organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1009-o1010

Crystal structure of 3-[4-(1-methyl­eth­yl)phen­yl]-1-(naphthalen-2-yl)prop-2-en-1-one

aLaboratoire de Chimie Appliqué, et Matériaux Téchnologique, Université Larbi Ben M'Hidi, 04000 Oum El Bouaghi, Algeria, and bLaboratoire des Structures, Propriétés et Interactions InterAtomiques, Université Abbes Laghrour Khenchela, 40000 Khenchela, Algeria
*Correspondence e-mail: messai.amel@yahoo.ca

Edited by R. F. Baggio, Comisión Nacional de Energía Atómica, Argentina (Received 20 July 2014; accepted 30 July 2014; online 16 August 2014)

The title compound, C22H20O, was synthesized by reacting 4-iso­propyl­benzaldehyde with 2-acetonaphtone by aldolic condensation under Claisen–Schmidt conditions. The mol­ecule consists of a naphthalene group and a benzene ring with a pendant isopropyl moiety, both rings bound by a propenone linker. The naphthalene ring system is almost planar [maximum deviation from the least-squares plane = 0.026 (10) Å] and subtends a dihedral angle of 52.31 (4)° with the benzene ring. The propenone linker, in turn, deviates slightly more from planarity [maximum deviation = 0.125 (18) Å] and has its least-squares plane oriented midway the former two, at 25.62 (6) and 28.02 (5)° from the naphthalene ring system and the benzene ring, respectively. Finally, the isopropyl group presents its CC2 plane almost perpendicular to the benzene ring, at 85.30 (4)°. No significant hydrogen bonding or ππ stacking inter­actions are found in the crystal structure.

1. Related literature

For chalcones as important starting materials or inter­mediates for the synthesis of naturally occurring flavonoids, see: Geissmann (1962[Geissmann, T. A. (1962). The Chemistry of Flavonoid Compounds. Oxford: Pergamon Press.]); Mabry et al. (1970[Mabry, T. J., Markham, K. R. & Thomas, M. B. (1970). In The Systematic Identification of Flavonoids. Berlin: Springer Verlag.]); Harborne (1988[Harborne, J. B. (1988). The Flavonoids: advances in research since 1980. London: Chapman and Hall.], 1994[Harborne, J. B. (1994). The Flavonoids: advances in research since 1986. London: Chapman and Hall.]); Wong (1970[Wong, E. (1970). Fortschr. Chem. Org. Naturst. 28, 1-73.]). For compilation and discussion of the syntheses of chalcones and their analogues, see: Dhar (1981[Dhar, D. N. (1981). In The Chemistry of Chalcones and Related Compounds. New York: Wiley-Interscience.]); Lévai (1997[Lévai, A. (1997). Khim. Geterotsikl. Soedin. pp. 747—759.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C22H20O

  • Mr = 300.40

  • Monoclinic, P 21 /c

  • a = 5.8326 (2) Å

  • b = 17.8578 (6) Å

  • c = 15.6469 (5) Å

  • β = 91.136 (3)°

  • V = 1629.42 (9) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.56 mm−1

  • T = 150 K

  • 0.60 × 0.17 × 0.17 mm

2.2. Data collection

  • Agilent Xcalibur (Atlas, Gemini ultra) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.794, Tmax = 1.000

  • 12851 measured reflections

  • 2871 independent reflections

  • 2659 reflections with I > 2sI)

  • Rint = 0.035

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.097

  • S = 1.04

  • 2871 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2004 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Comment top

Chalcones are versatile and convenient intermediates for the synthesis of a wide variety of heterocyclic compounds. The enone moiety of the molecule is a favourable unit for dipolar cycloaddition with numerous reagents providing heterocyclic compounds of different ring sizes with one or several heteroatoms. Their reactions with dinucleophiles usually result in the formation of polycyclic ring systems which may be the skeleton of important heterocyclic compounds.

Among the chalcones and their analogues are especially important starting materials or intermediates for the synthesis of naturally occurring flavonoids (Geissmann, 1962; Mabry et al.,1970; Harborne, 1988,1994; Wong, 1970) and various nitrogen-containing heterocyclic compounds. For this reason, their syntheses have been compiled and discussed in various accounts (Dhar et al., 1981; Lévai, 1997).

We report here the synthesis and the crystal structure determination of 3-[4-(1-methylethyl)phenyl]-1-(2-naphthalenyl)- 2-Propen-1-one (I). The title compound, C22H20O, was synthesized by reacting 4-isopropyl benzaldehyde with 2-acetonaphtone by aldolic condensation using Claisen-Schmidth conditions. The molecule consist basically of a naphthalene group, a benzene ring with a pendant isopropyl moiety, both rings bound by a propenone linker. The naphthalene and benzene rings are planar (maximum deviations from their L·S. planes: 0.026 (10) and 0.0148 (6) Å, respectively) subtending an angle of 52.31 (4)°. The propenone linker, in turn, deviates slightly more from planarityly (max.dev; 0.125 Å) and has its l.s. plane oriented midway the former two, at 25.62 (6) and 28.02 (5)° from each one, respectively. Finally, the isopropyl group presents its CC2 plane almost perpendicular to the benzene ring, at 85.30 (4)°. No significant hydrogen bonding nor ππ stacking interactions are found in the crystal structure.

Related literature top

For chalcones as important starting materials or intermediates for the synthesis of naturally occurring flavonoids, see: Geissmann (1962); Mabry et al. (1970); Harborne (1988, 1994); Wong (1970). For compilation and discussion of the syntheses of chalcones and their analogues, see: Dhar (1981); Lévai (1997).

Experimental top

A mixture of 2-acetonaphtone (0.01 mole) and 4-isopropyl benzaldehyde (0.01 mole) was stirred in ethanol (50 ml) and then a solution of 15 ml sodium hydroxide (0.04 mole) was added drop wase. The mixture was kept for four h at room temperature and then it was poured into crushed ice and acidified with dil. HCl. The product precipitates out as solid. Then it was filtered. Single yellow crystals of 3-[4-(1-methylethyl)phenyl]-1-(2-naphthalenyl)- 2-Propen-1-one were obtain after crystallized from ethyl acetate with 76% in yield.

Refinement top

H atoms were all located in a difference map, repositioned geometrically and further refined with riding constraints (C—H in the range 0.93–0.98 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom)

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SIR2004 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The title compound with displacement ellipsoids drawn at the 50% probability level.
3-[4-(1-Methylethyl)phenyl]-1-(naphthalen-2-yl)prop-2-en-1-one top
Crystal data top
C22H20OF(000) = 640
Mr = 300.40Dx = 1.225 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybcCell parameters from 7372 reflections
a = 5.8326 (2) Åθ = 4.9–66.8°
b = 17.8578 (6) ŵ = 0.56 mm1
c = 15.6469 (5) ÅT = 150 K
β = 91.136 (3)°Needle, colorless
V = 1629.42 (9) Å30.60 × 0.17 × 0.17 mm
Z = 4
Data collection top
Agilent Xcalibur (Atlas, Gemini ultra)
diffractometer
2871 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source2659 reflections with I > 2s˘I)
Mirror monochromatorRint = 0.035
Detector resolution: 10.4678 pixels mm-1θmax = 67.8°, θmin = 3.8°
ω scansh = 66
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 2120
Tmin = 0.794, Tmax = 1.000l = 1818
12851 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0512P)2 + 0.3775P]
where P = (Fo2 + 2Fc2)/3
2871 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C22H20OV = 1629.42 (9) Å3
Mr = 300.40Z = 4
Monoclinic, P21/cCu Kα radiation
a = 5.8326 (2) ŵ = 0.56 mm1
b = 17.8578 (6) ÅT = 150 K
c = 15.6469 (5) Å0.60 × 0.17 × 0.17 mm
β = 91.136 (3)°
Data collection top
Agilent Xcalibur (Atlas, Gemini ultra)
diffractometer
2871 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
2659 reflections with I > 2s˘I)
Tmin = 0.794, Tmax = 1.000Rint = 0.035
12851 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.04Δρmax = 0.19 e Å3
2871 reflectionsΔρmin = 0.20 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.18162 (14)0.47189 (5)0.89162 (6)0.0419 (2)
C20.97778 (19)0.48838 (6)0.89245 (7)0.0303 (3)
C30.79779 (19)0.43015 (6)0.89363 (7)0.0299 (3)
H3A0.64540.44330.88350.036*
C40.85268 (19)0.35895 (6)0.90914 (7)0.0288 (3)
H41.00340.34980.92660.035*
C50.70261 (18)0.29353 (6)0.90177 (7)0.0269 (2)
C60.48502 (19)0.29638 (6)0.86111 (7)0.0286 (2)
H60.42670.34210.84240.034*
C70.35703 (19)0.23184 (6)0.84868 (7)0.0293 (3)
H70.21470.23490.82110.035*
C80.43772 (19)0.16242 (6)0.87684 (7)0.0300 (3)
C90.3002 (2)0.09158 (7)0.85949 (8)0.0348 (3)
H90.16490.10540.82490.042*
C100.4352 (3)0.03475 (8)0.80940 (9)0.0503 (4)
H10A0.48670.05720.75750.075*
H10B0.33910.00750.79590.075*
H10C0.56530.01840.84300.075*
C110.2174 (2)0.05676 (7)0.94176 (9)0.0398 (3)
H11A0.13080.09300.97290.060*
H11B0.34700.04080.97590.060*
H11C0.12200.01440.92850.060*
C120.6506 (2)0.16017 (6)0.92011 (8)0.0337 (3)
H120.70510.11480.94130.040*
C130.78131 (19)0.22435 (6)0.93182 (7)0.0312 (3)
H130.92290.22130.96000.037*
C140.90716 (18)0.56875 (6)0.88921 (7)0.0276 (3)
C151.05481 (18)0.61962 (6)0.85525 (7)0.0275 (2)
H151.19450.60310.83470.033*
C161.00104 (18)0.69660 (6)0.85048 (7)0.0271 (2)
C171.1488 (2)0.74932 (6)0.81351 (7)0.0320 (3)
H171.28700.73340.79100.038*
C181.0921 (2)0.82339 (7)0.81026 (8)0.0371 (3)
H181.19180.85750.78580.045*
C190.8844 (2)0.84836 (7)0.84361 (8)0.0392 (3)
H190.84690.89890.84110.047*
C200.7377 (2)0.79899 (7)0.87967 (8)0.0354 (3)
H200.60070.81620.90190.042*
C210.79051 (19)0.72157 (6)0.88392 (7)0.0289 (3)
C220.64154 (19)0.66816 (7)0.91904 (7)0.0312 (3)
H220.50340.68400.94160.037*
C230.69527 (19)0.59380 (6)0.92065 (7)0.0303 (3)
H230.59190.55950.94260.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0268 (5)0.0322 (5)0.0666 (6)0.0005 (3)0.0017 (4)0.0070 (4)
C20.0276 (6)0.0309 (6)0.0323 (6)0.0010 (5)0.0008 (4)0.0019 (5)
C30.0257 (6)0.0300 (6)0.0340 (6)0.0014 (4)0.0001 (4)0.0000 (4)
C40.0255 (5)0.0315 (6)0.0295 (6)0.0010 (4)0.0004 (4)0.0009 (4)
C50.0259 (6)0.0272 (5)0.0276 (5)0.0001 (4)0.0034 (4)0.0007 (4)
C60.0281 (6)0.0269 (5)0.0310 (6)0.0024 (4)0.0004 (4)0.0021 (4)
C70.0247 (5)0.0327 (6)0.0304 (6)0.0010 (4)0.0016 (4)0.0020 (4)
C80.0297 (6)0.0300 (6)0.0304 (6)0.0036 (4)0.0013 (4)0.0023 (4)
C90.0347 (6)0.0309 (6)0.0387 (6)0.0067 (5)0.0058 (5)0.0042 (5)
C100.0622 (9)0.0414 (7)0.0477 (8)0.0157 (6)0.0102 (7)0.0098 (6)
C110.0374 (7)0.0346 (6)0.0476 (7)0.0070 (5)0.0038 (5)0.0040 (5)
C120.0325 (6)0.0270 (6)0.0414 (7)0.0000 (5)0.0036 (5)0.0062 (5)
C130.0248 (6)0.0322 (6)0.0364 (6)0.0006 (4)0.0031 (4)0.0027 (5)
C140.0259 (5)0.0289 (6)0.0281 (5)0.0029 (4)0.0025 (4)0.0001 (4)
C150.0235 (5)0.0304 (6)0.0286 (5)0.0000 (4)0.0005 (4)0.0018 (4)
C160.0267 (6)0.0287 (6)0.0257 (5)0.0021 (4)0.0032 (4)0.0012 (4)
C170.0305 (6)0.0325 (6)0.0328 (6)0.0038 (5)0.0008 (5)0.0008 (5)
C180.0422 (7)0.0309 (6)0.0380 (6)0.0081 (5)0.0029 (5)0.0033 (5)
C190.0471 (7)0.0260 (6)0.0440 (7)0.0010 (5)0.0070 (6)0.0028 (5)
C200.0351 (6)0.0325 (6)0.0383 (6)0.0038 (5)0.0031 (5)0.0078 (5)
C210.0287 (6)0.0306 (6)0.0272 (5)0.0002 (4)0.0040 (4)0.0035 (4)
C220.0261 (6)0.0374 (6)0.0304 (6)0.0008 (5)0.0024 (4)0.0036 (5)
C230.0267 (6)0.0330 (6)0.0311 (6)0.0044 (4)0.0013 (4)0.0010 (5)
Geometric parameters (Å, º) top
O1—C21.2252 (14)C11—H11C0.9600
C2—C31.4779 (16)C12—C131.3865 (16)
C2—C141.4938 (16)C12—H120.9300
C3—C41.3323 (16)C13—H130.9300
C3—H3A0.9300C14—C151.3666 (16)
C4—C51.4630 (15)C14—C231.4119 (16)
C4—H40.9300C15—C161.4116 (16)
C5—C131.3962 (16)C15—H150.9300
C5—C61.4093 (16)C16—C171.4085 (16)
C6—C71.3848 (16)C16—C211.4163 (16)
C6—H60.9300C17—C181.3643 (17)
C7—C81.3944 (16)C17—H170.9300
C7—H70.9300C18—C191.4011 (19)
C8—C121.4031 (17)C18—H180.9300
C8—C91.5192 (15)C19—C201.3592 (18)
C9—C101.5126 (19)C19—H190.9300
C9—C111.5173 (17)C20—C211.4177 (16)
C9—H90.9800C20—H200.9300
C10—H10A0.9600C21—C221.4091 (16)
C10—H10B0.9600C22—C231.3645 (17)
C10—H10C0.9600C22—H220.9300
C11—H11A0.9600C23—H230.9300
C11—H11B0.9600
O1—C2—C3121.38 (10)H11B—C11—H11C109.5
O1—C2—C14119.84 (10)C13—C12—C8121.27 (11)
C3—C2—C14118.75 (10)C13—C12—H12119.4
C4—C3—C2120.37 (10)C8—C12—H12119.4
C4—C3—H3A119.8C12—C13—C5120.71 (10)
C2—C3—H3A119.8C12—C13—H13119.6
C3—C4—C5127.34 (11)C5—C13—H13119.6
C3—C4—H4116.3C15—C14—C23119.18 (10)
C5—C4—H4116.3C15—C14—C2118.46 (10)
C13—C5—C6118.11 (10)C23—C14—C2122.36 (10)
C13—C5—C4119.20 (10)C14—C15—C16121.79 (10)
C6—C5—C4122.60 (10)C14—C15—H15119.1
C7—C6—C5120.76 (10)C16—C15—H15119.1
C7—C6—H6119.6C17—C16—C15122.37 (10)
C5—C6—H6119.6C17—C16—C21118.91 (10)
C6—C7—C8121.20 (10)C15—C16—C21118.72 (10)
C6—C7—H7119.4C18—C17—C16120.89 (11)
C8—C7—H7119.4C18—C17—H17119.6
C7—C8—C12117.89 (10)C16—C17—H17119.6
C7—C8—C9120.68 (10)C17—C18—C19120.36 (11)
C12—C8—C9121.42 (10)C17—C18—H18119.8
C10—C9—C11110.02 (11)C19—C18—H18119.8
C10—C9—C8111.90 (10)C20—C19—C18120.29 (11)
C11—C9—C8111.44 (10)C20—C19—H19119.9
C10—C9—H9107.8C18—C19—H19119.9
C11—C9—H9107.8C19—C20—C21120.93 (11)
C8—C9—H9107.8C19—C20—H20119.5
C9—C10—H10A109.5C21—C20—H20119.5
C9—C10—H10B109.5C22—C21—C16118.47 (10)
H10A—C10—H10B109.5C22—C21—C20122.91 (11)
C9—C10—H10C109.5C16—C21—C20118.62 (10)
H10A—C10—H10C109.5C23—C22—C21121.52 (10)
H10B—C10—H10C109.5C23—C22—H22119.2
C9—C11—H11A109.5C21—C22—H22119.2
C9—C11—H11B109.5C22—C23—C14120.27 (10)
H11A—C11—H11B109.5C22—C23—H23119.9
C9—C11—H11C109.5C14—C23—H23119.9
H11A—C11—H11C109.5
O1—C2—C3—C412.04 (18)C3—C2—C14—C2325.99 (16)
C14—C2—C3—C4170.07 (10)C23—C14—C15—C160.19 (17)
C2—C3—C4—C5171.37 (10)C2—C14—C15—C16179.57 (10)
C3—C4—C5—C13171.33 (11)C14—C15—C16—C17178.21 (10)
C3—C4—C5—C612.27 (18)C14—C15—C16—C211.62 (16)
C13—C5—C6—C72.28 (16)C15—C16—C17—C18179.72 (11)
C4—C5—C6—C7174.15 (10)C21—C16—C17—C180.46 (17)
C5—C6—C7—C80.81 (17)C16—C17—C18—C190.18 (18)
C6—C7—C8—C121.52 (17)C17—C18—C19—C200.11 (19)
C6—C7—C8—C9177.39 (10)C18—C19—C20—C210.32 (19)
C7—C8—C9—C10121.61 (13)C17—C16—C21—C22178.59 (10)
C12—C8—C9—C1057.26 (15)C15—C16—C21—C221.24 (15)
C7—C8—C9—C11114.72 (12)C17—C16—C21—C200.65 (16)
C12—C8—C9—C1166.40 (15)C15—C16—C21—C20179.52 (10)
C7—C8—C12—C132.40 (18)C19—C20—C21—C22178.61 (11)
C9—C8—C12—C13176.50 (11)C19—C20—C21—C160.60 (17)
C8—C12—C13—C50.94 (18)C16—C21—C22—C230.55 (17)
C6—C5—C13—C121.41 (16)C20—C21—C22—C23178.65 (11)
C4—C5—C13—C12175.14 (10)C21—C22—C23—C142.02 (17)
O1—C2—C14—C1523.27 (16)C15—C14—C23—C221.64 (17)
C3—C2—C14—C15154.66 (10)C2—C14—C23—C22177.71 (10)
O1—C2—C14—C23156.08 (11)

Experimental details

Crystal data
Chemical formulaC22H20O
Mr300.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)5.8326 (2), 17.8578 (6), 15.6469 (5)
β (°) 91.136 (3)
V3)1629.42 (9)
Z4
Radiation typeCu Kα
µ (mm1)0.56
Crystal size (mm)0.60 × 0.17 × 0.17
Data collection
DiffractometerAgilent Xcalibur (Atlas, Gemini ultra)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2013)
Tmin, Tmax0.794, 1.000
No. of measured, independent and
observed [I > 2s˘I)] reflections
12851, 2871, 2659
Rint0.035
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.097, 1.04
No. of reflections2871
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.20

Computer programs: CrysAlis PRO (Agilent, 2013), SIR2004 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009), WinGX (Farrugia, 2012).

 

Acknowledgements

The authors thank le Ministére de l'enseignement supérieur et de la Recherche Scientifique–Algérie for financial support.

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDhar, D. N. (1981). In The Chemistry of Chalcones and Related Compounds. New York: Wiley-Interscience.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGeissmann, T. A. (1962). The Chemistry of Flavonoid Compounds. Oxford: Pergamon Press.  Google Scholar
First citationHarborne, J. B. (1988). The Flavonoids: advances in research since 1980. London: Chapman and Hall.  Google Scholar
First citationHarborne, J. B. (1994). The Flavonoids: advances in research since 1986. London: Chapman and Hall.  Google Scholar
First citationLévai, A. (1997). Khim. Geterotsikl. Soedin. pp. 747—759.  Google Scholar
First citationMabry, T. J., Markham, K. R. & Thomas, M. B. (1970). In The Systematic Identification of Flavonoids. Berlin: Springer Verlag.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWong, E. (1970). Fortschr. Chem. Org. Naturst. 28, 1–73.  CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1009-o1010
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds