organic compounds
of allylammonium hydrogen succinate at 100 K
aFaculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
*Correspondence e-mail: eismont@uni.opole.pl
The 2H8N+·C4H5O4−, consists of two allylammonium cations and two hydrogen succinate anions (Z′ = 2). One of the cations has a near-perfect syn-periplanar (cis) conformation with an N—C—C—C torsion angle of 0.4 (3)°, while the other is characterized by a gauche conformation and a torsion angle of 102.5 (3)°. Regarding the anions, three out of four carboxilic groups are twisted with respect to the central C–CH2–CH2–C group [dihedral angles = 24.4 (2), 31.2 (2) and 40.4 (2)°], the remaining one being instead almost coplanar, with a dihedral angle of 4.0 (2)°. In the crystal, there are two very short, near linear O—H⋯O hydrogen bonds between anions, with the H atoms shifted notably from the donor O towards the O⋯O midpoint. These O—H⋯O hydrogen bonds form helical chains along the [011] which are further linked to each other through N—H⋯O hydrogen bonds (involving all the available NH groups), forming layers lying parallel to (100).
of the title compound, CKeywords: crystal structure; allylammonium; succinate; hydrogen bonds.
CCDC reference: 1012134
1. Related literature
For other crystal structures of succinate salts with et al. (2013); Bruni et al. (2013); Khorasani & Fernandes (2012). For the characteristic structural motifs in ammonium dicarboxylate salts, see: Kashino et al. (1998); Barnes & Weakley (2000); MacDonald et al. (2001); Vaidhyanathan et al. (2001, 2002); Saraswathi & Vijayan (2002); Ejsmont (2007). Salts of succinic acid and have strong N—H⋯O and O—H⋯O hydrogen bonds and are thus used as building blocks for the construction of supramolecular structures, see: Khorasani et al. (2012); Lemmerer (2011). For hydrogen bonding, see: Steiner (2002). For a description of the Cambridge Structural Database, see: Allen (2002).
see: Bhardwaj2. Experimental
2.1. Crystal data
|
2.2. Data collection
|
2.3. Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
CCDC reference: 1012134
10.1107/S1600536814015633/bg2532sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814015633/bg2532Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814015633/bg2532Isup3.cml
Crystals of (I) were grown at room temperature by slow evaporation of an aqueous solution containing allylamine and succinatic acid in a 1:1 stoichiometric ratio.
The H atoms attached to atoms O and N were located in difference electron density maps and were freely refined with isotropic displacement factors [O–H = 1.08 (3) - 1.18 (3) and N–H = 0.90 (2) - 0.95 (2) Å]. The remaining H atoms were positioned geometrically and treated as riding on their parent C atoms, with C–H distances of 0.95 for idealized secondary CH2, 0.95 for CH and 0.99 Å for idealized terminal X=CH2 and with Uiso(H) = 1.2Ueq(C). Probably due to libration, the ending C23═C24 bond appears significantly shorter that its corresponding C13═C14 one.
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of (I), showing 50% displacement ellipsoids. Hydrogen bonds are shown as dotted lines. | |
Fig. 2. Packing diagram of (I) viewed along the b axis, showing (sideways) the (100) 2D structure defined by the hydrogen-bonding network (dotted lines). |
C3H8N+·C4H5O4− | Z = 4 |
Mr = 175.19 | F(000) = 376 |
Triclinic, P1 | Dx = 1.344 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.5649 (3) Å | Cell parameters from 5943 reflections |
b = 9.4364 (3) Å | θ = 2.9–26.0° |
c = 10.8051 (4) Å | µ = 0.11 mm−1 |
α = 88.838 (3)° | T = 100 K |
β = 87.482 (3)° | Prism, colourless |
γ = 82.843 (3)° | 0.30 × 0.20 × 0.15 mm |
V = 865.55 (5) Å3 |
Oxford Diffraction Xcalibur diffractometer | 2373 reflections with I > 2σI) |
Radiation source: fine-focus sealed tube | Rint = 0.014 |
Graphite monochromator | θmax = 25.0°, θmin = 2.9° |
ω–scan | h = −10→10 |
5454 measured reflections | k = −11→11 |
3013 independent reflections | l = −8→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.093 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0483P)2 + 0.1223P] where P = (Fo2 + 2Fc2)/3 |
3013 reflections | (Δ/σ)max < 0.001 |
249 parameters | Δρmax = 0.57 e Å−3 |
0 restraints | Δρmin = −0.50 e Å−3 |
C3H8N+·C4H5O4− | γ = 82.843 (3)° |
Mr = 175.19 | V = 865.55 (5) Å3 |
Triclinic, P1 | Z = 4 |
a = 8.5649 (3) Å | Mo Kα radiation |
b = 9.4364 (3) Å | µ = 0.11 mm−1 |
c = 10.8051 (4) Å | T = 100 K |
α = 88.838 (3)° | 0.30 × 0.20 × 0.15 mm |
β = 87.482 (3)° |
Oxford Diffraction Xcalibur diffractometer | 2373 reflections with I > 2σI) |
5454 measured reflections | Rint = 0.014 |
3013 independent reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.093 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | Δρmax = 0.57 e Å−3 |
3013 reflections | Δρmin = −0.50 e Å−3 |
249 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N11 | 0.22162 (17) | 0.36564 (17) | 0.68154 (14) | 0.0143 (3) | |
H11A | 0.240 (2) | 0.444 (2) | 0.7297 (18) | 0.022 (5)* | |
H11B | 0.263 (2) | 0.387 (2) | 0.601 (2) | 0.026 (5)* | |
H11C | 0.275 (3) | 0.284 (2) | 0.711 (2) | 0.035 (6)* | |
C12 | 0.0522 (2) | 0.34987 (19) | 0.67065 (15) | 0.0171 (4) | |
H12A | 0.0440 | 0.2616 | 0.6284 | 0.021* | |
H12B | 0.0041 | 0.4279 | 0.6199 | 0.021* | |
C13 | −0.0375 (2) | 0.34861 (19) | 0.79193 (16) | 0.0195 (4) | |
H13 | −0.1441 | 0.3396 | 0.7890 | 0.023* | |
C14 | 0.0178 (2) | 0.35885 (19) | 0.90250 (16) | 0.0213 (4) | |
H14A | 0.1236 | 0.3681 | 0.9107 | 0.026* | |
H14B | −0.0491 | 0.3569 | 0.9726 | 0.026* | |
N21 | 0.72616 (18) | 0.81019 (17) | 0.70187 (15) | 0.0163 (3) | |
H21A | 0.670 (3) | 0.729 (3) | 0.699 (2) | 0.053 (7)* | |
H21B | 0.675 (2) | 0.880 (2) | 0.7549 (18) | 0.023 (5)* | |
H21C | 0.734 (3) | 0.847 (2) | 0.623 (2) | 0.037 (6)* | |
C22 | 0.8872 (2) | 0.7596 (2) | 0.74249 (19) | 0.0266 (5) | |
H22A | 0.9356 | 0.6839 | 0.6888 | 0.032* | |
H22B | 0.8813 | 0.7213 | 0.8263 | 0.032* | |
C23 | 0.9854 (3) | 0.8799 (3) | 0.7381 (3) | 0.0480 (7) | |
H23 | 1.0230 | 0.9037 | 0.6593 | 0.058* | |
C24 | 1.0244 (3) | 0.9520 (3) | 0.8213 (3) | 0.0649 (9) | |
H24A | 0.9915 | 0.9347 | 0.9028 | 0.078* | |
H24B | 1.0869 | 1.0241 | 0.8033 | 0.078* | |
O31 | 0.56273 (14) | 0.40484 (12) | 0.67627 (10) | 0.0164 (3) | |
O32 | 0.70239 (14) | 0.54666 (12) | 0.56148 (10) | 0.0167 (3) | |
C33 | 0.64907 (19) | 0.43020 (17) | 0.58151 (15) | 0.0129 (4) | |
C34 | 0.6844 (2) | 0.31171 (17) | 0.48796 (15) | 0.0156 (4) | |
H34A | 0.6139 | 0.3315 | 0.4202 | 0.019* | |
H34B | 0.7911 | 0.3127 | 0.4543 | 0.019* | |
C35 | 0.6679 (2) | 0.16362 (18) | 0.53950 (16) | 0.0195 (4) | |
H35A | 0.7512 | 0.1369 | 0.5966 | 0.023* | |
H35B | 0.5683 | 0.1670 | 0.5864 | 0.023* | |
C36 | 0.6745 (2) | 0.04877 (18) | 0.44309 (15) | 0.0142 (4) | |
O37 | 0.60445 (14) | 0.08573 (12) | 0.34227 (10) | 0.0178 (3) | |
H37 | 0.614 (3) | −0.012 (3) | 0.275 (2) | 0.060 (7)* | |
O38 | 0.73921 (15) | −0.07378 (12) | 0.46355 (11) | 0.0199 (3) | |
O41 | 0.62286 (14) | 0.88262 (12) | 1.20228 (10) | 0.0168 (3) | |
O42 | 0.39008 (14) | 0.97603 (12) | 1.13231 (10) | 0.0177 (3) | |
C43 | 0.5051 (2) | 0.88300 (18) | 1.13021 (14) | 0.0135 (4) | |
C44 | 0.5199 (2) | 0.76104 (17) | 1.04077 (15) | 0.0153 (4) | |
H44A | 0.5367 | 0.6717 | 1.0871 | 0.018* | |
H44B | 0.6118 | 0.7668 | 0.9860 | 0.018* | |
C45 | 0.3767 (2) | 0.75980 (18) | 0.96308 (15) | 0.0159 (4) | |
H45A | 0.2854 | 0.7521 | 1.0181 | 0.019* | |
H45B | 0.3586 | 0.8503 | 0.9186 | 0.019* | |
C46 | 0.3904 (2) | 0.64079 (18) | 0.87107 (15) | 0.0145 (4) | |
O47 | 0.53341 (14) | 0.60086 (13) | 0.82691 (11) | 0.0182 (3) | |
H47 | 0.543 (3) | 0.518 (3) | 0.758 (3) | 0.084 (10)* | |
O48 | 0.27396 (14) | 0.58861 (13) | 0.83964 (11) | 0.0193 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N11 | 0.0163 (8) | 0.0133 (8) | 0.0138 (8) | −0.0028 (6) | −0.0011 (6) | −0.0018 (6) |
C12 | 0.0158 (9) | 0.0179 (9) | 0.0181 (9) | −0.0025 (7) | −0.0045 (7) | −0.0022 (7) |
C13 | 0.0149 (9) | 0.0204 (10) | 0.0235 (10) | −0.0042 (7) | 0.0008 (8) | −0.0010 (8) |
C14 | 0.0201 (10) | 0.0238 (10) | 0.0211 (10) | −0.0081 (8) | 0.0034 (8) | 0.0000 (8) |
N21 | 0.0194 (8) | 0.0115 (8) | 0.0177 (8) | −0.0008 (7) | −0.0016 (7) | −0.0008 (7) |
C22 | 0.0207 (10) | 0.0257 (11) | 0.0321 (11) | 0.0027 (8) | −0.0028 (8) | 0.0018 (9) |
C23 | 0.0229 (12) | 0.0636 (17) | 0.0608 (16) | −0.0184 (12) | 0.0116 (11) | −0.0269 (14) |
C24 | 0.0543 (18) | 0.0384 (16) | 0.104 (2) | −0.0198 (13) | 0.0227 (17) | −0.0188 (16) |
O31 | 0.0208 (7) | 0.0143 (6) | 0.0147 (6) | −0.0052 (5) | 0.0034 (5) | −0.0038 (5) |
O32 | 0.0240 (7) | 0.0115 (6) | 0.0155 (6) | −0.0061 (5) | −0.0002 (5) | −0.0009 (5) |
C33 | 0.0129 (8) | 0.0136 (9) | 0.0125 (8) | −0.0008 (7) | −0.0043 (7) | −0.0006 (7) |
C34 | 0.0190 (9) | 0.0133 (9) | 0.0146 (9) | −0.0026 (7) | 0.0022 (7) | −0.0022 (7) |
C35 | 0.0311 (11) | 0.0140 (9) | 0.0136 (9) | −0.0027 (8) | −0.0036 (8) | −0.0015 (7) |
C36 | 0.0150 (9) | 0.0144 (9) | 0.0137 (9) | −0.0042 (7) | 0.0015 (7) | −0.0004 (7) |
O37 | 0.0251 (7) | 0.0123 (6) | 0.0161 (6) | 0.0000 (5) | −0.0060 (5) | −0.0037 (5) |
O38 | 0.0294 (7) | 0.0124 (6) | 0.0169 (6) | 0.0024 (5) | −0.0022 (5) | −0.0007 (5) |
O41 | 0.0213 (7) | 0.0137 (6) | 0.0158 (6) | −0.0016 (5) | −0.0057 (5) | −0.0031 (5) |
O42 | 0.0197 (7) | 0.0157 (6) | 0.0174 (6) | 0.0010 (5) | −0.0019 (5) | −0.0045 (5) |
C43 | 0.0186 (9) | 0.0118 (8) | 0.0109 (8) | −0.0061 (7) | 0.0017 (7) | 0.0009 (7) |
C44 | 0.0215 (9) | 0.0108 (8) | 0.0136 (8) | −0.0021 (7) | −0.0013 (7) | −0.0007 (7) |
C45 | 0.0177 (9) | 0.0162 (9) | 0.0147 (9) | −0.0053 (7) | 0.0015 (7) | −0.0037 (7) |
C46 | 0.0199 (9) | 0.0123 (9) | 0.0118 (8) | −0.0041 (7) | −0.0002 (7) | 0.0020 (7) |
O47 | 0.0195 (7) | 0.0168 (7) | 0.0188 (6) | −0.0047 (5) | 0.0026 (5) | −0.0060 (5) |
O48 | 0.0207 (7) | 0.0194 (7) | 0.0196 (6) | −0.0087 (5) | −0.0007 (5) | −0.0051 (5) |
N11—C12 | 1.487 (2) | O32—C33 | 1.253 (2) |
N11—H11A | 0.94 (2) | C33—C34 | 1.516 (2) |
N11—H11B | 0.95 (2) | C34—C35 | 1.515 (2) |
N11—H11C | 0.90 (2) | C34—H34A | 0.9700 |
C12—C13 | 1.490 (2) | C34—H34B | 0.9700 |
C12—H12A | 0.9700 | C35—C36 | 1.513 (2) |
C12—H12B | 0.9700 | C35—H35A | 0.9700 |
C13—C14 | 1.314 (2) | C35—H35B | 0.9700 |
C13—H13 | 0.9300 | C36—O38 | 1.239 (2) |
C14—H14A | 0.9300 | C36—O37 | 1.288 (2) |
C14—H14B | 0.9300 | O37—H37 | 1.18 (3) |
N21—C22 | 1.484 (2) | O41—C43 | 1.301 (2) |
N21—H21A | 0.95 (3) | O42—C43 | 1.235 (2) |
N21—H21B | 0.93 (2) | C43—C44 | 1.508 (2) |
N21—H21C | 0.92 (2) | C44—C45 | 1.518 (2) |
C22—C23 | 1.494 (3) | C44—H44A | 0.9700 |
C22—H22A | 0.9700 | C44—H44B | 0.9700 |
C22—H22B | 0.9700 | C45—C46 | 1.505 (2) |
C23—C24 | 1.220 (4) | C45—H45A | 0.9700 |
C23—H23 | 0.9300 | C45—H45B | 0.9700 |
C24—H24A | 0.9300 | C46—O48 | 1.230 (2) |
C24—H24B | 0.9300 | C46—O47 | 1.308 (2) |
O31—C33 | 1.273 (2) | O47—H47 | 1.08 (3) |
O31—H47 | 1.39 (3) | ||
C12—N11—H11A | 113.9 (12) | O32—C33—C34 | 119.48 (14) |
C12—N11—H11B | 107.5 (12) | O31—C33—C34 | 116.77 (14) |
H11A—N11—H11B | 104.3 (16) | C35—C34—C33 | 114.54 (14) |
C12—N11—H11C | 110.7 (14) | C35—C34—H34A | 108.6 |
H11A—N11—H11C | 110.4 (17) | C33—C34—H34A | 108.6 |
H11B—N11—H11C | 109.9 (18) | C35—C34—H34B | 108.6 |
N11—C12—C13 | 113.82 (14) | C33—C34—H34B | 108.6 |
N11—C12—H12A | 108.8 | H34A—C34—H34B | 107.6 |
C13—C12—H12A | 108.8 | C36—C35—C34 | 114.80 (14) |
N11—C12—H12B | 108.8 | C36—C35—H35A | 108.6 |
C13—C12—H12B | 108.8 | C34—C35—H35A | 108.6 |
H12A—C12—H12B | 107.7 | C36—C35—H35B | 108.6 |
C14—C13—C12 | 127.08 (17) | C34—C35—H35B | 108.6 |
C14—C13—H13 | 116.5 | H35A—C35—H35B | 107.5 |
C12—C13—H13 | 116.5 | O38—C36—O37 | 123.12 (15) |
C13—C14—H14A | 120.0 | O38—C36—C35 | 121.04 (15) |
C13—C14—H14B | 120.0 | O37—C36—C35 | 115.80 (15) |
H14A—C14—H14B | 120.0 | C36—O37—H37 | 110.1 (12) |
C22—N21—H21A | 108.0 (14) | O42—C43—O41 | 123.53 (15) |
C22—N21—H21B | 111.4 (12) | O42—C43—C44 | 121.67 (15) |
H21A—N21—H21B | 111.1 (19) | O41—C43—C44 | 114.79 (14) |
C22—N21—H21C | 108.6 (14) | C43—C44—C45 | 113.51 (14) |
H21A—N21—H21C | 108 (2) | C43—C44—H44A | 108.9 |
H21B—N21—H21C | 110.0 (18) | C45—C44—H44A | 108.9 |
N21—C22—C23 | 110.26 (17) | C43—C44—H44B | 108.9 |
N21—C22—H22A | 109.6 | C45—C44—H44B | 108.9 |
C23—C22—H22A | 109.6 | H44A—C44—H44B | 107.7 |
N21—C22—H22B | 109.6 | C46—C45—C44 | 114.39 (14) |
C23—C22—H22B | 109.6 | C46—C45—H45A | 108.7 |
H22A—C22—H22B | 108.1 | C44—C45—H45A | 108.7 |
C24—C23—C22 | 130.4 (3) | C46—C45—H45B | 108.7 |
C24—C23—H23 | 114.8 | C44—C45—H45B | 108.7 |
C22—C23—H23 | 114.8 | H45A—C45—H45B | 107.6 |
C23—C24—H24A | 120.0 | O48—C46—O47 | 123.71 (15) |
C23—C24—H24B | 120.0 | O48—C46—C45 | 121.43 (15) |
H24A—C24—H24B | 120.0 | O47—C46—C45 | 114.85 (15) |
C33—O31—H47 | 112.0 (12) | C46—O47—H47 | 115.2 (16) |
O32—C33—O31 | 123.73 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
N11—H11A···O48 | 0.94 (2) | 1.89 (2) | 2.8275 (19) | 174.4 (17) |
N11—H11B···O32i | 0.95 (2) | 1.88 (2) | 2.8107 (19) | 166.9 (18) |
N11—H11C···O41ii | 0.90 (2) | 1.95 (2) | 2.844 (2) | 172 (2) |
N21—H21A···O32 | 0.95 (3) | 2.28 (3) | 2.972 (2) | 128.5 (19) |
N21—H21A···O47 | 0.95 (3) | 2.21 (3) | 2.994 (2) | 138.7 (19) |
N21—H21B···O42iii | 0.93 (2) | 1.86 (2) | 2.786 (2) | 169.2 (17) |
N21—H21C···O38iv | 0.92 (2) | 1.86 (2) | 2.7809 (19) | 177 (2) |
O37—H37···O41v | 1.18 (3) | 1.28 (3) | 2.4510 (15) | 180 (3) |
O47—H47···O31 | 1.08 (3) | 1.39 (3) | 2.4707 (15) | 176 (3) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z+2; (iii) −x+1, −y+2, −z+2; (iv) x, y+1, z; (v) x, y−1, z−1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N11—H11A···O48 | 0.94 (2) | 1.89 (2) | 2.8275 (19) | 174.4 (17) |
N11—H11B···O32i | 0.95 (2) | 1.88 (2) | 2.8107 (19) | 166.9 (18) |
N11—H11C···O41ii | 0.90 (2) | 1.95 (2) | 2.844 (2) | 172 (2) |
N21—H21A···O32 | 0.95 (3) | 2.28 (3) | 2.972 (2) | 128.5 (19) |
N21—H21A···O47 | 0.95 (3) | 2.21 (3) | 2.994 (2) | 138.7 (19) |
N21—H21B···O42iii | 0.93 (2) | 1.86 (2) | 2.786 (2) | 169.2 (17) |
N21—H21C···O38iv | 0.92 (2) | 1.86 (2) | 2.7809 (19) | 177 (2) |
O37—H37···O41v | 1.18 (3) | 1.28 (3) | 2.4510 (15) | 180 (3) |
O47—H47···O31 | 1.08 (3) | 1.39 (3) | 2.4707 (15) | 176 (3) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z+2; (iii) −x+1, −y+2, −z+2; (iv) x, y+1, z; (v) x, y−1, z−1. |
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Barnes, J. C. & Weakley, T. J. R. (2000). Acta Cryst. C56, e346–e347. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bhardwaj, R. M., Johnston, B. F., Oswald, I. D. H. & Florence, A. J. (2013). Acta Cryst. C69, 1273–1278. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bruni, G., Maietta, M., Scotti, F., Maggi, L., Bini, M., Ferrari, S., Capsoni, D., Boiocchi, M., Berbenni, V., Milanese, C., Girella, A. & Marini, A. (2013). Acta Cryst. B69, 362–370. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ejsmont, K. (2007). Acta Cryst. E63, o107–o109. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Kashino, S., Taka, J., Yoshida, T., Kubozono, Y., Ishida, H. & Maeda, H. (1998). Acta Cryst. B54, 889–894. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Khorasani, S. & Fernandes, M. A. (2012). Acta Cryst. E68, o1204. CSD CrossRef IUCr Journals Google Scholar
Lemmerer, A. (2011). Cryst. Growth Des. 11, 583–593. Web of Science CSD CrossRef CAS Google Scholar
MacDonald, J. C., Doeewstein, C. P. & Pilley, M. M. (2001). Cryst. Growth Des. 1, 29–38. Web of Science CSD CrossRef CAS Google Scholar
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Saraswathi, N. T. & Vijayan, M. (2002). Acta Cryst. B58, 734–739. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76. Web of Science CrossRef CAS Google Scholar
Vaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2001). J. Chem. Soc. Dalton Trans. pp. 699–706. Web of Science CSD CrossRef Google Scholar
Vaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2002). J. Mol. Struct. 608, 123–133. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Crystal engineering is extremely fast growing area of experimental chemistry leading to new materials with controlled and understood nature. Hydrogen bonding plays an important role in organizing molecules, assembling them to create supramolecules and controlling their dimensions in one-, two- or three-dimensions (Khorasani et al., 2012). The adducts of succinic acid and amines have strong N—H···O and O—H···O hydrogen bonds, thus they can be used to align molecules in chosen directions, as building blocks for the construction of supramolecular structures. (Khorasani et al., 2012; Lemmerer, 2011).
There are three characteristic structural motifs in ammonium dicarboxylate salts: (i) linear chains of dicarboxylic acids formed by strong hydrogen bonds; (ii) dimers of dicarboxylic acid molecules; (iii) isolated oxalate monoanions or dianion units (for example: Kashino et al., 1998; Barnes & Weakley 2000; MacDonald et al., 2001; Vaidhyanathan et al., 2001, 2002; Saraswathi & Vijayan 2002; and Ejsmont, 2007).
The independent part of the unit cell of the title salt, (I), consists with two allyloammonium cations and two hydrogen succinate anions (Fig. 1). A geometry of amonium cations is normal (CSD; CONQUEST Version 1.16; Allen, 2002) and comparable with those found in other crystal structures which include this cation (Allen, 2002). The N11 cation has perfect syn-periplanar (cis) conformation with N11–C12–C13–C14 torsion angle of 0.4 (3)°, while N21 cataion is characterized by gauche conformation (the torsion angle N21–C22–C23—C24 amounts 102.5 (3)°). Three out of four carboxalic groups are twisted with respect to the central C–CH2–CH2–C group; the remaining one being rather co-planar.
In the crystal structure of (I), there are two linear or nearly linear O–H···O hydrogen bonds between the hydrogen succinate, which can be identified as a very strong interactions (Steiner, 2002). The O···O distances in these interactions are close to that observed for O–H···O hydrogen bonds formed between the monoanionic oxalate units in the structures of diethylammonium hydrogen oxalate (Ejsmont, 2007). These O–H···O hydrogen bonds forming helical chains along <011> direction. The allylammonium cations are linked to polianionic chains through the N–H···O hydrogen bonds (Table 2, Fig. 2).