organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o917-o918

Crystal structure of allyl­ammonium hydrogen succinate at 100 K

aFaculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
*Correspondence e-mail: eismont@uni.opole.pl

Edited by R. F. Baggio, Comisión Nacional de Energía Atómica, Argentina (Received 24 June 2014; accepted 4 July 2014; online 1 August 2014)

The asymmetric unit of the title compound, C2H8N+·C4H5O4, consists of two allyl­ammonium cations and two hydrogen succinate anions (Z′ = 2). One of the cations has a near-perfect syn-periplanar (cis) conformation with an N—C—C—C torsion angle of 0.4 (3)°, while the other is characterized by a gauche conformation and a torsion angle of 102.5 (3)°. Regarding the anions, three out of four carboxilic groups are twisted with respect to the central C–CH2–CH2–C group [dihedral angles = 24.4 (2), 31.2 (2) and 40.4 (2)°], the remaining one being instead almost coplanar, with a dihedral angle of 4.0 (2)°. In the crystal, there are two very short, near linear O—H⋯O hydrogen bonds between anions, with the H atoms shifted notably from the donor O towards the O⋯O midpoint. These O—H⋯O hydrogen bonds form helical chains along the [011] which are further linked to each other through N—H⋯O hydrogen bonds (involving all the available NH groups), forming layers lying parallel to (100).

1. Related literature

For other crystal structures of succinate salts with amines, see: Bhardwaj et al. (2013[Bhardwaj, R. M., Johnston, B. F., Oswald, I. D. H. & Florence, A. J. (2013). Acta Cryst. C69, 1273-1278.]); Bruni et al. (2013[Bruni, G., Maietta, M., Scotti, F., Maggi, L., Bini, M., Ferrari, S., Capsoni, D., Boiocchi, M., Berbenni, V., Milanese, C., Girella, A. & Marini, A. (2013). Acta Cryst. B69, 362-370.]); Khorasani & Fernandes (2012[Khorasani, S. & Fernandes, M. A. (2012). Acta Cryst. E68, o1204.]). For the characteristic structural motifs in ammonium di­carboxyl­ate salts, see: Kashino et al. (1998[Kashino, S., Taka, J., Yoshida, T., Kubozono, Y., Ishida, H. & Maeda, H. (1998). Acta Cryst. B54, 889-894.]); Barnes & Weakley (2000[Barnes, J. C. & Weakley, T. J. R. (2000). Acta Cryst. C56, e346-e347.]); MacDonald et al. (2001[MacDonald, J. C., Doeewstein, C. P. & Pilley, M. M. (2001). Cryst. Growth Des. 1, 29-38.]); Vaidhyanathan et al. (2001[Vaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2001). J. Chem. Soc. Dalton Trans. pp. 699-706.], 2002[Vaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2002). J. Mol. Struct. 608, 123-133.]); Saraswathi & Vijayan (2002[Saraswathi, N. T. & Vijayan, M. (2002). Acta Cryst. B58, 734-739.]); Ejsmont (2007[Ejsmont, K. (2007). Acta Cryst. E63, o107-o109.]). Salts of succinic acid and amines have strong N—H⋯O and O—H⋯O hydrogen bonds and are thus used as building blocks for the construction of supra­molecular structures, see: Khorasani et al. (2012[Khorasani, S. & Fernandes, M. A. (2012). Acta Cryst. E68, o1204.]); Lemmerer (2011[Lemmerer, A. (2011). Cryst. Growth Des. 11, 583-593.]). For hydrogen bonding, see: Steiner (2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C3H8N+·C4H5O4

  • Mr = 175.19

  • Triclinic, [P \overline 1]

  • a = 8.5649 (3) Å

  • b = 9.4364 (3) Å

  • c = 10.8051 (4) Å

  • α = 88.838 (3)°

  • β = 87.482 (3)°

  • γ = 82.843 (3)°

  • V = 865.55 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.15 mm

2.2. Data collection

  • Oxford Diffraction Xcalibur diffractometer

  • 5454 measured reflections

  • 3013 independent reflections

  • 2373 reflections with I > 2σI)

  • Rint = 0.014

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.093

  • S = 1.10

  • 3013 reflections

  • 249 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11A⋯O48 0.94 (2) 1.89 (2) 2.8275 (19) 174.4 (17)
N11—H11B⋯O32i 0.95 (2) 1.88 (2) 2.8107 (19) 166.9 (18)
N11—H11C⋯O41ii 0.90 (2) 1.95 (2) 2.844 (2) 172 (2)
N21—H21A⋯O32 0.95 (3) 2.28 (3) 2.972 (2) 128.5 (19)
N21—H21A⋯O47 0.95 (3) 2.21 (3) 2.994 (2) 138.7 (19)
N21—H21B⋯O42iii 0.93 (2) 1.86 (2) 2.786 (2) 169.2 (17)
N21—H21C⋯O38iv 0.92 (2) 1.86 (2) 2.7809 (19) 177 (2)
O37—H37⋯O41v 1.18 (3) 1.28 (3) 2.4510 (15) 180 (3)
O47—H47⋯O31 1.08 (3) 1.39 (3) 2.4707 (15) 176 (3)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z+2; (iii) -x+1, -y+2, -z+2; (iv) x, y+1, z; (v) x, y-1, z-1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Crystal engineering is extremely fast growing area of experimental chemistry leading to new materials with controlled and understood nature. Hydrogen bonding plays an important role in organizing molecules, assembling them to create supramolecules and controlling their dimensions in one-, two- or three-dimensions (Khorasani et al., 2012). The adducts of succinic acid and amines have strong N—H···O and O—H···O hydrogen bonds, thus they can be used to align molecules in chosen directions, as building blocks for the construction of supramolecular structures. (Khorasani et al., 2012; Lemmerer, 2011).

There are three characteristic structural motifs in ammonium dicarboxylate salts: (i) linear chains of dicarboxylic acids formed by strong hydrogen bonds; (ii) dimers of dicarboxylic acid molecules; (iii) isolated oxalate monoanions or dianion units (for example: Kashino et al., 1998; Barnes & Weakley 2000; MacDonald et al., 2001; Vaidhyanathan et al., 2001, 2002; Saraswathi & Vijayan 2002; and Ejsmont, 2007).

The independent part of the unit cell of the title salt, (I), consists with two allyloammonium cations and two hydrogen succinate anions (Fig. 1). A geometry of amonium cations is normal (CSD; CONQUEST Version 1.16; Allen, 2002) and comparable with those found in other crystal structures which include this cation (Allen, 2002). The N11 cation has perfect syn-periplanar (cis) conformation with N11–C12–C13–C14 torsion angle of 0.4 (3)°, while N21 cataion is characterized by gauche conformation (the torsion angle N21–C22–C23—C24 amounts 102.5 (3)°). Three out of four carboxalic groups are twisted with respect to the central C–CH2–CH2–C group; the remaining one being rather co-planar.

In the crystal structure of (I), there are two linear or nearly linear O–H···O hydrogen bonds between the hydrogen succinate, which can be identified as a very strong interactions (Steiner, 2002). The O···O distances in these interactions are close to that observed for O–H···O hydrogen bonds formed between the monoanionic oxalate units in the structures of diethylammonium hydrogen oxalate (Ejsmont, 2007). These O–H···O hydrogen bonds forming helical chains along <011> direction. The allylammonium cations are linked to polianionic chains through the N–H···O hydrogen bonds (Table 2, Fig. 2).

Related literature top

For other crystal structures of succinate salts with amines, see: Bhardwaj et al. (2013); Bruni et al. (2013); Khorasani & Fernandes (2012). For the characteristic structural motifs in ammonium dicarboxylate salts, see: Kashino et al. (1998); Barnes & Weakley (2000); MacDonald et al. (2001); Vaidhyanathan et al. (2001, 2002); Saraswathi & Vijayan (2002); Ejsmont (2007). Adducts of succinic acid and amines have strong N—H···O and O—H···O hydrogen bonds and are thus used as building blocks for the construction of supramolecular structures, see: Khorasani et al. (2012); Lemmerer (2011). For hydrogen bonding, see: Steiner (2002). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

Crystals of (I) were grown at room temperature by slow evaporation of an aqueous solution containing allylamine and succinatic acid in a 1:1 stoichiometric ratio.

Refinement top

The H atoms attached to atoms O and N were located in difference electron density maps and were freely refined with isotropic displacement factors [O–H = 1.08 (3) - 1.18 (3) and N–H = 0.90 (2) - 0.95 (2) Å]. The remaining H atoms were positioned geometrically and treated as riding on their parent C atoms, with C–H distances of 0.95 for idealized secondary CH2, 0.95 for CH and 0.99 Å for idealized terminal X=CH2 and with Uiso(H) = 1.2Ueq(C). Probably due to libration, the ending C23C24 bond appears significantly shorter that its corresponding C13C14 one.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% displacement ellipsoids. Hydrogen bonds are shown as dotted lines.
[Figure 2] Fig. 2. Packing diagram of (I) viewed along the b axis, showing (sideways) the (100) 2D structure defined by the hydrogen-bonding network (dotted lines).
(I) top
Crystal data top
C3H8N+·C4H5O4Z = 4
Mr = 175.19F(000) = 376
Triclinic, P1Dx = 1.344 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5649 (3) ÅCell parameters from 5943 reflections
b = 9.4364 (3) Åθ = 2.9–26.0°
c = 10.8051 (4) ŵ = 0.11 mm1
α = 88.838 (3)°T = 100 K
β = 87.482 (3)°Prism, colourless
γ = 82.843 (3)°0.30 × 0.20 × 0.15 mm
V = 865.55 (5) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2373 reflections with I > 2σI)
Radiation source: fine-focus sealed tubeRint = 0.014
Graphite monochromatorθmax = 25.0°, θmin = 2.9°
ω–scanh = 1010
5454 measured reflectionsk = 1111
3013 independent reflectionsl = 812
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0483P)2 + 0.1223P]
where P = (Fo2 + 2Fc2)/3
3013 reflections(Δ/σ)max < 0.001
249 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
C3H8N+·C4H5O4γ = 82.843 (3)°
Mr = 175.19V = 865.55 (5) Å3
Triclinic, P1Z = 4
a = 8.5649 (3) ÅMo Kα radiation
b = 9.4364 (3) ŵ = 0.11 mm1
c = 10.8051 (4) ÅT = 100 K
α = 88.838 (3)°0.30 × 0.20 × 0.15 mm
β = 87.482 (3)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2373 reflections with I > 2σI)
5454 measured reflectionsRint = 0.014
3013 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.57 e Å3
3013 reflectionsΔρmin = 0.50 e Å3
249 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.22162 (17)0.36564 (17)0.68154 (14)0.0143 (3)
H11A0.240 (2)0.444 (2)0.7297 (18)0.022 (5)*
H11B0.263 (2)0.387 (2)0.601 (2)0.026 (5)*
H11C0.275 (3)0.284 (2)0.711 (2)0.035 (6)*
C120.0522 (2)0.34987 (19)0.67065 (15)0.0171 (4)
H12A0.04400.26160.62840.021*
H12B0.00410.42790.61990.021*
C130.0375 (2)0.34861 (19)0.79193 (16)0.0195 (4)
H130.14410.33960.78900.023*
C140.0178 (2)0.35885 (19)0.90250 (16)0.0213 (4)
H14A0.12360.36810.91070.026*
H14B0.04910.35690.97260.026*
N210.72616 (18)0.81019 (17)0.70187 (15)0.0163 (3)
H21A0.670 (3)0.729 (3)0.699 (2)0.053 (7)*
H21B0.675 (2)0.880 (2)0.7549 (18)0.023 (5)*
H21C0.734 (3)0.847 (2)0.623 (2)0.037 (6)*
C220.8872 (2)0.7596 (2)0.74249 (19)0.0266 (5)
H22A0.93560.68390.68880.032*
H22B0.88130.72130.82630.032*
C230.9854 (3)0.8799 (3)0.7381 (3)0.0480 (7)
H231.02300.90370.65930.058*
C241.0244 (3)0.9520 (3)0.8213 (3)0.0649 (9)
H24A0.99150.93470.90280.078*
H24B1.08691.02410.80330.078*
O310.56273 (14)0.40484 (12)0.67627 (10)0.0164 (3)
O320.70239 (14)0.54666 (12)0.56148 (10)0.0167 (3)
C330.64907 (19)0.43020 (17)0.58151 (15)0.0129 (4)
C340.6844 (2)0.31171 (17)0.48796 (15)0.0156 (4)
H34A0.61390.33150.42020.019*
H34B0.79110.31270.45430.019*
C350.6679 (2)0.16362 (18)0.53950 (16)0.0195 (4)
H35A0.75120.13690.59660.023*
H35B0.56830.16700.58640.023*
C360.6745 (2)0.04877 (18)0.44309 (15)0.0142 (4)
O370.60445 (14)0.08573 (12)0.34227 (10)0.0178 (3)
H370.614 (3)0.012 (3)0.275 (2)0.060 (7)*
O380.73921 (15)0.07378 (12)0.46355 (11)0.0199 (3)
O410.62286 (14)0.88262 (12)1.20228 (10)0.0168 (3)
O420.39008 (14)0.97603 (12)1.13231 (10)0.0177 (3)
C430.5051 (2)0.88300 (18)1.13021 (14)0.0135 (4)
C440.5199 (2)0.76104 (17)1.04077 (15)0.0153 (4)
H44A0.53670.67171.08710.018*
H44B0.61180.76680.98600.018*
C450.3767 (2)0.75980 (18)0.96308 (15)0.0159 (4)
H45A0.28540.75211.01810.019*
H45B0.35860.85030.91860.019*
C460.3904 (2)0.64079 (18)0.87107 (15)0.0145 (4)
O470.53341 (14)0.60086 (13)0.82691 (11)0.0182 (3)
H470.543 (3)0.518 (3)0.758 (3)0.084 (10)*
O480.27396 (14)0.58861 (13)0.83964 (11)0.0193 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0163 (8)0.0133 (8)0.0138 (8)0.0028 (6)0.0011 (6)0.0018 (6)
C120.0158 (9)0.0179 (9)0.0181 (9)0.0025 (7)0.0045 (7)0.0022 (7)
C130.0149 (9)0.0204 (10)0.0235 (10)0.0042 (7)0.0008 (8)0.0010 (8)
C140.0201 (10)0.0238 (10)0.0211 (10)0.0081 (8)0.0034 (8)0.0000 (8)
N210.0194 (8)0.0115 (8)0.0177 (8)0.0008 (7)0.0016 (7)0.0008 (7)
C220.0207 (10)0.0257 (11)0.0321 (11)0.0027 (8)0.0028 (8)0.0018 (9)
C230.0229 (12)0.0636 (17)0.0608 (16)0.0184 (12)0.0116 (11)0.0269 (14)
C240.0543 (18)0.0384 (16)0.104 (2)0.0198 (13)0.0227 (17)0.0188 (16)
O310.0208 (7)0.0143 (6)0.0147 (6)0.0052 (5)0.0034 (5)0.0038 (5)
O320.0240 (7)0.0115 (6)0.0155 (6)0.0061 (5)0.0002 (5)0.0009 (5)
C330.0129 (8)0.0136 (9)0.0125 (8)0.0008 (7)0.0043 (7)0.0006 (7)
C340.0190 (9)0.0133 (9)0.0146 (9)0.0026 (7)0.0022 (7)0.0022 (7)
C350.0311 (11)0.0140 (9)0.0136 (9)0.0027 (8)0.0036 (8)0.0015 (7)
C360.0150 (9)0.0144 (9)0.0137 (9)0.0042 (7)0.0015 (7)0.0004 (7)
O370.0251 (7)0.0123 (6)0.0161 (6)0.0000 (5)0.0060 (5)0.0037 (5)
O380.0294 (7)0.0124 (6)0.0169 (6)0.0024 (5)0.0022 (5)0.0007 (5)
O410.0213 (7)0.0137 (6)0.0158 (6)0.0016 (5)0.0057 (5)0.0031 (5)
O420.0197 (7)0.0157 (6)0.0174 (6)0.0010 (5)0.0019 (5)0.0045 (5)
C430.0186 (9)0.0118 (8)0.0109 (8)0.0061 (7)0.0017 (7)0.0009 (7)
C440.0215 (9)0.0108 (8)0.0136 (8)0.0021 (7)0.0013 (7)0.0007 (7)
C450.0177 (9)0.0162 (9)0.0147 (9)0.0053 (7)0.0015 (7)0.0037 (7)
C460.0199 (9)0.0123 (9)0.0118 (8)0.0041 (7)0.0002 (7)0.0020 (7)
O470.0195 (7)0.0168 (7)0.0188 (6)0.0047 (5)0.0026 (5)0.0060 (5)
O480.0207 (7)0.0194 (7)0.0196 (6)0.0087 (5)0.0007 (5)0.0051 (5)
Geometric parameters (Å, º) top
N11—C121.487 (2)O32—C331.253 (2)
N11—H11A0.94 (2)C33—C341.516 (2)
N11—H11B0.95 (2)C34—C351.515 (2)
N11—H11C0.90 (2)C34—H34A0.9700
C12—C131.490 (2)C34—H34B0.9700
C12—H12A0.9700C35—C361.513 (2)
C12—H12B0.9700C35—H35A0.9700
C13—C141.314 (2)C35—H35B0.9700
C13—H130.9300C36—O381.239 (2)
C14—H14A0.9300C36—O371.288 (2)
C14—H14B0.9300O37—H371.18 (3)
N21—C221.484 (2)O41—C431.301 (2)
N21—H21A0.95 (3)O42—C431.235 (2)
N21—H21B0.93 (2)C43—C441.508 (2)
N21—H21C0.92 (2)C44—C451.518 (2)
C22—C231.494 (3)C44—H44A0.9700
C22—H22A0.9700C44—H44B0.9700
C22—H22B0.9700C45—C461.505 (2)
C23—C241.220 (4)C45—H45A0.9700
C23—H230.9300C45—H45B0.9700
C24—H24A0.9300C46—O481.230 (2)
C24—H24B0.9300C46—O471.308 (2)
O31—C331.273 (2)O47—H471.08 (3)
O31—H471.39 (3)
C12—N11—H11A113.9 (12)O32—C33—C34119.48 (14)
C12—N11—H11B107.5 (12)O31—C33—C34116.77 (14)
H11A—N11—H11B104.3 (16)C35—C34—C33114.54 (14)
C12—N11—H11C110.7 (14)C35—C34—H34A108.6
H11A—N11—H11C110.4 (17)C33—C34—H34A108.6
H11B—N11—H11C109.9 (18)C35—C34—H34B108.6
N11—C12—C13113.82 (14)C33—C34—H34B108.6
N11—C12—H12A108.8H34A—C34—H34B107.6
C13—C12—H12A108.8C36—C35—C34114.80 (14)
N11—C12—H12B108.8C36—C35—H35A108.6
C13—C12—H12B108.8C34—C35—H35A108.6
H12A—C12—H12B107.7C36—C35—H35B108.6
C14—C13—C12127.08 (17)C34—C35—H35B108.6
C14—C13—H13116.5H35A—C35—H35B107.5
C12—C13—H13116.5O38—C36—O37123.12 (15)
C13—C14—H14A120.0O38—C36—C35121.04 (15)
C13—C14—H14B120.0O37—C36—C35115.80 (15)
H14A—C14—H14B120.0C36—O37—H37110.1 (12)
C22—N21—H21A108.0 (14)O42—C43—O41123.53 (15)
C22—N21—H21B111.4 (12)O42—C43—C44121.67 (15)
H21A—N21—H21B111.1 (19)O41—C43—C44114.79 (14)
C22—N21—H21C108.6 (14)C43—C44—C45113.51 (14)
H21A—N21—H21C108 (2)C43—C44—H44A108.9
H21B—N21—H21C110.0 (18)C45—C44—H44A108.9
N21—C22—C23110.26 (17)C43—C44—H44B108.9
N21—C22—H22A109.6C45—C44—H44B108.9
C23—C22—H22A109.6H44A—C44—H44B107.7
N21—C22—H22B109.6C46—C45—C44114.39 (14)
C23—C22—H22B109.6C46—C45—H45A108.7
H22A—C22—H22B108.1C44—C45—H45A108.7
C24—C23—C22130.4 (3)C46—C45—H45B108.7
C24—C23—H23114.8C44—C45—H45B108.7
C22—C23—H23114.8H45A—C45—H45B107.6
C23—C24—H24A120.0O48—C46—O47123.71 (15)
C23—C24—H24B120.0O48—C46—C45121.43 (15)
H24A—C24—H24B120.0O47—C46—C45114.85 (15)
C33—O31—H47112.0 (12)C46—O47—H47115.2 (16)
O32—C33—O31123.73 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···O480.94 (2)1.89 (2)2.8275 (19)174.4 (17)
N11—H11B···O32i0.95 (2)1.88 (2)2.8107 (19)166.9 (18)
N11—H11C···O41ii0.90 (2)1.95 (2)2.844 (2)172 (2)
N21—H21A···O320.95 (3)2.28 (3)2.972 (2)128.5 (19)
N21—H21A···O470.95 (3)2.21 (3)2.994 (2)138.7 (19)
N21—H21B···O42iii0.93 (2)1.86 (2)2.786 (2)169.2 (17)
N21—H21C···O38iv0.92 (2)1.86 (2)2.7809 (19)177 (2)
O37—H37···O41v1.18 (3)1.28 (3)2.4510 (15)180 (3)
O47—H47···O311.08 (3)1.39 (3)2.4707 (15)176 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x+1, y+2, z+2; (iv) x, y+1, z; (v) x, y1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···O480.94 (2)1.89 (2)2.8275 (19)174.4 (17)
N11—H11B···O32i0.95 (2)1.88 (2)2.8107 (19)166.9 (18)
N11—H11C···O41ii0.90 (2)1.95 (2)2.844 (2)172 (2)
N21—H21A···O320.95 (3)2.28 (3)2.972 (2)128.5 (19)
N21—H21A···O470.95 (3)2.21 (3)2.994 (2)138.7 (19)
N21—H21B···O42iii0.93 (2)1.86 (2)2.786 (2)169.2 (17)
N21—H21C···O38iv0.92 (2)1.86 (2)2.7809 (19)177 (2)
O37—H37···O41v1.18 (3)1.28 (3)2.4510 (15)180 (3)
O47—H47···O311.08 (3)1.39 (3)2.4707 (15)176 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x+1, y+2, z+2; (iv) x, y+1, z; (v) x, y1, z1.
 

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBarnes, J. C. & Weakley, T. J. R. (2000). Acta Cryst. C56, e346–e347.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBhardwaj, R. M., Johnston, B. F., Oswald, I. D. H. & Florence, A. J. (2013). Acta Cryst. C69, 1273–1278.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruni, G., Maietta, M., Scotti, F., Maggi, L., Bini, M., Ferrari, S., Capsoni, D., Boiocchi, M., Berbenni, V., Milanese, C., Girella, A. & Marini, A. (2013). Acta Cryst. B69, 362–370.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEjsmont, K. (2007). Acta Cryst. E63, o107–o109.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKashino, S., Taka, J., Yoshida, T., Kubozono, Y., Ishida, H. & Maeda, H. (1998). Acta Cryst. B54, 889–894.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKhorasani, S. & Fernandes, M. A. (2012). Acta Cryst. E68, o1204.  CSD CrossRef IUCr Journals Google Scholar
First citationLemmerer, A. (2011). Cryst. Growth Des. 11, 583–593.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacDonald, J. C., Doeewstein, C. P. & Pilley, M. M. (2001). Cryst. Growth Des. 1, 29–38.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSaraswathi, N. T. & Vijayan, M. (2002). Acta Cryst. B58, 734–739.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar
First citationVaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2001). J. Chem. Soc. Dalton Trans. pp. 699–706.  Web of Science CSD CrossRef Google Scholar
First citationVaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2002). J. Mol. Struct. 608, 123–133.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o917-o918
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds