metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages m307-m308

Crystal structure of poly[{μ-N,N′-bis­[(pyridin-4-yl)meth­yl]oxalamide}-μ-oxalato-cobalt(II)]

aDepartment of Chemistry, Changchun Normal University, Changchun 130032, People's Republic of China
*Correspondence e-mail: qiyjchem@163.com

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 26 June 2014; accepted 3 July 2014; online 1 August 2014)

In the polymeric title compound, [Co(C2O4)(C14H14N4O2)]n, the CoII atom is six-coordinated by two N atoms from symmetry-related bis­[(pyridin-4-yl)meth­yl]oxalamide (BPMO) ligands and four O atoms from two centrosymmetric oxalate anions in a distorted octa­hedral coordination geometry. The CoII atoms are linked by the oxalate anions into a chain running parallel to [100]. The chains are linked by the BPMO ligands into a three-dimensional architecture. In addition, N—H⋯O hydrogen bonds stabilize the crystal packing.

1. Related literature

For information on compounds with metal-organic framework structures, see: Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]); Ma et al. (2009[Ma, L. F., Wang, Y. Y., Liu, J. Q., Yang, G. P., Du, M. & Wang, L. Y. (2009). Eur. J. Inorg. Chem. pp. 147-254.]); Li et al. (2005[Li, F. F., Ma, J. F., Song, S. Y., Yang, J., Liu, Y. Y. & Su, Z. M. (2005). Inorg. Chem. 44, 9374-9383.]); Wang et al. (2007[Wang, G.-H., Li, Z.-G., Xu, J.-W. & Hu, N.-H. (2007). Acta Cryst. E63, m289-m291.]). For related CoII complexes, see: Ma et al. (2005[Ma, J. F., Yang, J., Li, S. L. & Song, S. Y. (2005). Cryst. Growth Des. 5, 807-812.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Co(C2O4)(C14H14N4O2)]

  • Mr = 417.24

  • Monoclinic, P 21 /c

  • a = 8.4143 (12) Å

  • b = 24.421 (4) Å

  • c = 9.2884 (14) Å

  • β = 113.322 (2)°

  • V = 1752.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.02 mm−1

  • T = 293 K

  • 0.43 × 0.25 × 0.25 mm

2.2. Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.740, Tmax = 0.785

  • 11121 measured reflections

  • 4254 independent reflections

  • 2027 reflections with I > 2σ(I)

  • Rint = 0.085

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.149

  • S = 0.98

  • 4254 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O6i 0.86 2.14 2.863 (5) 142
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2002[Bruker (2002). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Design of effective ligands and the proper choice of metal centers are the keys to design and construct novel metal-organic frameworks (Kitagawa et al., 2004; Ma et al., 2009). These complexes can be specially designed by the careful selection of metal cations with preferred coordination geometries, the nature of the anions, the structure of the connecting ligands, and the reaction conditions (Li et al., 2005; Wang et al., 2007). We selected oxalic acid as an organic carboxylate anion and N,N'-Bis-pyridin-4-ylmethyl-oxalamide (BPMO) as a N-donor neutral ligand, generating a coordination compound, [Co(C2O4)(BPMO)]n, which is reported here.

In the asymmetric unit of the title compound, [Co(C2O4)(BPMO)]n, the central CoII is six-coordinated by two nitrogen atoms from different BPMO ligands and four oxygen atoms from two oxalate anions in a distorted octahedral coordination geometry. The Co—N and Co—O distances are comparable to those found in other crystallographically characterized CoII complexes (Ma et al., 2005). The CoII atoms are linked by the oxalate anions to give a one-dimensional chain. The chains are linked by BPMO ligands and extend the chains into a three-dimensional supramolecular architecture. Moreover, the hydrogen bonds between the N-donor neutral ligand and oxalate, are crucial for stabilizing the three-dimensional framework.

Related literature top

For information on compounds with metal-organic framework structures, see: Kitagawa et al. (2004); Ma et al. (2009); Li et al. (2005); Wang et al. (2007). For related CoII complexes, see: Ma et al. (2005).

Experimental top

The synthesis was performed under hydrothermal conditions. A mixture of Co(CH3COO)2.4(H2O),(0.2 mmol, 0.05 g), N,N'-Bis-pyridin-4-ylmethyl-oxalamide (0.2 mmol, 0.054 g), sodium oxalate (0.2 mmol,0.026 g) and H2O(15 ml) in a 25 ml stainless steel reactor with a Teflon liner was heated from 293 to 443 K in 2 h and a constant temperature was maintained at 443 K for 72 h, after which the mixture was cooled to 298 K. Pink crystals of (I) were recovered from the reaction.

Refinement top

All H atoms on C and N atoms atoms were poisitioned geometrically and refined as riding atoms with Uiso(H) = 1.2 Ueq(C, N).

Computing details top

Data collection: APEX2 (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I). Displacement ellipsoids are drawn at the 30% probability level. (i) - x + 1, -y, - z + 1; (ii) -x, -y, - z + 1; (iii) x, - y + 1/2, z + 1/2; (iv) x + 1, - y + 1/2, z - 1/2.
[Figure 2] Fig. 2. View of the three-dimensional structure of (I).
Poly[{µ-N,N'-bis[(pyridin-4-yl)methyl]oxalamide}-µ-oxalato-cobalt(II)] top
Crystal data top
[Co(C2O4)(C14H14N4O2)]F(000) = 852
Mr = 417.24Dx = 1.581 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4380 reflections
a = 8.4143 (12) Åθ = 1.7–22.8°
b = 24.421 (4) ŵ = 1.02 mm1
c = 9.2884 (14) ÅT = 293 K
β = 113.322 (2)°Block, pink
V = 1752.7 (4) Å30.43 × 0.25 × 0.25 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
4254 independent reflections
Radiation source: fine-focus sealed tube2027 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.085
phi and ω scansθmax = 28.4°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1110
Tmin = 0.740, Tmax = 0.785k = 3232
11121 measured reflectionsl = 1210
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0591P)2]
where P = (Fo2 + 2Fc2)/3
4254 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Co(C2O4)(C14H14N4O2)]V = 1752.7 (4) Å3
Mr = 417.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.4143 (12) ŵ = 1.02 mm1
b = 24.421 (4) ÅT = 293 K
c = 9.2884 (14) Å0.43 × 0.25 × 0.25 mm
β = 113.322 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4254 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2027 reflections with I > 2σ(I)
Tmin = 0.740, Tmax = 0.785Rint = 0.085
11121 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 0.98Δρmax = 0.49 e Å3
4254 reflectionsΔρmin = 0.39 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5475 (6)0.02677 (18)0.5426 (6)0.0391 (12)
C20.0727 (6)0.00051 (18)0.4182 (6)0.0373 (11)
C30.0325 (7)0.0938 (2)0.0435 (7)0.0588 (15)
H3A0.06280.09830.06920.071*
C40.0141 (7)0.1061 (2)0.1055 (7)0.0644 (16)
H40.09060.11870.17970.077*
C50.1578 (7)0.0990 (2)0.1424 (6)0.0553 (15)
H50.15070.10790.24220.066*
C60.3094 (6)0.07904 (17)0.0329 (6)0.0358 (11)
C70.3141 (6)0.06856 (18)0.1129 (6)0.0413 (12)
H70.41720.05550.18840.050*
C80.4646 (6)0.06836 (16)0.0724 (6)0.0398 (12)
H8A0.55780.05370.01950.048*
H8B0.43430.04090.15430.048*
C90.5876 (6)0.15839 (19)0.0278 (6)0.0372 (11)
C100.6436 (5)0.20856 (18)0.0958 (6)0.0353 (11)
C110.7359 (6)0.30333 (18)0.0376 (6)0.0411 (12)
H11A0.72240.33060.03280.049*
H11B0.65760.31300.14320.049*
C120.9189 (6)0.30606 (19)0.0279 (5)0.0396 (12)
C131.0379 (7)0.2660 (2)0.0275 (7)0.0700 (18)
H131.00940.23340.06320.084*
C141.2033 (7)0.2734 (2)0.0312 (8)0.083 (2)
H141.28590.24580.06660.100*
C151.2411 (7)0.3229 (2)0.0193 (7)0.0631 (16)
H151.35170.32810.01650.076*
C160.9683 (6)0.35427 (19)0.0767 (6)0.0431 (12)
H160.88610.38190.11530.052*
N10.1806 (5)0.07571 (16)0.1551 (5)0.0455 (11)
N20.5257 (5)0.11716 (15)0.1243 (4)0.0403 (10)
H20.52130.11900.21830.048*
N30.6855 (4)0.25082 (15)0.0010 (4)0.0423 (10)
H30.68260.24670.09180.051*
N41.1276 (5)0.36374 (16)0.0717 (5)0.0439 (10)
O10.0491 (4)0.02611 (12)0.3106 (4)0.0434 (8)
O20.2077 (4)0.02540 (13)0.4033 (4)0.0503 (9)
O30.4618 (4)0.07115 (12)0.5055 (4)0.0446 (9)
O40.6991 (4)0.02217 (12)0.6401 (4)0.0494 (9)
O50.5999 (5)0.15868 (13)0.1070 (4)0.0612 (11)
O60.6455 (4)0.20801 (12)0.2267 (4)0.0464 (8)
Co10.20072 (8)0.05586 (2)0.38091 (8)0.0405 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.035 (3)0.043 (3)0.049 (3)0.003 (2)0.026 (3)0.001 (2)
C20.034 (3)0.033 (2)0.051 (3)0.002 (2)0.023 (2)0.008 (2)
C30.050 (4)0.067 (4)0.068 (4)0.013 (3)0.034 (3)0.009 (3)
C40.043 (4)0.087 (4)0.053 (4)0.018 (3)0.009 (3)0.015 (3)
C50.063 (4)0.061 (4)0.044 (4)0.003 (3)0.023 (3)0.001 (3)
C60.037 (3)0.026 (2)0.043 (3)0.004 (2)0.015 (3)0.005 (2)
C70.034 (3)0.044 (3)0.046 (3)0.006 (2)0.016 (2)0.004 (3)
C80.053 (3)0.027 (2)0.048 (3)0.004 (2)0.029 (3)0.001 (2)
C90.035 (3)0.041 (3)0.037 (3)0.010 (2)0.016 (2)0.002 (2)
C100.034 (3)0.039 (3)0.038 (3)0.010 (2)0.019 (2)0.001 (2)
C110.048 (3)0.040 (3)0.044 (3)0.010 (2)0.027 (3)0.001 (2)
C120.043 (3)0.042 (3)0.034 (3)0.013 (2)0.016 (2)0.001 (2)
C130.052 (4)0.045 (3)0.109 (6)0.009 (3)0.028 (4)0.015 (3)
C140.050 (4)0.046 (4)0.142 (7)0.003 (3)0.026 (4)0.016 (4)
C150.045 (3)0.048 (3)0.104 (5)0.003 (3)0.036 (3)0.003 (3)
C160.039 (3)0.045 (3)0.052 (3)0.006 (2)0.024 (3)0.001 (3)
N10.041 (3)0.047 (2)0.054 (3)0.0103 (19)0.024 (2)0.009 (2)
N20.052 (3)0.041 (2)0.035 (2)0.0080 (19)0.026 (2)0.0039 (19)
N30.052 (3)0.045 (2)0.038 (3)0.0204 (19)0.026 (2)0.005 (2)
N40.039 (2)0.042 (2)0.058 (3)0.0088 (19)0.027 (2)0.005 (2)
O10.040 (2)0.044 (2)0.048 (2)0.0012 (15)0.0202 (17)0.0061 (17)
O20.042 (2)0.057 (2)0.055 (2)0.0090 (17)0.0222 (18)0.0050 (18)
O30.0356 (19)0.0339 (18)0.070 (3)0.0063 (14)0.0269 (18)0.0041 (16)
O40.037 (2)0.041 (2)0.065 (3)0.0040 (16)0.0145 (19)0.0052 (17)
O50.098 (3)0.050 (2)0.044 (2)0.036 (2)0.037 (2)0.0086 (18)
O60.064 (2)0.044 (2)0.041 (2)0.0107 (16)0.0318 (19)0.0026 (16)
Co10.0349 (4)0.0385 (4)0.0551 (5)0.0057 (3)0.0253 (3)0.0030 (3)
Geometric parameters (Å, º) top
C1—O41.243 (5)C11—N31.440 (5)
C1—O31.271 (5)C11—C121.508 (6)
C1—C1i1.573 (9)C11—H11A0.9700
C2—O21.259 (5)C11—H11B0.9700
C2—O11.260 (5)C12—C131.348 (6)
C2—C2ii1.527 (9)C12—C161.383 (6)
C3—N11.342 (6)C13—C141.390 (7)
C3—C41.363 (7)C13—H130.9300
C3—H3A0.9300C14—C151.380 (7)
C4—C51.392 (7)C14—H140.9300
C4—H40.9300C15—N41.332 (6)
C5—C61.369 (6)C15—H150.9300
C5—H50.9300C16—N41.343 (5)
C6—C71.364 (6)C16—H160.9300
C6—C81.512 (6)N1—Co12.093 (4)
C7—N11.339 (5)N2—H20.8600
C7—H70.9300N3—H30.8600
C8—N21.454 (5)N4—Co1iii2.155 (4)
C8—H8A0.9700O1—Co12.070 (3)
C8—H8B0.9700O2—Co1ii2.117 (3)
C9—O51.215 (5)O3—Co12.072 (3)
C9—N21.311 (5)O4—Co1i2.124 (3)
C9—C101.535 (6)Co1—O2ii2.117 (3)
C10—O61.222 (5)Co1—O4i2.124 (3)
C10—N31.322 (5)Co1—N4iv2.155 (4)
O4—C1—O3125.7 (4)C12—C13—H13120.0
O4—C1—C1i117.5 (5)C14—C13—H13120.0
O3—C1—C1i116.8 (6)C15—C14—C13117.9 (5)
O2—C2—O1125.5 (4)C15—C14—H14121.0
O2—C2—C2ii115.7 (6)C13—C14—H14121.0
O1—C2—C2ii118.8 (5)N4—C15—C14123.5 (5)
N1—C3—C4123.7 (5)N4—C15—H15118.2
N1—C3—H3A118.2C14—C15—H15118.2
C4—C3—H3A118.2N4—C16—C12124.1 (4)
C3—C4—C5117.5 (5)N4—C16—H16117.9
C3—C4—H4121.2C12—C16—H16117.9
C5—C4—H4121.2C7—N1—C3116.5 (5)
C6—C5—C4120.4 (5)C7—N1—Co1121.2 (3)
C6—C5—H5119.8C3—N1—Co1122.2 (3)
C4—C5—H5119.8C9—N2—C8120.0 (4)
C7—C6—C5117.2 (4)C9—N2—H2120.0
C7—C6—C8121.4 (4)C8—N2—H2120.0
C5—C6—C8121.5 (4)C10—N3—C11123.5 (4)
N1—C7—C6124.7 (5)C10—N3—H3118.3
N1—C7—H7117.7C11—N3—H3118.3
C6—C7—H7117.7C15—N4—C16116.4 (4)
N2—C8—C6113.1 (3)C15—N4—Co1iii122.3 (3)
N2—C8—H8A109.0C16—N4—Co1iii120.8 (3)
C6—C8—H8A109.0C2—O1—Co1112.5 (3)
N2—C8—H8B109.0C2—O2—Co1ii112.7 (3)
C6—C8—H8B109.0C1—O3—Co1111.1 (3)
H8A—C8—H8B107.8C1—O4—Co1i110.2 (3)
O5—C9—N2123.9 (4)O1—Co1—O3163.58 (13)
O5—C9—C10120.3 (4)O1—Co1—N195.51 (15)
N2—C9—C10115.8 (4)O3—Co1—N199.50 (14)
O6—C10—N3125.5 (4)O1—Co1—O2ii79.59 (13)
O6—C10—C9121.8 (4)O3—Co1—O2ii84.77 (12)
N3—C10—C9112.7 (4)N1—Co1—O2ii172.33 (14)
N3—C11—C12114.8 (4)O1—Co1—O4i92.68 (12)
N3—C11—H11A108.6O3—Co1—O4i80.86 (12)
C12—C11—H11A108.6N1—Co1—O4i89.62 (14)
N3—C11—H11B108.6O2ii—Co1—O4i84.76 (13)
C12—C11—H11B108.6O1—Co1—N4iv92.74 (13)
H11A—C11—H11B107.6O3—Co1—N4iv92.70 (13)
C13—C12—C16117.9 (4)N1—Co1—N4iv94.43 (15)
C13—C12—C11125.3 (4)O2ii—Co1—N4iv91.71 (14)
C16—C12—C11116.8 (4)O4i—Co1—N4iv172.90 (15)
C12—C13—C14120.0 (5)
N1—C3—C4—C50.2 (9)C14—C15—N4—Co1iii171.3 (5)
C3—C4—C5—C61.7 (8)C12—C16—N4—C151.5 (8)
C4—C5—C6—C72.3 (7)C12—C16—N4—Co1iii171.1 (4)
C4—C5—C6—C8177.0 (5)O2—C2—O1—Co1173.9 (3)
C5—C6—C7—N11.0 (7)C2ii—C2—O1—Co15.5 (6)
C8—C6—C7—N1178.3 (4)O1—C2—O2—Co1ii174.5 (3)
C7—C6—C8—N2121.0 (5)C2ii—C2—O2—Co1ii6.2 (6)
C5—C6—C8—N259.8 (6)O4—C1—O3—Co1166.2 (4)
O5—C9—C10—O6174.2 (4)C1i—C1—O3—Co113.8 (6)
N2—C9—C10—O66.6 (6)O3—C1—O4—Co1i166.7 (4)
O5—C9—C10—N36.6 (6)C1i—C1—O4—Co1i13.4 (6)
N2—C9—C10—N3172.6 (4)C2—O1—Co1—O311.5 (6)
N3—C11—C12—C136.9 (7)C2—O1—Co1—N1167.5 (3)
N3—C11—C12—C16174.7 (4)C2—O1—Co1—O2ii6.5 (3)
C16—C12—C13—C141.3 (9)C2—O1—Co1—O4i77.7 (3)
C11—C12—C13—C14179.7 (5)C2—O1—Co1—N4iv97.7 (3)
C12—C13—C14—C151.6 (10)C1—O3—Co1—O151.8 (6)
C13—C14—C15—N40.3 (10)C1—O3—Co1—N1104.0 (3)
C13—C12—C16—N40.3 (8)C1—O3—Co1—O2ii69.6 (3)
C11—C12—C16—N4178.2 (4)C1—O3—Co1—O4i15.9 (3)
C6—C7—N1—C30.9 (7)C1—O3—Co1—N4iv161.1 (3)
C6—C7—N1—Co1178.1 (3)C7—N1—Co1—O1142.6 (3)
C4—C3—N1—C71.5 (8)C3—N1—Co1—O134.4 (4)
C4—C3—N1—Co1178.7 (4)C7—N1—Co1—O330.7 (4)
O5—C9—N2—C80.8 (7)C3—N1—Co1—O3152.3 (4)
C10—C9—N2—C8178.3 (4)C7—N1—Co1—O2ii92.7 (11)
C6—C8—N2—C964.2 (6)C3—N1—Co1—O2ii84.3 (11)
O6—C10—N3—C111.6 (7)C7—N1—Co1—O4i50.0 (4)
C9—C10—N3—C11177.5 (4)C3—N1—Co1—O4i127.0 (4)
C12—C11—N3—C1077.4 (6)C7—N1—Co1—N4iv124.2 (4)
C14—C15—N4—C161.2 (9)C3—N1—Co1—N4iv58.8 (4)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1; (iii) x+1, y+1/2, z1/2; (iv) x1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O6v0.862.142.863 (5)142
Symmetry code: (v) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O6i0.862.142.863 (5)141.6
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

We thank the Science Foundation of Jilin Province (No. 20140101121JC).

References

First citationBruker (2002). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationLi, F. F., Ma, J. F., Song, S. Y., Yang, J., Liu, Y. Y. & Su, Z. M. (2005). Inorg. Chem. 44, 9374–9383.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMa, L. F., Wang, Y. Y., Liu, J. Q., Yang, G. P., Du, M. & Wang, L. Y. (2009). Eur. J. Inorg. Chem. pp. 147–254.  CAS Google Scholar
First citationMa, J. F., Yang, J., Li, S. L. & Song, S. Y. (2005). Cryst. Growth Des. 5, 807–812.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, G.-H., Li, Z.-G., Xu, J.-W. & Hu, N.-H. (2007). Acta Cryst. E63, m289–m291.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages m307-m308
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds