organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1031-o1032

Crystal structure of N-[4-amino-5-cyano-6-(methyl­sulfan­yl)pyridin-2-yl]-2-(cyclo­hexyl­sulfan­yl)acetamide

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, England, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, dChemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt, and eKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by S. Bernès, UANL, México (Received 12 July 2014; accepted 14 August 2014; online 20 August 2014)

In the title mol­ecule, C15H20N4OS2, the acetamido fragment is nearly coplanar with the pyridyl ring [C—N—C—C torsion angle = −4.1 (2)°], while the cyclo­hexyl­sulfanyl portion protrudes from this plane [N—C—C—S torsion angle = −40.8 (6)°]. In the crystal, alternating pairwise N—H⋯O and N—H⋯N hydrogen bonds across inversion centres form chains along [101], which are associated into stepped layers via offset ππ stacking between pyridyl rings [centroid–centroid distance = 3.566 (1) Å]. The cyclo­hexyl group and the two atoms of the S—C bond attached to it are disordered over two sets of sites with site-occupancy factors of 0.8845 (18) and 0.1155 (18).

1. Related literature

For the diverse biological properties of pyridine-containing compounds see: Patrick & Kinsman (1996[Patrick, G. L. & Kinsman, O. S. (1996). Eur. J. Med. Chem. 31, 615-624.]); Hishmat et al. (1990[Hishmat, O. H., Abdelgalil, F. M. & Farrag, D. S. (1990). Pharmazie, 45, 793-795.]); Paronikyan et al. (2002[Paronikyan, E. G., Noravyan, A. S., Dzhagatspanyan, I. A., Nazaryan, I. M. & Paronikyan, R. G. (2002). Pharm. Chem. J. 36, 465-467.]); Bernardino et al. (2007[Bernardino, A. M. R., de Azevedo, A. R., Pinheiro, L. C., d, S., Borges, J. C., Carvalho, V. L., Miranda, M. D., de Meneses, M. D. F., Nascimento, M., Ferreira, D., Rebello, M. A., da Silva, V. A. G. G. & de Frugulhetti, I. C. P. P. (2007). Med. Chem. Res. 16, 352-369.]); Doshi et al. (1999[Doshi, R., Kagthara, P. & Parekh, H. (1999). Indian J. Chem. Sect. B, 38, 348-352.]); Jemmezi et al. (2014[Jemmezi, F., Kether, F. B.-H., Amri, I., Bassem, J. & Khiari, J.-E. (2014). IOSR-JAC, 7, 62-66.]); Mamolo et al. (2004[Mamolo, M. G., Zampieri, D., Falagiani, V., Vio, L., Fermeglia, M., Ferrone, M., Pricl, S., Banfi, E. & Scialino, G. (2004). Arkivoc, v, 231-250.]); Bhatt et al. (2001[Bhatt, A. H., Parekh, H. H., Parikh, K. A. & Parikh, A. R. (2001). Indian J. Chem. Sect. B, 40, 57-61.]). For the structure of a related compound, see: Akkurt et al. (2014[Akkurt, M., Mague, J. T., Mohamed, S. K., Hussein, B. R. M. & Albayati, M. R. (2014). Acta Cryst. E70, o745-o746.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H20N4OS2

  • Mr = 336.47

  • Monoclinic, P 21 /n

  • a = 7.2269 (8) Å

  • b = 24.655 (3) Å

  • c = 9.6933 (11) Å

  • β = 92.5330 (17)°

  • V = 1725.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 150 K

  • 0.23 × 0.18 × 0.08 mm

2.2. Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.93, Tmax = 0.97

  • 31462 measured reflections

  • 4538 independent reflections

  • 3713 reflections with I > 2σ(I)

  • Rint = 0.047

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.106

  • S = 1.02

  • 4538 reflections

  • 225 parameters

  • 68 restraints

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯O1i 0.91 1.97 2.8792 (17) 179
N3—H3A⋯N1ii 0.91 2.22 3.0640 (19) 155
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

A large number of heterocyclic compounds containing pyridine rings are associated with diverse pharmacological properties such as antifungal (Patrick & Kinsman, 1996; Hishmat et al., 1990), anticancer, anticonvulsant (Paronikyan et al., 2002), antiviral (Bernardino et al., 2007), antibacterial, antimicrobial (Doshi et al., 1999; Jemmezi et al., 2014), antimycobacterial (Mamolo et al., 2004) and insecticidal activities (Bhatt et al., 2001). In this connection, and as part of our on-going study on synthesis of bio-active heterocyclic molecules, we herein report the synthesis and crystal determination of the title compound.

In the title molecule (Fig. 1), the acetamido fragment is nearly coplanar with the pyridyl ring [C8—N4—C5—C4 torsion angle = -4.1 (2)°], possibly aided by a weak C4—H4···O1 interaction (Table 1), while the cyclohexylsulfanyl portion protrudes from this plane [N4—C8—C9—S2 torsion angle = -40.8 (6)°]. The main disordered part of the cyclohexyl group adopts the chair conformation with puckering parameters Q = 0.578 (3) Å, θ = 177.6 (3)°, and ϕ = 311 (3)°. The minor disordered part of the cyclohexyl group exhibits a distorted chair conformation with puckering parameters Q = 0.60 (2) Å, θ = 11.3 (19) °, and ϕ = 173 (10) °. All the bond lengths and bond angles are normal and comparable with those reported for a related compound (Akkurt et al., 2014).

Alternating, pairwise N3—H3B···O1 and N3—H3A···N1 hydrogen bonds across centres of symmetry form chains (Fig. 2 and Table 1) which are associated into stepped layers via offset π-stacking between pyridyl rings [Fig. 3; interplanar distance = 3.384 (1) Å; Cg···Cgi = 3.566 (1) Å, where Cg is the centroid of the C1···C5/N2 ring; i: 1 - x, 1 - y, 1 - z]. Adjacent stacks are inclined to one another by approximately 62°.

Related literature top

For the diverse biological properties of pyridine-containing compounds see: Patrick & Kinsman (1996); Hishmat et al. (1990); Paronikyan et al. (2002); Bernardino et al. (2007); Doshi et al. (1999); Jemmezi et al. (2014); Mamolo et al. (2004); Bhatt et al. (2001). For the structure of a related compound, see: Akkurt et al. (2014).

Experimental top

A mixture of 1 mmol (257 mg) of N-[4-amino-5-cyano-6-(methylthio)pyridin-2-yl]-2-chloroacetamide and 1 mmol (116 mg) of cyclohexanethiol in 30 ml e thanol along with few drops of triethylamine (TEA) as a catalyst was refluxed for 3 h at 350 K. The reaction mixture was allowed to cool down at room temperature and the excess solvent was evaporated under reduced pressure. The resulting solid was filtered off, dried and recrystallized from benzene, to afford colourless crystals (92% yield) suitable for X-ray diffraction. M.p. 463 – 465 K.

IR (νmax, cm-1): 3470, 3325, 3215, (NH2+NH), 2928 (CH aliph.), 2210 (CN), 1689 (C=Oamidic); 1H-NMR (DMSO-d6), δ, p.p.m.: 10.27 (s, 1H, NH; exchanged by D2O), 7.30 (s, 1H, CH pyridyl), 6.99 (s, 2H, NH2; exchanged by D2O), 3.41 (s, 2H, COCH2), 2.84–2.82 (m, 1H, CH cyclohexyl), 2.52 (s, 3H, SCH3), 1.95–1.93 (m, 2H, CH2 cyclohexyl), 1.69 (m, 2H, CH2 cyclohexyl), 1.56–1.54 (m, 1H, CH cyclohexyl), 1.28–1.24 (m, 5H, 2CH2+CH cyclohexyl).

Refinement top

H atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) while those attached to nitrogen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 Å. All H atoms were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. The cyclohexyl group, S2 and C9 are disordered over two sites [site-occupancy factors are 0.8845 (18) and 0.1155 (18)]. The components of the disorder were refined with restraints that their geometries be the same (Sheldrick, 2008)

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule showing displacement ellipsoids at the 50% probability level. Only the major component of the disorder is shown.
[Figure 2] Fig. 2. Perspective view of a portion of the hydrogen-bonded chain.
[Figure 3] Fig. 3. Packing viewed down the c axis, showing the pairwise N—H···O hydrogen bonding and the offset π-stacking interactions as dashed lines.
N-[4-amino-5-cyano-6-(methylsulfanyl)pyridin-2-yl]-2-(cyclohexylsulfanyl)acetamide top
Crystal data top
C15H20N4OS2Dx = 1.295 Mg m3
Mr = 336.47Melting point: 463 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.2269 (8) ÅCell parameters from 9975 reflections
b = 24.655 (3) Åθ = 2.3–29.0°
c = 9.6933 (11) ŵ = 0.32 mm1
β = 92.5330 (17)°T = 150 K
V = 1725.5 (3) Å3Plate, colourless
Z = 40.23 × 0.18 × 0.08 mm
F(000) = 712
Data collection top
Bruker SMART APEX CCD
diffractometer
4538 independent reflections
Radiation source: fine-focus sealed tube3713 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 8.3660 pixels mm-1θmax = 29.0°, θmin = 2.3°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 3333
Tmin = 0.93, Tmax = 0.97l = 1313
31462 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: mixed
wR(F2) = 0.106H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0492P)2 + 0.7171P]
where P = (Fo2 + 2Fc2)/3
4538 reflections(Δ/σ)max = 0.006
225 parametersΔρmax = 0.36 e Å3
68 restraintsΔρmin = 0.26 e Å3
0 constraints
Crystal data top
C15H20N4OS2V = 1725.5 (3) Å3
Mr = 336.47Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.2269 (8) ŵ = 0.32 mm1
b = 24.655 (3) ÅT = 150 K
c = 9.6933 (11) Å0.23 × 0.18 × 0.08 mm
β = 92.5330 (17)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4538 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
3713 reflections with I > 2σ(I)
Tmin = 0.93, Tmax = 0.97Rint = 0.047
31462 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04068 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.02Δρmax = 0.36 e Å3
4538 reflectionsΔρmin = 0.26 e Å3
225 parameters
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, collected at ϕ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in ϕ, collected at ω = -30.00 and 210.00°. The scan time was 40 sec/frame.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.12721 (5)0.61034 (2)0.34743 (4)0.03110 (11)
O10.91811 (16)0.53918 (5)0.71493 (12)0.0356 (3)
N10.3292 (2)0.54925 (6)0.04030 (14)0.0378 (3)
N20.41788 (16)0.59429 (5)0.52327 (12)0.0235 (2)
N30.72278 (17)0.50958 (5)0.23714 (13)0.0287 (3)
H3A0.67730.49940.15200.034*
H3B0.83630.49400.25140.034*
N40.64424 (17)0.58430 (5)0.69315 (12)0.0264 (3)
H4A0.56800.60650.73970.032*
C10.35074 (19)0.58641 (5)0.39522 (15)0.0227 (3)
C20.44875 (19)0.55937 (5)0.29318 (14)0.0218 (3)
C30.62544 (18)0.53707 (5)0.32894 (14)0.0222 (3)
C40.69559 (19)0.54512 (6)0.46531 (14)0.0237 (3)
H40.81370.53140.49480.028*
C50.58845 (19)0.57337 (6)0.55479 (14)0.0226 (3)
C60.37713 (19)0.55438 (6)0.15424 (15)0.0258 (3)
C70.0634 (2)0.64195 (7)0.50548 (17)0.0332 (3)
H7A0.07920.61600.58170.050*
H7B0.06640.65350.49680.050*
H7C0.14250.67360.52420.050*
C80.8003 (2)0.56755 (6)0.76461 (15)0.0258 (3)
S20.74307 (10)0.65352 (3)0.94799 (6)0.03506 (15)0.8845 (18)
C90.8162 (10)0.5850 (2)0.9147 (11)0.0327 (9)0.8845 (18)
H9A0.94700.58110.94810.039*0.8845 (18)
H9B0.74130.56000.96930.039*0.8845 (18)
C100.9173 (2)0.69109 (7)0.85620 (18)0.0303 (4)0.8845 (18)
H100.93780.67170.76750.036*0.8845 (18)
C110.8422 (3)0.74748 (9)0.8213 (3)0.0504 (6)0.8845 (18)
H11A0.81430.76670.90750.061*0.8845 (18)
H11B0.72550.74410.76450.061*0.8845 (18)
C120.9827 (4)0.78041 (10)0.7421 (3)0.0535 (6)0.8845 (18)
H12A1.00400.76250.65270.064*0.8845 (18)
H12B0.93230.81710.72250.064*0.8845 (18)
C131.1633 (4)0.78515 (11)0.8244 (3)0.0600 (7)0.8845 (18)
H13A1.14370.80530.91100.072*0.8845 (18)
H13B1.25320.80570.77070.072*0.8845 (18)
C141.2412 (3)0.72892 (12)0.8587 (3)0.0629 (7)0.8845 (18)
H14A1.35740.73270.91590.075*0.8845 (18)
H14B1.27080.71020.77210.075*0.8845 (18)
C151.1027 (3)0.69463 (11)0.9368 (3)0.0555 (6)0.8845 (18)
H15A1.15340.65770.95170.067*0.8845 (18)
H15B1.08420.71111.02840.067*0.8845 (18)
S2A0.6907 (8)0.6447 (2)0.9744 (5)0.03506 (15)0.1155 (18)
C9A0.833 (9)0.589 (2)0.918 (9)0.0327 (9)0.1155 (18)
H9A10.96380.60070.93020.039*0.1155 (18)
H9A20.81510.55840.98170.039*0.1155 (18)
C10A0.8290 (17)0.7034 (5)0.9292 (12)0.0303 (4)0.1155 (18)
H10A0.75260.73520.95600.036*0.1155 (18)
C11A0.854 (3)0.7113 (6)0.7781 (15)0.0504 (6)0.1155 (18)
H11C0.73170.71200.72830.061*0.1155 (18)
H11D0.92590.68060.74200.061*0.1155 (18)
C12A0.955 (3)0.7639 (8)0.753 (3)0.0535 (6)0.1155 (18)
H12C0.88180.79450.78790.064*0.1155 (18)
H12D0.96640.76900.65240.064*0.1155 (18)
C13A1.148 (3)0.7645 (10)0.8242 (19)0.0600 (7)0.1155 (18)
H13C1.21630.79800.80130.072*0.1155 (18)
H13D1.22140.73260.79710.072*0.1155 (18)
C14A1.109 (2)0.7627 (8)0.9781 (18)0.0629 (7)0.1155 (18)
H14C1.22650.76511.03370.075*0.1155 (18)
H14D1.03080.79411.00180.075*0.1155 (18)
C15A1.009 (2)0.7104 (8)1.013 (2)0.0555 (6)0.1155 (18)
H15C1.09120.67920.99470.067*0.1155 (18)
H15D0.98360.71021.11200.067*0.1155 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02353 (18)0.0410 (2)0.0283 (2)0.00880 (15)0.00329 (14)0.00609 (15)
O10.0297 (6)0.0485 (7)0.0281 (6)0.0102 (5)0.0041 (4)0.0026 (5)
N10.0409 (8)0.0456 (8)0.0261 (7)0.0097 (6)0.0061 (6)0.0053 (6)
N20.0222 (6)0.0265 (6)0.0217 (6)0.0017 (4)0.0002 (4)0.0023 (5)
N30.0253 (6)0.0402 (7)0.0206 (6)0.0068 (5)0.0003 (5)0.0054 (5)
N40.0270 (6)0.0320 (6)0.0201 (6)0.0037 (5)0.0010 (5)0.0048 (5)
C10.0201 (6)0.0235 (6)0.0245 (7)0.0005 (5)0.0002 (5)0.0004 (5)
C20.0222 (6)0.0233 (6)0.0199 (6)0.0000 (5)0.0004 (5)0.0003 (5)
C30.0216 (6)0.0239 (6)0.0212 (6)0.0013 (5)0.0023 (5)0.0002 (5)
C40.0195 (6)0.0288 (7)0.0226 (7)0.0012 (5)0.0007 (5)0.0013 (5)
C50.0225 (6)0.0248 (6)0.0204 (6)0.0018 (5)0.0012 (5)0.0007 (5)
C60.0242 (7)0.0277 (7)0.0253 (7)0.0043 (5)0.0006 (5)0.0019 (5)
C70.0285 (7)0.0363 (8)0.0353 (8)0.0062 (6)0.0058 (6)0.0048 (7)
C80.0280 (7)0.0270 (7)0.0221 (7)0.0040 (5)0.0021 (5)0.0018 (5)
S20.0358 (3)0.0437 (3)0.0258 (3)0.0014 (2)0.0031 (2)0.0104 (2)
C90.0430 (19)0.0336 (14)0.0210 (10)0.0013 (13)0.0052 (14)0.0001 (11)
C100.0315 (9)0.0308 (8)0.0283 (9)0.0031 (7)0.0019 (7)0.0059 (7)
C110.0486 (12)0.0362 (10)0.0669 (15)0.0101 (9)0.0078 (11)0.0019 (10)
C120.0639 (16)0.0350 (14)0.0615 (15)0.0021 (12)0.0024 (12)0.0057 (13)
C130.0766 (17)0.0525 (16)0.0504 (13)0.0250 (15)0.0012 (12)0.0093 (13)
C140.0373 (12)0.0873 (19)0.0622 (16)0.0158 (12)0.0173 (11)0.0164 (14)
C150.0405 (12)0.0721 (16)0.0521 (14)0.0090 (11)0.0170 (10)0.0152 (12)
S2A0.0358 (3)0.0437 (3)0.0258 (3)0.0014 (2)0.0031 (2)0.0104 (2)
C9A0.0430 (19)0.0336 (14)0.0210 (10)0.0013 (13)0.0052 (14)0.0001 (11)
C10A0.0315 (9)0.0308 (8)0.0283 (9)0.0031 (7)0.0019 (7)0.0059 (7)
C11A0.0486 (12)0.0362 (10)0.0669 (15)0.0101 (9)0.0078 (11)0.0019 (10)
C12A0.0639 (16)0.0350 (14)0.0615 (15)0.0021 (12)0.0024 (12)0.0057 (13)
C13A0.0766 (17)0.0525 (16)0.0504 (13)0.0250 (15)0.0012 (12)0.0093 (13)
C14A0.0373 (12)0.0873 (19)0.0622 (16)0.0158 (12)0.0173 (11)0.0164 (14)
C15A0.0405 (12)0.0721 (16)0.0521 (14)0.0090 (11)0.0170 (10)0.0152 (12)
Geometric parameters (Å, º) top
S1—C11.7624 (14)C12—C131.505 (4)
S1—C71.7972 (16)C12—H12A0.9900
O1—C81.2173 (18)C12—H12B0.9900
N1—C61.150 (2)C13—C141.527 (4)
N2—C11.3269 (18)C13—H13A0.9900
N2—C51.3586 (18)C13—H13B0.9900
N3—C31.3422 (18)C14—C151.535 (3)
N3—H3A0.9101C14—H14A0.9900
N3—H3B0.9104C14—H14B0.9900
N4—C81.3616 (19)C15—H15A0.9900
N4—C51.4093 (18)C15—H15B0.9900
N4—H4A0.9098S2A—C9A1.807 (18)
C1—C21.4094 (19)S2A—C10A1.823 (12)
C2—C31.4190 (19)C9A—H9A10.9900
C2—C61.427 (2)C9A—H9A20.9900
C3—C41.4087 (19)C10A—C11A1.496 (13)
C4—C51.3770 (19)C10A—C15A1.511 (12)
C4—H40.9500C10A—H10A1.0000
C7—H7A0.9800C11A—C12A1.512 (13)
C7—H7B0.9800C11A—H11C0.9900
C7—H7C0.9800C11A—H11D0.9900
C8—C91.516 (10)C12A—C13A1.529 (14)
C8—C9A1.59 (8)C12A—H12C0.9900
S2—C91.803 (4)C12A—H12D0.9900
S2—C101.826 (2)C13A—C14A1.533 (14)
C9—H9A0.9900C13A—H13C0.9900
C9—H9B0.9900C13A—H13D0.9900
C10—C151.523 (3)C14A—C15A1.520 (13)
C10—C111.525 (3)C14A—H14C0.9900
C10—H101.0000C14A—H14D0.9900
C11—C121.532 (4)C15A—H15C0.9900
C11—H11A0.9900C15A—H15D0.9900
C11—H11B0.9900
C1—S1—C7100.83 (7)C12—C13—H13A109.6
C1—N2—C5116.45 (12)C14—C13—H13A109.6
C3—N3—H3A124.2C12—C13—H13B109.6
C3—N3—H3B127.4C14—C13—H13B109.6
H3A—N3—H3B107.9H13A—C13—H13B108.1
C8—N4—C5128.45 (12)C13—C14—C15111.4 (2)
C8—N4—H4A115.9C13—C14—H14A109.3
C5—N4—H4A115.6C15—C14—H14A109.3
N2—C1—C2123.46 (13)C13—C14—H14B109.3
N2—C1—S1119.33 (10)C15—C14—H14B109.3
C2—C1—S1117.21 (11)H14A—C14—H14B108.0
C1—C2—C3119.11 (12)C10—C15—C14110.86 (18)
C1—C2—C6122.05 (12)C10—C15—H15A109.5
C3—C2—C6118.83 (12)C14—C15—H15A109.5
N3—C3—C4121.05 (13)C10—C15—H15B109.5
N3—C3—C2121.74 (13)C14—C15—H15B109.5
C4—C3—C2117.21 (12)H15A—C15—H15B108.1
C5—C4—C3118.24 (13)C9A—S2A—C10A102 (3)
C5—C4—H4120.9C8—C9A—S2A118 (4)
C3—C4—H4120.9C8—C9A—H9A1107.7
N2—C5—C4125.47 (13)S2A—C9A—H9A1107.7
N2—C5—N4111.10 (12)C8—C9A—H9A2107.7
C4—C5—N4123.44 (13)S2A—C9A—H9A2107.7
N1—C6—C2176.06 (16)H9A1—C9A—H9A2107.1
S1—C7—H7A109.5C11A—C10A—C15A111.7 (13)
S1—C7—H7B109.5C11A—C10A—S2A115.5 (9)
H7A—C7—H7B109.5C15A—C10A—S2A115.5 (9)
S1—C7—H7C109.5C11A—C10A—H10A104.2
H7A—C7—H7C109.5C15A—C10A—H10A104.2
H7B—C7—H7C109.5S2A—C10A—H10A104.2
O1—C8—N4123.44 (14)C10A—C11A—C12A110.5 (17)
O1—C8—C9121.2 (3)C10A—C11A—H11C109.6
N4—C8—C9115.3 (3)C12A—C11A—H11C109.6
O1—C8—C9A119.2 (18)C10A—C11A—H11D109.6
N4—C8—C9A117.3 (17)C12A—C11A—H11D109.6
C9—S2—C10100.0 (3)H11C—C11A—H11D108.1
C8—C9—S2115.3 (6)C11A—C12A—C13A111.9 (17)
C8—C9—H9A108.4C11A—C12A—H12C109.2
S2—C9—H9A108.4C13A—C12A—H12C109.2
C8—C9—H9B108.4C11A—C12A—H12D109.2
S2—C9—H9B108.4C13A—C12A—H12D109.2
H9A—C9—H9B107.5H12C—C12A—H12D107.9
C15—C10—C11110.98 (18)C12A—C13A—C14A103 (2)
C15—C10—S2112.88 (14)C12A—C13A—H13C111.1
C11—C10—S2108.92 (14)C14A—C13A—H13C111.1
C15—C10—H10108.0C12A—C13A—H13D111.1
C11—C10—H10108.0C14A—C13A—H13D111.1
S2—C10—H10108.0H13C—C13A—H13D109.0
C10—C11—C12110.92 (19)C15A—C14A—C13A110.5 (17)
C10—C11—H11A109.5C15A—C14A—H14C109.6
C12—C11—H11A109.5C13A—C14A—H14C109.6
C10—C11—H11B109.5C15A—C14A—H14D109.6
C12—C11—H11B109.5C13A—C14A—H14D109.6
H11A—C11—H11B108.0H14C—C14A—H14D108.1
C13—C12—C11110.7 (2)C10A—C15A—C14A112.5 (13)
C13—C12—H12A109.5C10A—C15A—H15C109.1
C11—C12—H12A109.5C14A—C15A—H15C109.1
C13—C12—H12B109.5C10A—C15A—H15D109.1
C11—C12—H12B109.5C14A—C15A—H15D109.1
H12A—C12—H12B108.1H15C—C15A—H15D107.8
C12—C13—C14110.3 (2)
C5—N2—C1—C21.8 (2)C10—S2—C9—C865.2 (5)
C5—N2—C1—S1177.97 (10)C9—S2—C10—C1578.6 (4)
C7—S1—C1—N21.40 (13)C9—S2—C10—C11157.7 (4)
C7—S1—C1—C2178.84 (11)C15—C10—C11—C1256.0 (3)
N2—C1—C2—C32.8 (2)S2—C10—C11—C12179.18 (18)
S1—C1—C2—C3176.92 (10)C10—C11—C12—C1357.8 (3)
N2—C1—C2—C6176.20 (13)C11—C12—C13—C1457.8 (3)
S1—C1—C2—C64.05 (18)C12—C13—C14—C1556.8 (3)
C1—C2—C3—N3178.10 (13)C11—C10—C15—C1454.6 (3)
C6—C2—C3—N32.8 (2)S2—C10—C15—C14177.19 (19)
C1—C2—C3—C42.14 (19)C13—C14—C15—C1055.2 (3)
C6—C2—C3—C4176.93 (13)O1—C8—C9A—S2A164 (3)
N3—C3—C4—C5179.59 (13)N4—C8—C9A—S2A13 (6)
C2—C3—C4—C50.6 (2)C10A—S2A—C9A—C890 (5)
C1—N2—C5—C40.1 (2)C9A—S2A—C10A—C11A65 (3)
C1—N2—C5—N4179.93 (12)C9A—S2A—C10A—C15A68 (3)
C3—C4—C5—N20.4 (2)C15A—C10A—C11A—C12A51 (2)
C3—C4—C5—N4179.53 (13)S2A—C10A—C11A—C12A174.6 (14)
C8—N4—C5—N2176.01 (14)C10A—C11A—C12A—C13A61 (3)
C8—N4—C5—C44.1 (2)C11A—C12A—C13A—C14A65 (3)
C5—N4—C8—O10.2 (2)C12A—C13A—C14A—C15A62 (2)
C5—N4—C8—C9178.1 (4)C11A—C10A—C15A—C14A51 (2)
C5—N4—C8—C9A176 (3)S2A—C10A—C15A—C14A174.9 (14)
O1—C8—C9—S2141.3 (3)C13A—C14A—C15A—C10A58 (2)
N4—C8—C9—S240.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O1i0.911.972.8792 (17)179
N3—H3A···N1ii0.912.223.0640 (19)155
C4—H4···O10.952.242.8493 (18)121
C7—H7A···O1iii0.982.603.440 (2)144
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z; (iii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O1i0.911.972.8792 (17)179
N3—H3A···N1ii0.912.223.0640 (19)155
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z.
 

Footnotes

Other affiliation: Chemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt.

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationAkkurt, M., Mague, J. T., Mohamed, S. K., Hussein, B. R. M. & Albayati, M. R. (2014). Acta Cryst. E70, o745–o746.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernardino, A. M. R., de Azevedo, A. R., Pinheiro, L. C., d, S., Borges, J. C., Carvalho, V. L., Miranda, M. D., de Meneses, M. D. F., Nascimento, M., Ferreira, D., Rebello, M. A., da Silva, V. A. G. G. & de Frugulhetti, I. C. P. P. (2007). Med. Chem. Res. 16, 352–369.  Web of Science CrossRef CAS Google Scholar
First citationBhatt, A. H., Parekh, H. H., Parikh, K. A. & Parikh, A. R. (2001). Indian J. Chem. Sect. B, 40, 57–61.  Google Scholar
First citationBruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDoshi, R., Kagthara, P. & Parekh, H. (1999). Indian J. Chem. Sect. B, 38, 348–352.  Google Scholar
First citationHishmat, O. H., Abdelgalil, F. M. & Farrag, D. S. (1990). Pharmazie, 45, 793–795.  CAS PubMed Web of Science Google Scholar
First citationJemmezi, F., Kether, F. B.-H., Amri, I., Bassem, J. & Khiari, J.-E. (2014). IOSR-JAC, 7, 62–66.  CrossRef CAS Google Scholar
First citationMamolo, M. G., Zampieri, D., Falagiani, V., Vio, L., Fermeglia, M., Ferrone, M., Pricl, S., Banfi, E. & Scialino, G. (2004). Arkivoc, v, 231–250.  CrossRef Google Scholar
First citationParonikyan, E. G., Noravyan, A. S., Dzhagatspanyan, I. A., Nazaryan, I. M. & Paronikyan, R. G. (2002). Pharm. Chem. J. 36, 465–467.  CrossRef CAS Google Scholar
First citationPatrick, G. L. & Kinsman, O. S. (1996). Eur. J. Med. Chem. 31, 615–624.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1031-o1032
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds