research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(acetato-κO)bis­­(pyridine-2-carboxamide oxime-κ2N,N′)cadmium ethanol disolvate

aDepartment of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
*Correspondence e-mail: shawnLau.zj@hotmail.com

Edited by R. F. Baggio, Comisión Nacional de Energía Atómica, Argentina (Received 8 July 2014; accepted 5 August 2014; online 23 August 2014)

In the title compound, [Cd(CH3COO)2(C6H7N3O)2]·2C2H5OH, the CdII atom, which lies on a twofold rotation axis, is coordinated by two monodentate acetate groups and two N,N′-chelating pyridine-2-carboxamide oxime ligands, leading to a distorted octahedral coordination sphere. The mononuclear complex mol­ecules are assembled into chains along the c-axis direction via N—H⋯O hydrogen-bonding inter­actions. These chains are further assembled by O—H⋯O hydrogen bonds involving the ethanol solvent mol­ecules into a three-dimensional supramolecular structure.

1. Chemical context

The monoanions of simple of 2-pyridyl oximes, (py)C(R)NOH (R = a non-coordinating group, e.g. H, Me, Ph etc.), are remarkable sources of homo- and heterometallic complexes with novel structures and inter­esting physical properties (Miyasaka et al., 2003[Miyasaka, H., Nezu, T., Iwahori, F., Furukawa, S., Sugimoto, K., Cleŕac, R., Sugiura, K. & Yamashita, M. (2003). Inorg. Chem. 42, 4504-4503.]; Stamatatos et al., 2007[Stamatatos, T. C., Foguet-Albiol, D., Lee, S. C., Raptopoulou, C. P., Terzis, A., Wernsdorfer, W., Hill, S. O., Perlepes, S. P. & Christou, G. (2007). J.Am.Chem.Soc. 129, 9484-9499.]). A logical extension of such studies is the investigation of the coordin­ation chemistry of analogous organic mol­ecules in which the non-donor R group is replaced by a donor group such as pyridine, cyano etc. (Alcazar et al., 2013[Alcazar, A., Cordero, B., Esteban, J., Tangoulis, V., Font-Bardia, M., Calvet, T. & Escuer, A. (2013). Dalton Trans. 42, 12334-12345.]; Escuer et al., 2011[Escuer, A., Vlahopoulou, G., Perlepes, S. P. & Mautner, F. A. (2011). Inorg. Chem. 50, 2468-2478.]). When R is an amino group, the resulting ligand is pyridine-2-amidoxime, (py)C(NH2)NOH, which belongs to the class of amidoximes. The presence of the amine functionality is expected to alter the coordination behaviour of this ligand in comparison with that of the (py)C(R)NOH (R = a non-coordinating group) ligands. The characteristics that differentiate the amino group are its coordination capability, potential for deprotonation, different electronic properties and hydrogen-bonding effects.

[Scheme 1]

The present work reports the first use of (py)C(NH2)NOH in CdII coordination chemistry and describes the synthesis and structure of the mononuclear title compound.

2. Structural commentary

The title complex consists of isolated [Cd(O2CMe)2{(py)C(NH2)NOH}2] complex mol­ecules and ethanol solvent mol­ecules. The central CdII atom is located on a twofold rotation axis (Wyckoff site 4e). The CdII atom is coordinated by two monodentate MeCO2 groups and two N,N′-chelating (py)C(NH2)NOH ligands (Fig. 1[link] and Table 1[link]). The (py)C(NH2)NOH donor atoms are the N atoms of the neutral oxime and the 2-pyridyl groups. The amino N atom of each ligand remains uncoord­in­ating, albeit participating in an extensive inter­molecular hydrogen-bonding network. Each of the two coordinating (py)C(NH2)NOH mol­ecules results in the formation of a five-membered chelate ring including a CdII atom, in which the chelate angle N1—Cd1—N1 [86.7 (2)°] is noteably larger than comparable angles found in [Cd(HCO2)2(pya)2] (pya = pyridine-2-aldoxime; Croitor et al., 2013[Croitor, L., Coropceanu, E. B., Siminel, A. V., Masunov, A. E. & Fonari, M. S. (2013). Polyhedron, 60, 140-150.]).

Table 1
Selected bond lengths (Å)

Cd1—O2 2.288 (3) Cd1—N3 2.315 (3)
Cd1—N1 2.413 (4)    
[Figure 1]
Figure 1
The title compound with displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) −x + 1, y, −z + [{3\over 2}].]

3. Supra­molecular features

Table 2[link] shows the hydrogen-bonding inter­actions. There are two strong symmetry-related intra­molecular hydrogen bonds between the unbound oxime (–O1—H1) group and uncoordinating acetate atom O3. Uncoordinating amino atom N2 acts as a donor for two hydrogen bonds; in one of these, the acceptor is coordinating atom O2 from the acetate group, which leads to the formation of chains running along the c-axis direction (Fig. 2[link]). These chains are further linked into a three-dimensional network by hydrogen bonds involving the ethanol solvent mol­ecule (O4), acting as a donor for the uncoord­in­ating carboxyl­ate O atom (O3) and as an acceptor for the remaining amino H atom H2B (Table 2[link] and Fig. 3[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.85 (1) 1.86 (4) 2.600 (5) 145 (6)
N2—H2A⋯O2ii 0.85 (1) 2.20 (2) 3.040 (5) 169 (5)
N2—H2B⋯O4 0.85 (1) 2.45 (4) 3.113 (6) 136 (5)
O4—H4A⋯O3iii 0.85 (1) 2.09 (3) 2.903 (5) 161 (8)
Symmetry codes: (i) [-x+1, y, -z+{\script{3\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
The hydrogen-bonded chain along the c axis. Dashed lines represent hydrogen bonds and H atoms bonded to C atoms have been omitted for clarity.
[Figure 3]
Figure 3
The crystal structure projected along the c axis. Dashed lines represent hydrogen bonds and H atoms bonded to C atoms have been omitted for clarity.

4. Synthesis and crystallization

A stoichiometric amount of (py)C(NH2)NOH and Cd(OAc)2·3H2O in a 2:1 ratio was dissolved in 20 ml ethanol and 10 ml DMF, and the solution left to evaporate slowly to afford colourless block-like crystals after three weeks at room temperature.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms bonded to C atoms were placed in geometrically calculated position and were refined using a riding model, with C—H = 0.93 (aromatic) or 0.96 Å (methyl) and Uiso(H) = 1.2Ueq(Caromatic) and 1.5Ueq(Cmethyl). The N- and O-bound H atoms were located in a difference map and the coordinates were refined with N—H = 0.86 (1) Å and Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O).

Table 3
Experimental details

Crystal data
Chemical formula [Cd(C2H3O2)2(C6H7N3O)2]·2C2H6O
Mr 596.92
Crystal system, space group Monoclinic, C2/c
Temperature (K) 294
a, b, c (Å) 15.894 (3), 10.9654 (17), 15.0212 (16)
β (°) 91.746 (12)
V3) 2616.7 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.89
Crystal size (mm) 0.28 × 0.26 × 0.2
 
Data collection
Diffractometer Agilent Xcalibur, Atlas, Gemini ultra
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.910, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5661, 2400, 2017
Rint 0.050
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.125, 1.05
No. of reflections 2400
No. of parameters 173
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.85, −0.48
Computer programs: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Chemical context top

The monoanions of simple of 2-pyridyl oximes, (py)C(R)NOH (R = a non-coordinating group, e.g. H, Me, Ph etc.), are remarkable sources of homo- and heterometallic complexes with novel structures and inter­esting physical properties (Miyasaka et al., 2003; Stamatatos et al., 2007). A logical extension of such studies is the investigation of the coordination chemistry of analogous organic molecules in which the non-donor R group is replaced by a donor group (e.g. pyridine, cyano etc.; Alcazar et al., 2013; Escuer et al., 2011). When R is an amino group, the resulting ligand is pyridine-2-amidoxime (systematic name: N-hy­droxy-pyridine-2-carboxamidine), (py)C(NH2)NOH, which belongs to the class of amidoximes. The presence of the amine functionality is expected to alter the coordination behaviour of this ligand in comparison with that of the (py)C(R)NOH (R = a non-coordinating group) ligands. Characteristics that differentiate the amino group are its coordination capability, potential for deprotonation, different electronic properties and hydrogen-bonding effects. In the present work, we report the first use of (py)C(NH2)NOH in CdII coordination chemistry by describing the synthesis and structure of the mononuclear titlecompound.

Structural commentary top

The title complex consists of isolated [Cd(O2CMe)2{(py)C(NH2)NOH}2] complex molecules and ethanol solvent molecules. It crystallizes in the monoclinic space group C2/c and the central CdII atom is located on a twofold axis (Wyckoff site 4e). The CdII atom is coordinated by two monodentate MeCO2- groups and two N,N'-chelating (η2)(py)C(NH2)NOH ligands (Fig. 1 and Table 1). The (py)C(NH2)NOH donor atoms are the N atoms of the neutral oxime and the 2-pyridyl groups. The amino N atom of each ligand remains uncoordinated albeit participating in an extensive inter­molecular hydrogen-bonding network. Each of the two coordinating (py)C(NH2)NOH molecules results in the formation of a five-membered chelate ring including a CdII atom, in which the chelate angle N1—Cd1—N1 [86.7 (2)°] is noteably larger than comparable angles found in [Cd(HCO2)2(pya)2] (pya = pyridine-2-aldoxime; Croitor et al., 2013) and Cd—N distances of 2.413 (4) and 2.315 (3) Å.

Supra­molecular features top

Table 2 shows the hydrogen-bonding inter­actions. There are two very strong symmetry-related intra­molecular hydrogen bonds between the unbound oxime (–O1—H1) group and uncoordinating acetate atom O3. Uncoordinating amino atom N2 acts as a donor for two hydrogen bonds; in one of these, the acceptor is coordinating atom O2 from the acetate group, which leads to the formation of chains running along the c-axis direction (Fig. 2). These chains are further linked by hydrogen bonds involving the ethanol solvent molecule (O4), acting as a donor for the uncoordinating carboxyl­ate O atom (O3) and as an acceptor for the remaining amino H atom H2B (Table 2 and Fig. 3).

Synthesis and crystallization top

A stoichiometric amount in the ratio of 2:1 of (py)C(NH2)NOH and Cd(OAc)2·3H2O were dissolved in 20 ml ethanol and 10 ml DMF, and the solution left to evaporate slowly to afford colourless block-like crystals after three weeks at room temperature.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms bonded to C atoms were placed in geometrically calculated position and were refined using a riding model, with C—H = 0.93 or 0.96 Å and Uiso(H) = 1.2Ueq(C). The N- and O-bound H atoms were located in a difference map and the coordinates were refined with N—H = 0.86 (1) Å and Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O).

Related literature top

For related literature, see: Alcazar et al. (2013); Escuer et al. (2011); Miyasaka et al. (2003); Stamatatos et al. (2007).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The title compound with displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) -x+1, y, -z+3/2.]
[Figure 2] Fig. 2. The hydrogen-bonded chain along the c axis. Dashed lines represent hydrogen bonds and H atoms bonded to C atoms have been omitted for clarity.
[Figure 3] Fig. 3. The crystal structure projected along the c axis. Dashed lines represent hydrogen bonds and H atoms bonded to C atoms have been omitted for clarity.
Bis(acetato-κO)bis(pyridine-2-carboxamide oxime-κ2N,N')cadmium ethanol disolvate top
Crystal data top
[Cd(C2H3O2)2(C6H7N3O)2]·2C2H6OF(000) = 1224
Mr = 596.92Dx = 1.515 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 15.894 (3) ÅCell parameters from 1816 reflections
b = 10.9654 (17) Åθ = 2.9–29.6°
c = 15.0212 (16) ŵ = 0.89 mm1
β = 91.746 (12)°T = 294 K
V = 2616.7 (7) Å3Block, colourless
Z = 40.28 × 0.26 × 0.2 mm
Data collection top
Agilent Xcalibur, Atlas, Gemini ultra
diffractometer
2400 independent reflections
Radiation source: Enhance (Mo) X-ray Source2017 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 10.3592 pixels mm-1θmax = 25.4°, θmin = 3.5°
ω scansh = 1916
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1311
Tmin = 0.910, Tmax = 1.000l = 1816
5661 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0689P)2]
where P = (Fo2 + 2Fc2)/3
2400 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.85 e Å3
4 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Cd(C2H3O2)2(C6H7N3O)2]·2C2H6OV = 2616.7 (7) Å3
Mr = 596.92Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.894 (3) ŵ = 0.89 mm1
b = 10.9654 (17) ÅT = 294 K
c = 15.0212 (16) Å0.28 × 0.26 × 0.2 mm
β = 91.746 (12)°
Data collection top
Agilent Xcalibur, Atlas, Gemini ultra
diffractometer
2400 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2017 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 1.000Rint = 0.050
5661 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0474 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.85 e Å3
2400 reflectionsΔρmin = 0.48 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50000.55546 (4)0.75000.0336 (2)
O10.3289 (2)0.5799 (3)0.6185 (2)0.0456 (9)
H10.323 (4)0.623 (5)0.664 (2)0.068*
O20.5829 (2)0.6898 (3)0.67588 (19)0.0448 (8)
O30.6590 (3)0.7760 (3)0.7846 (2)0.0627 (11)
N10.5479 (2)0.3954 (4)0.6536 (2)0.0349 (9)
N20.3668 (3)0.4189 (4)0.5009 (3)0.0411 (10)
H2A0.384 (3)0.381 (4)0.456 (2)0.049*
H2B0.333 (3)0.478 (3)0.493 (4)0.049*
N30.4048 (2)0.5170 (4)0.6337 (2)0.0348 (9)
C10.6196 (3)0.3347 (5)0.6661 (3)0.0510 (13)
H1A0.65280.35200.71660.061*
C20.6469 (4)0.2478 (5)0.6083 (4)0.0574 (14)
H20.69690.20590.62000.069*
C30.5988 (3)0.2237 (5)0.5326 (4)0.0548 (14)
H30.61650.16660.49140.066*
C40.5238 (3)0.2855 (4)0.5189 (3)0.0421 (12)
H40.49000.26980.46860.051*
C50.4994 (3)0.3717 (4)0.5812 (3)0.0304 (10)
C60.4200 (3)0.4393 (4)0.5716 (3)0.0307 (10)
C70.6314 (3)0.7709 (5)0.7064 (3)0.0423 (12)
C80.6594 (5)0.8661 (6)0.6421 (4)0.077 (2)
H8A0.67820.82730.58900.115*
H8B0.70470.91250.66880.115*
H8C0.61320.91940.62730.115*
O40.2093 (3)0.5194 (5)0.3968 (3)0.0762 (13)
H4A0.207 (6)0.583 (5)0.364 (5)0.114*
C90.1674 (7)0.4180 (8)0.3623 (6)0.105 (3)
H9A0.17660.35050.40320.126*
H9B0.19270.39610.30660.126*
C100.0799 (7)0.4315 (9)0.3466 (8)0.146 (5)
H10A0.05410.45650.40060.219*
H10B0.05630.35510.32710.219*
H10C0.06980.49220.30140.219*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0343 (3)0.0403 (3)0.0260 (3)0.0000.00478 (18)0.000
O10.0355 (19)0.053 (2)0.047 (2)0.0123 (16)0.0101 (15)0.0073 (16)
O20.054 (2)0.046 (2)0.0348 (17)0.0145 (18)0.0026 (14)0.0009 (15)
O30.089 (3)0.042 (2)0.055 (2)0.020 (2)0.027 (2)0.0086 (17)
N10.036 (2)0.034 (2)0.0340 (19)0.0011 (18)0.0032 (16)0.0007 (16)
N20.043 (2)0.045 (3)0.034 (2)0.005 (2)0.0100 (18)0.0086 (18)
N30.031 (2)0.040 (2)0.033 (2)0.0060 (18)0.0039 (15)0.0039 (17)
C10.039 (3)0.065 (4)0.049 (3)0.013 (3)0.012 (2)0.008 (3)
C20.048 (3)0.051 (3)0.073 (4)0.019 (3)0.004 (3)0.002 (3)
C30.058 (3)0.048 (3)0.059 (3)0.008 (3)0.008 (3)0.009 (3)
C40.046 (3)0.041 (3)0.039 (2)0.004 (2)0.001 (2)0.010 (2)
C50.035 (2)0.028 (2)0.028 (2)0.003 (2)0.0008 (18)0.0048 (17)
C60.031 (2)0.035 (2)0.026 (2)0.003 (2)0.0000 (17)0.0072 (18)
C70.043 (3)0.046 (3)0.038 (3)0.001 (2)0.001 (2)0.006 (2)
C80.097 (5)0.075 (5)0.057 (4)0.045 (4)0.008 (3)0.020 (3)
O40.081 (3)0.068 (3)0.079 (3)0.001 (3)0.021 (2)0.015 (2)
C90.148 (9)0.080 (6)0.086 (6)0.003 (6)0.029 (6)0.001 (4)
C100.139 (10)0.150 (11)0.147 (9)0.070 (8)0.041 (8)0.044 (7)
Geometric parameters (Å, º) top
Cd1—O22.288 (3)C2—C31.376 (8)
Cd1—O2i2.288 (3)C3—H30.9300
Cd1—N12.413 (4)C3—C41.381 (7)
Cd1—N1i2.413 (4)C4—H40.9300
Cd1—N3i2.315 (3)C4—C51.394 (6)
Cd1—N32.315 (3)C5—C61.468 (6)
O1—H10.846 (10)C7—C81.498 (7)
O1—N31.404 (5)C8—H8A0.9600
O2—C71.254 (6)C8—H8B0.9600
O3—C71.244 (5)C8—H8C0.9600
N1—C11.328 (6)O4—H4A0.851 (10)
N1—C51.339 (5)O4—C91.388 (10)
N2—H2A0.851 (10)C9—H9A0.9700
N2—H2B0.847 (10)C9—H9B0.9700
N2—C61.355 (6)C9—C101.412 (14)
N3—C61.291 (6)C10—H10A0.9600
C1—H1A0.9300C10—H10B0.9600
C1—C21.368 (7)C10—H10C0.9600
C2—H20.9300
O2—Cd1—O2i99.86 (18)C2—C3—C4118.9 (5)
O2—Cd1—N188.81 (13)C4—C3—H3120.5
O2i—Cd1—N1163.16 (12)C3—C4—H4120.4
O2—Cd1—N1i163.16 (12)C3—C4—C5119.3 (4)
O2i—Cd1—N1i88.81 (13)C5—C4—H4120.4
O2—Cd1—N3i96.42 (12)N1—C5—C4120.8 (4)
O2—Cd1—N397.07 (12)N1—C5—C6117.0 (4)
O2i—Cd1—N396.42 (12)C4—C5—C6122.2 (4)
O2i—Cd1—N3i97.07 (12)N2—C6—C5120.5 (4)
N1i—Cd1—N186.69 (19)N3—C6—N2123.3 (4)
N3—Cd1—N168.01 (13)N3—C6—C5116.1 (4)
N3—Cd1—N1i96.27 (13)O2—C7—C8116.7 (4)
N3i—Cd1—N1i68.01 (13)O3—C7—O2124.9 (5)
N3i—Cd1—N196.27 (13)O3—C7—C8118.3 (5)
N3i—Cd1—N3159.0 (2)C7—C8—H8A109.5
N3—O1—H1106 (4)C7—C8—H8B109.5
C7—O2—Cd1129.4 (3)C7—C8—H8C109.5
C1—N1—Cd1124.4 (3)H8A—C8—H8B109.5
C1—N1—C5119.2 (4)H8A—C8—H8C109.5
C5—N1—Cd1116.4 (3)H8B—C8—H8C109.5
H2A—N2—H2B119 (5)C9—O4—H4A116 (6)
C6—N2—H2A120 (4)O4—C9—H9A108.3
C6—N2—H2B111 (4)O4—C9—H9B108.3
O1—N3—Cd1124.9 (3)O4—C9—C10115.9 (9)
C6—N3—Cd1122.3 (3)H9A—C9—H9B107.4
C6—N3—O1112.6 (3)C10—C9—H9A108.3
N1—C1—H1A118.5C10—C9—H9B108.3
N1—C1—C2123.1 (4)C9—C10—H10A109.5
C2—C1—H1A118.5C9—C10—H10B109.5
C1—C2—H2120.7C9—C10—H10C109.5
C1—C2—C3118.7 (5)H10A—C10—H10B109.5
C3—C2—H2120.7H10A—C10—H10C109.5
C2—C3—H3120.5H10B—C10—H10C109.5
Cd1—O2—C7—O317.9 (8)N1—Cd1—N3—O1178.6 (4)
Cd1—O2—C7—C8164.0 (4)N1—Cd1—N3—C63.7 (3)
Cd1—N1—C1—C2177.2 (4)N1i—Cd1—N3—C687.6 (4)
Cd1—N1—C5—C4176.5 (3)N1—C1—C2—C31.3 (9)
Cd1—N1—C5—C64.1 (5)N1—C5—C6—N2178.9 (4)
Cd1—N3—C6—N2177.2 (3)N1—C5—C6—N30.9 (6)
Cd1—N3—C6—C53.0 (5)N3—Cd1—O2—C7157.2 (4)
O1—N3—C6—N21.7 (6)N3i—Cd1—O2—C738.9 (4)
O1—N3—C6—C5178.5 (3)N3i—Cd1—N1—C113.3 (4)
O2i—Cd1—O2—C759.4 (4)N3—Cd1—N1—C1178.9 (4)
O2i—Cd1—N1—C1155.5 (4)N3i—Cd1—N1—C5169.5 (3)
O2—Cd1—N1—C183.0 (4)N3—Cd1—N1—C53.9 (3)
O2—Cd1—N1—C594.2 (3)N3i—Cd1—N3—O1137.7 (3)
O2i—Cd1—N1—C527.3 (6)N3i—Cd1—N3—C647.4 (3)
O2i—Cd1—N3—O18.1 (4)C1—N1—C5—C40.8 (7)
O2—Cd1—N3—O192.8 (3)C1—N1—C5—C6178.6 (4)
O2i—Cd1—N3—C6177.1 (4)C1—C2—C3—C41.7 (9)
O2—Cd1—N3—C682.1 (4)C2—C3—C4—C50.9 (8)
N1—Cd1—O2—C7135.1 (4)C3—C4—C5—N10.4 (7)
N1i—Cd1—O2—C760.6 (6)C3—C4—C5—C6179.0 (4)
N1i—Cd1—N1—C180.8 (4)C4—C5—C6—N20.5 (6)
N1i—Cd1—N1—C5102.1 (3)C4—C5—C6—N3179.7 (4)
N1i—Cd1—N3—O197.6 (3)C5—N1—C1—C20.1 (8)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.85 (1)1.86 (4)2.600 (5)145 (6)
N2—H2A···O2ii0.85 (1)2.20 (2)3.040 (5)169 (5)
N2—H2B···O40.85 (1)2.45 (4)3.113 (6)136 (5)
O4—H4A···O3iii0.85 (1)2.09 (3)2.903 (5)161 (8)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1, y+1, z+1; (iii) x1/2, y+3/2, z1/2.
Selected bond lengths (Å) top
Cd1—O22.288 (3)Cd1—N32.315 (3)
Cd1—N12.413 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.846 (10)1.86 (4)2.600 (5)145 (6)
N2—H2A···O2ii0.851 (10)2.200 (15)3.040 (5)169 (5)
N2—H2B···O40.847 (10)2.45 (4)3.113 (6)136 (5)
O4—H4A···O3iii0.851 (10)2.09 (3)2.903 (5)161 (8)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1, y+1, z+1; (iii) x1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cd(C2H3O2)2(C6H7N3O)2]·2C2H6O
Mr596.92
Crystal system, space groupMonoclinic, C2/c
Temperature (K)294
a, b, c (Å)15.894 (3), 10.9654 (17), 15.0212 (16)
β (°) 91.746 (12)
V3)2616.7 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.89
Crystal size (mm)0.28 × 0.26 × 0.2
Data collection
DiffractometerAgilent Xcalibur, Atlas, Gemini ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.910, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5661, 2400, 2017
Rint0.050
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.125, 1.05
No. of reflections2400
No. of parameters173
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.85, 0.48

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Olex2 (Dolomanov et al., 2009).

 

Acknowledgements

This project was supported by the Expert Project of Key Basic Research of the Ministry of Science and Technology of China (grant No. 2003CCA00800), the Science and Technology Department of Zhejiang Province (grant No. 2006 C21105) and the Education Department of Zhejiang Province.

References

First citationAgilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAlcazar, A., Cordero, B., Esteban, J., Tangoulis, V., Font-Bardia, M., Calvet, T. & Escuer, A. (2013). Dalton Trans. 42, 12334–12345.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationCroitor, L., Coropceanu, E. B., Siminel, A. V., Masunov, A. E. & Fonari, M. S. (2013). Polyhedron, 60, 140–150.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEscuer, A., Vlahopoulou, G., Perlepes, S. P. & Mautner, F. A. (2011). Inorg. Chem. 50, 2468–2478.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMiyasaka, H., Nezu, T., Iwahori, F., Furukawa, S., Sugimoto, K., Cleŕac, R., Sugiura, K. & Yamashita, M. (2003). Inorg. Chem. 42, 4504–4503.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStamatatos, T. C., Foguet-Albiol, D., Lee, S. C., Raptopoulou, C. P., Terzis, A., Wernsdorfer, W., Hill, S. O., Perlepes, S. P. & Christou, G. (2007). J.Am.Chem.Soc. 129, 9484–9499.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds