 0.0227 (6) | |
N2 | 0.84392 (17) | 0.1337 (5) | 0.82384 (13) | 0.0211 (5) | |
N3 | 1.02858 (17) | 0.3126 (5) | 0.84401 (12) | 0.0229 (6) | |
C1 | 0.6442 (2) | 0.9043 (6) | 0.63777 (15) | 0.0236 (7) | |
H1A | 0.7034 | 0.8759 | 0.6386 | 0.028* | |
C2 | 0.5737 (2) | 1.0965 (6) | 0.59246 (15) | 0.0250 (7) | |
H2A | 0.5853 | 1.1996 | 0.5627 | 0.030* | |
C3 | 0.4852 (2) | 1.1422 (6) | 0.58956 (15) | 0.0227 (6) | |
C4 | 0.4718 (2) | 0.9901 (6) | 0.63468 (16) | 0.0246 (7) | |
H4A | 0.4128 | 1.0199 | 0.6341 | 0.030* | |
C5 | 0.5426 (2) | 0.7954 (6) | 0.68073 (15) | 0.0245 (7) | |
H5A | 0.5315 | 0.6933 | 0.7108 | 0.029* | |
C6 | 0.6301 (2) | 0.7508 (6) | 0.68249 (14) | 0.0200 (6) | |
C7 | 0.7113 (2) | 0.5479 (6) | 0.72911 (14) | 0.0203 (6) | |
C8 | 0.7611 (2) | 0.1903 (6) | 0.82127 (15) | 0.0218 (6) | |
C9 | 0.9261 (2) | −0.0462 (6) | 0.87572 (15) | 0.0240 (7) | |
H9A | 0.9508 | −0.1556 | 0.8523 | 0.029* | |
H9B | 0.9001 | −0.1743 | 0.8952 | 0.029* | |
C10 | 1.0135 (2) | 0.1207 (6) | 0.93572 (15) | 0.0242 (7) | |
H10A | 0.9874 | 0.2330 | 0.9578 | 0.029* | |
H10B | 1.0650 | −0.0066 | 0.9723 | 0.029* | |
C11 | 1.0649 (2) | 0.3085 (6) | 0.91261 (15) | 0.0224 (6) | |
C12 | 1.1454 (2) | 0.4739 (6) | 0.96253 (16) | 0.0282 (7) | |
H12A | 1.1707 | 0.4633 | 1.0112 | 0.034* | |
C13 | 1.1880 (2) | 0.6550 (7) | 0.93981 (18) | 0.0315 (8) | |
H13A | 1.2426 | 0.7710 | 0.9728 | 0.038* | |
C14 | 1.1503 (2) | 0.6643 (6) | 0.86918 (18) | 0.0323 (8) | |
H14A | 1.1775 | 0.7882 | 0.8523 | 0.039* | |
C15 | 1.0716 (2) | 0.4885 (6) | 0.82314 (17) | 0.0269 (7) | |
H15A | 1.0466 | 0.4919 | 0.7745 | 0.032* | |
C16 | 0.4073 (2) | 1.3480 (6) | 0.53901 (16) | 0.0279 (7) | |
H16C | 0.3579 | 1.3783 | 0.5505 | 0.042* | |
H16D | 0.3721 | 1.2787 | 0.4904 | 0.042* | |
H16A | 0.4412 | 1.5211 | 0.5431 | 0.042* | |
H1N2 | 0.852 (2) | 0.242 (7) | 0.7974 (17) | 0.039 (10)* | |
H1N1 | 0.651 (3) | 0.424 (9) | 0.775 (2) | 0.078 (15)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0251 (4) | 0.0384 (5) | 0.0310 (5) | 0.0068 (3) | 0.0211 (4) | 0.0085 (3) |
O2 | 0.0175 (11) | 0.0343 (12) | 0.0359 (12) | 0.0052 (9) | 0.0189 (10) | 0.0070 (9) |
N1 | 0.0166 (13) | 0.0302 (14) | 0.0268 (14) | 0.0042 (10) | 0.0157 (12) | 0.0023 (10) |
N2 | 0.0151 (12) | 0.0249 (14) | 0.0253 (14) | 0.0030 (10) | 0.0127 (11) | 0.0040 (10) |
N3 | 0.0185 (13) | 0.0269 (14) | 0.0266 (14) | 0.0036 (10) | 0.0149 (11) | 0.0030 (10) |
C1 | 0.0173 (14) | 0.0322 (17) | 0.0246 (16) | −0.0003 (12) | 0.0140 (13) | 0.0001 (12) |
C2 | 0.0212 (15) | 0.0317 (17) | 0.0258 (16) | 0.0013 (12) | 0.0156 (13) | 0.0055 (13) |
C3 | 0.0184 (15) | 0.0252 (16) | 0.0234 (16) | 0.0012 (12) | 0.0114 (13) | −0.0001 (12) |
C4 | 0.0180 (15) | 0.0286 (16) | 0.0311 (17) | 0.0010 (12) | 0.0163 (13) | 0.0005 (13) |
C5 | 0.0235 (16) | 0.0284 (17) | 0.0273 (16) | 0.0017 (12) | 0.0180 (14) | 0.0038 (13) |
C6 | 0.0154 (14) | 0.0229 (15) | 0.0214 (15) | −0.0028 (11) | 0.0104 (12) | −0.0031 (11) |
C7 | 0.0165 (14) | 0.0234 (15) | 0.0212 (15) | −0.0030 (11) | 0.0109 (12) | −0.0029 (12) |
C8 | 0.0173 (14) | 0.0265 (16) | 0.0222 (15) | 0.0005 (12) | 0.0116 (12) | 0.0002 (12) |
C9 | 0.0208 (15) | 0.0247 (16) | 0.0303 (17) | 0.0046 (12) | 0.0169 (14) | 0.0056 (12) |
C10 | 0.0180 (15) | 0.0315 (17) | 0.0238 (16) | 0.0037 (12) | 0.0124 (13) | 0.0037 (12) |
C11 | 0.0156 (15) | 0.0248 (16) | 0.0285 (16) | 0.0051 (12) | 0.0137 (13) | 0.0030 (12) |
C12 | 0.0216 (16) | 0.0360 (18) | 0.0268 (17) | −0.0014 (13) | 0.0137 (14) | −0.0002 (13) |
C13 | 0.0214 (16) | 0.0293 (17) | 0.044 (2) | −0.0020 (13) | 0.0185 (15) | −0.0035 (14) |
C14 | 0.0265 (17) | 0.0298 (18) | 0.052 (2) | 0.0030 (14) | 0.0292 (17) | 0.0059 (15) |
C15 | 0.0246 (16) | 0.0330 (18) | 0.0327 (17) | 0.0063 (13) | 0.0220 (14) | 0.0052 (13) |
C16 | 0.0229 (16) | 0.0327 (18) | 0.0286 (17) | 0.0048 (13) | 0.0150 (14) | 0.0027 (13) |
S1—C8 | 1.678 (3) | C5—H5A | 0.9500 |
O2—C7 | 1.228 (3) | C6—C7 | 1.493 (4) |
N1—C7 | 1.376 (4) | C9—C10 | 1.523 (4) |
N1—C8 | 1.397 (4) | C9—H9A | 0.9900 |
N1—H1N1 | 0.80 (5) | C9—H9B | 0.9900 |
N2—C8 | 1.325 (3) | C10—C11 | 1.519 (4) |
N2—C9 | 1.460 (3) | C10—H10A | 0.9900 |
N2—H1N2 | 0.87 (3) | C10—H10B | 0.9900 |
N3—C11 | 1.335 (4) | C11—C12 | 1.392 (4) |
N3—C15 | 1.351 (4) | C12—C13 | 1.391 (4) |
C1—C2 | 1.376 (4) | C12—H12A | 0.9500 |
C1—C6 | 1.393 (4) | C13—C14 | 1.374 (4) |
C1—H1A | 0.9500 | C13—H13A | 0.9500 |
C2—C3 | 1.402 (4) | C14—C15 | 1.386 (4) |
C2—H2A | 0.9500 | C14—H14A | 0.9500 |
C3—C4 | 1.390 (4) | C15—H15A | 0.9500 |
C3—C16 | 1.502 (4) | C16—H16C | 0.9800 |
C4—C5 | 1.391 (4) | C16—H16D | 0.9800 |
C4—H4A | 0.9500 | C16—H16A | 0.9800 |
C5—C6 | 1.399 (4) | ||
C7—N1—C8 | 128.8 (2) | N2—C9—H9A | 109.5 |
C7—N1—H1N1 | 119 (3) | C10—C9—H9A | 109.5 |
C8—N1—H1N1 | 111 (3) | N2—C9—H9B | 109.5 |
C8—N2—C9 | 125.0 (2) | C10—C9—H9B | 109.5 |
C8—N2—H1N2 | 113 (2) | H9A—C9—H9B | 108.1 |
C9—N2—H1N2 | 121 (2) | C11—C10—C9 | 114.1 (2) |
C11—N3—C15 | 117.7 (3) | C11—C10—H10A | 108.7 |
C2—C1—C6 | 121.1 (3) | C9—C10—H10A | 108.7 |
C2—C1—H1A | 119.4 | C11—C10—H10B | 108.7 |
C6—C1—H1A | 119.4 | C9—C10—H10B | 108.7 |
C1—C2—C3 | 120.9 (3) | H10A—C10—H10B | 107.6 |
C1—C2—H2A | 119.5 | N3—C11—C12 | 122.6 (3) |
C3—C2—H2A | 119.5 | N3—C11—C10 | 117.9 (3) |
C4—C3—C2 | 117.8 (3) | C12—C11—C10 | 119.5 (3) |
C4—C3—C16 | 121.4 (3) | C13—C12—C11 | 118.7 (3) |
C2—C3—C16 | 120.8 (3) | C13—C12—H12A | 120.6 |
C3—C4—C5 | 121.8 (3) | C11—C12—H12A | 120.6 |
C3—C4—H4A | 119.1 | C14—C13—C12 | 119.3 (3) |
C5—C4—H4A | 119.1 | C14—C13—H13A | 120.3 |
C4—C5—C6 | 119.7 (3) | C12—C13—H13A | 120.3 |
C4—C5—H5A | 120.2 | C13—C14—C15 | 118.4 (3) |
C6—C5—H5A | 120.2 | C13—C14—H14A | 120.8 |
C1—C6—C5 | 118.7 (3) | C15—C14—H14A | 120.8 |
C1—C6—C7 | 116.4 (2) | N3—C15—C14 | 123.3 (3) |
C5—C6—C7 | 124.9 (2) | N3—C15—H15A | 118.4 |
O2—C7—N1 | 122.0 (3) | C14—C15—H15A | 118.4 |
O2—C7—C6 | 121.0 (3) | C3—C16—H16C | 109.5 |
N1—C7—C6 | 117.0 (2) | C3—C16—H16D | 109.5 |
N2—C8—N1 | 115.7 (2) | H16C—C16—H16D | 109.5 |
N2—C8—S1 | 126.4 (2) | C3—C16—H16A | 109.5 |
N1—C8—S1 | 117.8 (2) | H16C—C16—H16A | 109.5 |
N2—C9—C10 | 110.5 (2) | H16D—C16—H16A | 109.5 |
C6—C1—C2—C3 | −0.5 (5) | C9—N2—C8—N1 | 173.5 (3) |
C1—C2—C3—C4 | 1.0 (4) | C9—N2—C8—S1 | −6.9 (4) |
C1—C2—C3—C16 | −178.7 (3) | C7—N1—C8—N2 | −4.4 (4) |
C2—C3—C4—C5 | −0.9 (4) | C7—N1—C8—S1 | 175.9 (2) |
C16—C3—C4—C5 | 178.8 (3) | C8—N2—C9—C10 | −98.0 (3) |
C3—C4—C5—C6 | 0.4 (4) | N2—C9—C10—C11 | −63.9 (3) |
C2—C1—C6—C5 | −0.1 (4) | C15—N3—C11—C12 | −1.0 (4) |
C2—C1—C6—C7 | 179.8 (3) | C15—N3—C11—C10 | 177.2 (3) |
C4—C5—C6—C1 | 0.1 (4) | C9—C10—C11—N3 | 1.1 (4) |
C4—C5—C6—C7 | −179.7 (3) | C9—C10—C11—C12 | 179.4 (3) |
C8—N1—C7—O2 | 2.1 (5) | N3—C11—C12—C13 | 1.5 (4) |
C8—N1—C7—C6 | −178.7 (3) | C10—C11—C12—C13 | −176.6 (3) |
C1—C6—C7—O2 | 0.8 (4) | C11—C12—C13—C14 | −0.5 (4) |
C5—C6—C7—O2 | −179.3 (3) | C12—C13—C14—C15 | −0.9 (4) |
C1—C6—C7—N1 | −178.3 (3) | C11—N3—C15—C14 | −0.5 (4) |
C5—C6—C7—N1 | 1.5 (4) | C13—C14—C15—N3 | 1.5 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1N2···O2 | 0.87 (4) | 1.90 (3) | 2.645 (3) | 143 (3) |
N2—H1N2···N3 | 0.87 (4) | 2.41 (4) | 2.860 (4) | 113 (3) |
C1—H1A···O2 | 0.95 | 2.42 | 2.751 (4) | 100 |
C9—H9B···S1 | 0.99 | 2.72 | 3.166 (4) | 108 |
C14—H14A···O2i | 0.95 | 2.51 | 3.421 (4) | 161 |
Symmetry code: (i) −x+2, y+1/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1N2···O2 | 0.87 (4) | 1.90 (3) | 2.645 (3) | 143 (3) |
C14—H14A···O2i | 0.95 | 2.51 | 3.421 (4) | 161 |
Symmetry code: (i) −x+2, y+1/2, −z+3/2. |
Footnotes
‡Additional address: Department of Chemistry, International University of Africa, Sudan
Acknowledgements
The authors thank Universiti Sains Malaysia for a research grant (No. PKIMIA846017) which partially supported this work.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008a). Acta Cryst. E64, o1727. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008b). Acta Cryst. E64, o2083. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008c). Acta Cryst. E64, o2167. Web of Science CSD CrossRef IUCr Journals Google Scholar
Saeed, A. & Flörke, U. (2007). Acta Cryst. E63, o4259. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shoukat, N., Rauf, M. K., Bolte, M. & Badshah, A. (2007). Acta Cryst. E63, o3207. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yusof, M. S. M., Muharam, S. H., Kassim, M. B. & Yamin, B. M. (2008). Acta Cryst. E64, o1137. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yusof, M. S. M., Wong, S. T. & Yamin, B. M. (2011). Acta Cryst. E67, o2483. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.