organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o895-o896

Crystal structure of 2,2′-({[2-(trityl­sulfan­yl)benz­yl]azane­diyl}bis­­(ethane-2,1-di­yl))bis­­(isoindoline-1,3-dione)

aUniversität Paderborn, Warburger Strasse 100, 33098 Paderborn, Germany
*Correspondence e-mail: ulrich.floerke@uni-paderborn.de

Edited by M. Bolte, Goethe-Universität Frankfurt Germany (Received 2 July 2014; accepted 3 July 2014; online 1 August 2014)

In the structure of the title compound, C46H37N3O4S, the planes of the two isoindoline units make a dihedral angle of 77.86 (3)°. The dihedral angles between the benzyl plane and the isoindoline units are 79.56 (4) and 3.74 (9)°. The geometry at the S atom shows a short [1.7748 (17) Å] S—Cbenz­yl and a long [1.8820 (15) Å] S—Ctrit­yl bond and the C—S—C angle is 108.40 (7)°. N—C bond lengths around the azane N atom are in the range 1.454 (2)–1.463 (2) Å. he crystal packing exhibts two rather `non-classical' C—H⋯O hydrogen bonds that result in stacking of the molecules along the a as well as the b axis and give rise to columnar sub-structures.

1. Related literature

For related mol­ecular structures and bonding geometries, see: Barrett et al. (1995[Barrett, D. M. Y., Kahwa, I. A., Mague, J. T. & McPherson, G. L. (1995). J. Org. Chem. 18, 5946-5953.]); Howell et al. (2003[Howell, R. C., Selvin, H., Edwards, S. H., Gajadhar-Plummer, A. S., Kahwa, I. A., McPherson, G. L., Mague, J. T., White, A. J. P. & Williams, D. J. (2003). Molecules, 8, 565-592.]); Latxague et al. (2009[Latxague, L., Chanseau, C., Durrieu, M.-C., Massip, S. & Leger, J.-M. (2009). X-ray Structure Analysis Online, 25, 55-56.]) and Qi et al. (2009[Qi, Z.-P., Wang, A.-D., Zhang, H. & Wang, X.-X. (2009). Acta Cryst. E65, m1507-m1508.]). For the modelling of the active center of the peptidglycine-α-hy­droxy­lating monooxygenase, see: Hoppe et al. (2013[Hoppe, T., Josephs, P., Kempf, N., Wölper, C., Schindler, S., Neuba, A. & Henkel, G. (2013). Z. Anorg. Allg. Chem. 639, 1504-1511.]); Neuba (2009[Neuba, A. (2009). PhD thesis, University of Paderborn, Germany.]). For inter­mediate steps of the synthesis, see: Formica et al. (2002[Formica, M., Giorgi, L., Fusi, V., Micheloni, M. & Pontellini, R. (2002). Polyhedron, 21, 1351-1356.]) and Sagrera & Seoane (2009[Sagrera, G. & Seoane, G. (2009). Synthesis, 24, 4190-4202.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C46H37N3O4S

  • Mr = 727.85

  • Triclinic, [P \overline 1]

  • a = 9.8512 (11) Å

  • b = 11.5610 (13) Å

  • c = 16.945 (2) Å

  • α = 88.712 (3)°

  • β = 81.146 (3)°

  • γ = 69.421 (2)°

  • V = 1784.1 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 130 K

  • 0.30 × 0.14 × 0.08 mm

2.2. Data collection

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.958, Tmax = 0.989

  • 17107 measured reflections

  • 8464 independent reflections

  • 6541 reflections with I > 2σ(I)

  • Rint = 0.029

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.113

  • S = 1.02

  • 8464 reflections

  • 487 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C33—H33A⋯O2i 0.95 2.55 3.194 (2) 125
C42—H42A⋯O1ii 0.99 2.54 3.378 (2) 142
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Introduction top

The development and synthesis of novel molecules with nitro­gen and sulfur as donor functions and studies of their metallation potential towards copper is important for the basic understanding of copper metalloproteins. In this context we have developed several tripodal thio­ether guanidine hybrids for modelling the active center of the peptidglycine-α-hy­droxy­lating monooxygenase (PHM) (Hoppe et al., 2013; Neuba, 2009). The inter­mediate 3-(2-trityl­thio-benzyl)-1,5-diphthalimido-3-aza­pentan was obtained in a multi-step synthesis of tripodal thio­ether- and di­sulfide guanidine compounds.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. Hydrogen atoms were clearly identified in difference syntheses, refined at idealized positions riding on the carbon atoms with isotropic displacement parameters Uiso(H) = 1.2Ueq(C) and C–H 0.95–0.99 Å.

Preparation top

The title compound was prepared as follows: to a suspension of bis­(phthalimido)di­ethyl­entriamin (10 mmol, 3.64 g)(Formica et al., 2002), KI (0.5 mmol, 0.083 g) and K2CO3 (11.5 mmol,1.59 g) in 200 mL of dry MeCN a solution of (2-(bromo­methyl)­phenyl)(trityl)sulfane (10 mmol, 4.46 g) (Sagrera & Seoane, 2009) in dry MeCN (100 mL) was dropped over a period of 30 min. This mixture was then refluxed for 24 h. After the solvent was evaporated 200 ml water was added and the mixture was extracted with di­chloro­methane (3 x 80 mL). The combined organic layers were dried over Na2SO4. After filtration the solvent was removed und the crude product was obtained as a yellow oil. For purification, the raw product was stirred in Et2O (200 mL). The suspension was filtered and the collected solid dried under reduced pressure. Yield: 5.33 g (73 %). Yellow crystals suitable for X-ray diffraction were obtained by diffusion of Et2O into a cold saturated MeCN solution.

Spectroscopic data:

1H-NMR (500MHz, CDCl3, 25°C, δ [ppm]): 2.67 (t, 4H, CH2); 3.20 (s, 2H, CH2); 3.69 (t, 4H, CH2); 6.61 (dt, 1H, CH); 6.66 (dt, 1H, CH); 6.84 (dd, 1H,CH); 6.93 (dd, 1H, CH); 7.14-7.26 (m, 15H, CH); 7.68-7.69 (m, 4H, CH); 7.73-7.75 (m, 4H, CH).

13C-NMR (125MHz, CDCl3, 25°C, δ [ppm]): 35.6 (CH2); 51.2 (CH2); 55.5 (CH2); 70.8 (Cq); 123.0 (CH); 126.3 (CH); 126.6 (CH); 127.5 (CH); 127.8 (CH); 129.3 (CH); 130.0 (CH); 132.4 (Cq); 133.5 (CH); 133.6 (Cq); 135.3 (CH); 143.9 (Cq); 144.5 (Cq); 168.1 (Cq).

15N-NMR (50.7MHz, CDCl3, 25°C, δ [ppm]): 37.4 (NPhimid); 160.0 (Ntert).

IR (KBr, [cm-1]): 3462br, 3053w, 2943w, 2814w, 2388w, 1774m, 1713s, 1616w, 1489w, 1468w, 1429m, 1394m, 1381m, 1356w, 1325w, 1275w, 1188w, 1103w, 1082m, 1028w, 1003w, 962w, 872w, 762w, 741w, 717m, 702m, 619w, 530w.

ESI-MS (m/z (%)): 727.9 (82) [M+]; 665.1 (4); 664.1 (8); 484.9 (5) [M+—CPh3]; 422.1 (6) [M+-Phimid]; 243.9 (20) [CPh3+]; 242.9 (100) [CPh3+-H].

Elemental analysis (M = 727.87 g mol-1): calcd. for C46H37N3O4S: C 75.91; H 5.12; N 5.77; S 4.41; O 8.79; found: C 75.75; H 5.38; N 5.79; S 4.52; O 8.56.

Related literature top

For related molecular structures and bonding geometries, refer to Barrett et al. (1995); Howell et al. (2003); Latxague et al. (2009) and Qi et al. (2009). For the modelling of the active center of the peptidglycine-α-hydroxylating monooxygenase, see: Hoppe et al. (2013); Neuba (2009). Intermediate steps of the synthesis are described by Formica et al. (2002) and Sagrera & Seoane (2009).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
2,2'-({[2-(Tritylsulfanyl)benzyl]azanediyl}bis(ethane-2,1-diyl))bis(isoindoline-1,3-dione) top
Crystal data top
C46H37N3O4SZ = 2
Mr = 727.85F(000) = 764
Triclinic, P1Dx = 1.355 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.8512 (11) ÅCell parameters from 3271 reflections
b = 11.5610 (13) Åθ = 2.2–25.6°
c = 16.945 (2) ŵ = 0.14 mm1
α = 88.712 (3)°T = 130 K
β = 81.146 (3)°Prism, yellow
γ = 69.421 (2)°0.30 × 0.14 × 0.08 mm
V = 1784.1 (4) Å3
Data collection top
Bruker SMART APEX
diffractometer
8464 independent reflections
Radiation source: sealed tube6541 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 27.9°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1212
Tmin = 0.958, Tmax = 0.989k = 1514
17107 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: difference Fourier map
wR(F2) = 0.113H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.050P)2 + 0.3999P]
where P = (Fo2 + 2Fc2)/3
8464 reflections(Δ/σ)max < 0.001
487 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C46H37N3O4Sγ = 69.421 (2)°
Mr = 727.85V = 1784.1 (4) Å3
Triclinic, P1Z = 2
a = 9.8512 (11) ÅMo Kα radiation
b = 11.5610 (13) ŵ = 0.14 mm1
c = 16.945 (2) ÅT = 130 K
α = 88.712 (3)°0.30 × 0.14 × 0.08 mm
β = 81.146 (3)°
Data collection top
Bruker SMART APEX
diffractometer
8464 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
6541 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.989Rint = 0.029
17107 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.02Δρmax = 0.32 e Å3
8464 reflectionsΔρmin = 0.26 e Å3
487 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.33001 (5)0.89677 (4)0.31311 (2)0.02056 (10)
O10.65075 (14)0.63074 (12)0.05262 (7)0.0306 (3)
O20.79795 (13)0.33099 (11)0.12875 (7)0.0276 (3)
O30.67682 (13)0.60774 (12)0.34739 (7)0.0307 (3)
O40.26290 (15)0.53493 (12)0.46184 (7)0.0331 (3)
N10.41323 (14)0.61373 (12)0.23802 (8)0.0184 (3)
N20.68997 (15)0.49383 (12)0.05046 (8)0.0199 (3)
N30.48163 (16)0.54309 (13)0.39344 (8)0.0238 (3)
C10.17103 (17)0.85519 (14)0.32807 (9)0.0187 (3)
C20.06309 (19)0.90721 (15)0.39377 (10)0.0241 (4)
H2A0.06820.97310.42420.029*
C30.0517 (2)0.86376 (17)0.41512 (11)0.0292 (4)
H3A0.12420.89940.46020.035*
C40.06024 (19)0.76844 (17)0.37060 (11)0.0278 (4)
H4A0.13820.73790.38520.033*
C50.04550 (18)0.71761 (15)0.30459 (10)0.0233 (4)
H5A0.03780.65310.27380.028*
C60.16271 (17)0.75848 (14)0.28215 (9)0.0186 (3)
C70.29721 (17)1.03173 (14)0.24520 (9)0.0174 (3)
C80.27856 (17)0.69644 (14)0.21187 (9)0.0195 (3)
H8A0.24030.64850.17920.023*
H8B0.30100.76030.17800.023*
C110.25935 (17)0.99395 (14)0.16782 (9)0.0176 (3)
C120.36525 (19)0.95550 (15)0.09935 (10)0.0223 (3)
H12A0.45970.96000.09930.027*
C130.3345 (2)0.91094 (16)0.03144 (10)0.0263 (4)
H13A0.40800.88500.01440.032*
C140.1980 (2)0.90401 (16)0.02997 (10)0.0262 (4)
H14A0.17740.87310.01650.031*
C150.09091 (19)0.94280 (15)0.09716 (10)0.0233 (4)
H15A0.00360.93880.09640.028*
C160.12082 (17)0.98723 (14)0.16515 (9)0.0198 (3)
H16A0.04651.01350.21060.024*
C210.18301 (17)1.15014 (14)0.28775 (9)0.0187 (3)
C220.06990 (18)1.23226 (15)0.25225 (10)0.0217 (3)
H22A0.05401.21140.20140.026*
C230.02033 (19)1.34480 (16)0.29038 (10)0.0261 (4)
H23A0.09861.39850.26590.031*
C240.0030 (2)1.37875 (16)0.36312 (11)0.0302 (4)
H24A0.05761.45600.38850.036*
C250.1161 (2)1.29854 (17)0.39888 (11)0.0325 (4)
H25A0.13401.32140.44870.039*
C260.20316 (19)1.18524 (16)0.36228 (10)0.0256 (4)
H26A0.27811.13020.38840.031*
C310.44613 (17)1.05130 (14)0.22988 (9)0.0171 (3)
C320.44891 (18)1.16140 (15)0.19578 (10)0.0228 (4)
H32A0.36011.22190.18490.027*
C330.57870 (18)1.18405 (16)0.17758 (10)0.0245 (4)
H33A0.57831.25910.15340.029*
C340.70925 (18)1.09851 (16)0.19416 (10)0.0229 (4)
H34A0.79791.11530.18300.028*
C350.70855 (18)0.98849 (16)0.22717 (10)0.0249 (4)
H35A0.79770.92870.23820.030*
C360.57920 (18)0.96410 (15)0.24439 (10)0.0226 (4)
H36A0.58100.88730.26630.027*
C410.54448 (17)0.59701 (15)0.18007 (9)0.0209 (3)
H41A0.63090.54300.20290.025*
H41B0.55570.67830.17130.025*
C420.54416 (17)0.54034 (16)0.09883 (9)0.0210 (3)
H42A0.50630.47160.10800.025*
H42B0.47680.60380.06890.025*
C430.72895 (19)0.54141 (15)0.02272 (9)0.0212 (3)
C440.88069 (19)0.45774 (16)0.05396 (10)0.0232 (4)
C450.9701 (2)0.45992 (19)0.12490 (10)0.0310 (4)
H45A0.93990.52290.16210.037*
C461.1067 (2)0.3654 (2)0.13927 (11)0.0371 (5)
H46A1.17030.36300.18790.045*
C471.1520 (2)0.27468 (19)0.08416 (12)0.0364 (5)
H47A1.24640.21220.09560.044*
C481.0620 (2)0.27344 (17)0.01253 (12)0.0296 (4)
H48A1.09280.21170.02550.036*
C490.92563 (18)0.36634 (15)0.00068 (10)0.0224 (4)
C500.80346 (18)0.38922 (15)0.06896 (10)0.0209 (3)
C510.39970 (18)0.50027 (14)0.27165 (10)0.0212 (3)
H51A0.42150.43770.22810.025*
H51B0.29750.51730.29830.025*
C520.50462 (19)0.44899 (15)0.33200 (10)0.0254 (4)
H52A0.48780.37600.35710.030*
H52B0.60730.42230.30420.030*
C530.56558 (19)0.61842 (16)0.39327 (10)0.0243 (4)
C540.49004 (18)0.71032 (15)0.46086 (10)0.0233 (4)
C550.5294 (2)0.80253 (16)0.49059 (11)0.0297 (4)
H55A0.61660.81620.46770.036*
C560.4357 (2)0.87450 (17)0.55544 (11)0.0322 (4)
H56A0.45990.93810.57770.039*
C570.3078 (2)0.85511 (17)0.58821 (11)0.0307 (4)
H57A0.24620.90570.63240.037*
C580.2679 (2)0.76328 (16)0.55773 (10)0.0272 (4)
H58A0.17960.75070.57950.033*
C590.36278 (19)0.69097 (16)0.49412 (10)0.0236 (4)
C600.3549 (2)0.58296 (16)0.45108 (10)0.0247 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0216 (2)0.0195 (2)0.0227 (2)0.00858 (16)0.00733 (16)0.00563 (15)
O10.0324 (7)0.0352 (7)0.0264 (6)0.0138 (6)0.0080 (5)0.0081 (5)
O20.0271 (7)0.0262 (6)0.0298 (7)0.0109 (5)0.0027 (5)0.0063 (5)
O30.0213 (6)0.0357 (7)0.0302 (7)0.0055 (6)0.0001 (5)0.0024 (6)
O40.0376 (8)0.0358 (8)0.0289 (7)0.0192 (6)0.0006 (6)0.0007 (6)
N10.0164 (7)0.0165 (7)0.0200 (7)0.0045 (5)0.0012 (5)0.0005 (5)
N20.0188 (7)0.0216 (7)0.0193 (7)0.0083 (6)0.0001 (5)0.0003 (5)
N30.0252 (8)0.0226 (7)0.0201 (7)0.0047 (6)0.0022 (6)0.0007 (6)
C10.0198 (8)0.0171 (8)0.0180 (8)0.0050 (6)0.0032 (6)0.0033 (6)
C20.0290 (9)0.0193 (8)0.0202 (8)0.0051 (7)0.0005 (7)0.0004 (6)
C30.0264 (9)0.0278 (9)0.0250 (9)0.0030 (8)0.0053 (7)0.0013 (7)
C40.0194 (9)0.0305 (10)0.0318 (10)0.0090 (8)0.0003 (7)0.0049 (8)
C50.0201 (8)0.0225 (8)0.0269 (9)0.0074 (7)0.0027 (7)0.0001 (7)
C60.0159 (8)0.0173 (8)0.0199 (8)0.0026 (6)0.0026 (6)0.0022 (6)
C70.0169 (8)0.0158 (7)0.0174 (7)0.0039 (6)0.0016 (6)0.0021 (6)
C80.0202 (8)0.0178 (8)0.0196 (8)0.0058 (7)0.0019 (6)0.0011 (6)
C110.0184 (8)0.0143 (7)0.0191 (8)0.0040 (6)0.0046 (6)0.0016 (6)
C120.0214 (8)0.0241 (9)0.0219 (8)0.0092 (7)0.0016 (7)0.0003 (7)
C130.0285 (9)0.0297 (9)0.0201 (8)0.0108 (8)0.0000 (7)0.0018 (7)
C140.0315 (10)0.0272 (9)0.0217 (8)0.0105 (8)0.0089 (7)0.0006 (7)
C150.0211 (8)0.0229 (8)0.0273 (9)0.0076 (7)0.0080 (7)0.0023 (7)
C160.0181 (8)0.0186 (8)0.0203 (8)0.0034 (7)0.0032 (6)0.0017 (6)
C210.0169 (8)0.0197 (8)0.0193 (8)0.0080 (6)0.0012 (6)0.0006 (6)
C220.0206 (8)0.0220 (8)0.0210 (8)0.0066 (7)0.0008 (7)0.0013 (6)
C230.0214 (9)0.0226 (9)0.0284 (9)0.0033 (7)0.0022 (7)0.0033 (7)
C240.0300 (10)0.0208 (9)0.0325 (10)0.0050 (8)0.0079 (8)0.0052 (7)
C250.0383 (11)0.0317 (10)0.0250 (9)0.0104 (9)0.0011 (8)0.0089 (8)
C260.0242 (9)0.0257 (9)0.0237 (9)0.0052 (7)0.0033 (7)0.0011 (7)
C310.0175 (8)0.0182 (8)0.0158 (7)0.0068 (6)0.0015 (6)0.0027 (6)
C320.0180 (8)0.0200 (8)0.0275 (9)0.0038 (7)0.0022 (7)0.0017 (7)
C330.0227 (9)0.0200 (8)0.0288 (9)0.0074 (7)0.0018 (7)0.0013 (7)
C340.0177 (8)0.0283 (9)0.0234 (8)0.0104 (7)0.0013 (7)0.0050 (7)
C350.0165 (8)0.0286 (9)0.0258 (9)0.0033 (7)0.0032 (7)0.0005 (7)
C360.0206 (8)0.0211 (8)0.0245 (8)0.0057 (7)0.0030 (7)0.0032 (7)
C410.0177 (8)0.0236 (8)0.0206 (8)0.0075 (7)0.0001 (6)0.0011 (6)
C420.0154 (8)0.0259 (9)0.0203 (8)0.0065 (7)0.0000 (6)0.0007 (7)
C430.0248 (9)0.0264 (9)0.0171 (8)0.0146 (7)0.0028 (7)0.0017 (6)
C440.0245 (9)0.0282 (9)0.0214 (8)0.0160 (7)0.0005 (7)0.0076 (7)
C450.0319 (10)0.0464 (12)0.0224 (9)0.0257 (9)0.0027 (8)0.0073 (8)
C460.0286 (10)0.0611 (14)0.0283 (10)0.0285 (10)0.0095 (8)0.0201 (9)
C470.0212 (9)0.0427 (12)0.0449 (12)0.0138 (9)0.0059 (8)0.0231 (9)
C480.0233 (9)0.0266 (9)0.0387 (10)0.0095 (8)0.0008 (8)0.0112 (8)
C490.0209 (8)0.0234 (8)0.0250 (8)0.0120 (7)0.0012 (7)0.0080 (7)
C500.0200 (8)0.0212 (8)0.0235 (8)0.0100 (7)0.0023 (7)0.0032 (7)
C510.0238 (9)0.0174 (8)0.0211 (8)0.0070 (7)0.0002 (7)0.0015 (6)
C520.0285 (9)0.0176 (8)0.0246 (9)0.0022 (7)0.0020 (7)0.0004 (7)
C530.0218 (9)0.0236 (9)0.0239 (8)0.0027 (7)0.0063 (7)0.0045 (7)
C540.0213 (9)0.0210 (8)0.0230 (8)0.0009 (7)0.0058 (7)0.0030 (7)
C550.0244 (9)0.0279 (10)0.0354 (10)0.0062 (8)0.0073 (8)0.0021 (8)
C560.0336 (10)0.0246 (9)0.0359 (10)0.0039 (8)0.0125 (8)0.0031 (8)
C570.0311 (10)0.0274 (9)0.0251 (9)0.0008 (8)0.0053 (8)0.0026 (7)
C580.0266 (9)0.0283 (9)0.0228 (9)0.0056 (8)0.0032 (7)0.0033 (7)
C590.0248 (9)0.0231 (8)0.0204 (8)0.0043 (7)0.0062 (7)0.0045 (7)
C600.0277 (9)0.0256 (9)0.0190 (8)0.0071 (8)0.0037 (7)0.0040 (7)
Geometric parameters (Å, º) top
S1—C11.7748 (17)C24—H24A0.9500
S1—C71.8820 (15)C25—C261.385 (2)
O1—C431.206 (2)C25—H25A0.9500
O2—C501.2086 (19)C26—H26A0.9500
O3—C531.211 (2)C31—C321.393 (2)
O4—C601.209 (2)C31—C361.398 (2)
N1—C411.454 (2)C32—C331.382 (2)
N1—C511.459 (2)C32—H32A0.9500
N1—C81.4632 (19)C33—C341.384 (2)
N2—C501.397 (2)C33—H33A0.9500
N2—C431.400 (2)C34—C351.380 (2)
N2—C421.462 (2)C34—H34A0.9500
N3—C531.396 (2)C35—C361.387 (2)
N3—C601.402 (2)C35—H35A0.9500
N3—C521.457 (2)C36—H36A0.9500
C1—C21.396 (2)C41—C421.539 (2)
C1—C61.409 (2)C41—H41A0.9900
C2—C31.388 (2)C41—H41B0.9900
C2—H2A0.9500C42—H42A0.9900
C3—C41.383 (3)C42—H42B0.9900
C3—H3A0.9500C43—C441.488 (2)
C4—C51.386 (2)C44—C451.382 (2)
C4—H4A0.9500C44—C491.387 (2)
C5—C61.393 (2)C45—C461.393 (3)
C5—H5A0.9500C45—H45A0.9500
C6—C81.510 (2)C46—C471.388 (3)
C7—C111.530 (2)C46—H46A0.9500
C7—C211.540 (2)C47—C481.391 (3)
C7—C311.544 (2)C47—H47A0.9500
C8—H8A0.9900C48—C491.383 (2)
C8—H8B0.9900C48—H48A0.9500
C11—C121.399 (2)C49—C501.489 (2)
C11—C161.402 (2)C51—C521.527 (2)
C12—C131.388 (2)C51—H51A0.9900
C12—H12A0.9500C51—H51B0.9900
C13—C141.379 (2)C52—H52A0.9900
C13—H13A0.9500C52—H52B0.9900
C14—C151.390 (2)C53—C541.494 (2)
C14—H14A0.9500C54—C591.383 (2)
C15—C161.384 (2)C54—C551.384 (3)
C15—H15A0.9500C55—C561.393 (3)
C16—H16A0.9500C55—H55A0.9500
C21—C221.393 (2)C56—C571.387 (3)
C21—C261.399 (2)C56—H56A0.9500
C22—C231.396 (2)C57—C581.389 (3)
C22—H22A0.9500C57—H57A0.9500
C23—C241.378 (3)C58—C591.384 (2)
C23—H23A0.9500C58—H58A0.9500
C24—C251.388 (3)C59—C601.491 (2)
C1—S1—C7108.40 (7)C32—C33—H33A119.7
C41—N1—C51115.26 (12)C34—C33—H33A119.7
C41—N1—C8113.46 (12)C35—C34—C33118.92 (16)
C51—N1—C8113.32 (13)C35—C34—H34A120.5
C50—N2—C43111.89 (14)C33—C34—H34A120.5
C50—N2—C42123.39 (13)C34—C35—C36120.78 (15)
C43—N2—C42124.51 (13)C34—C35—H35A119.6
C53—N3—C60112.16 (14)C36—C35—H35A119.6
C53—N3—C52124.67 (14)C35—C36—C31120.73 (15)
C60—N3—C52122.17 (15)C35—C36—H36A119.6
C2—C1—C6119.76 (15)C31—C36—H36A119.6
C2—C1—S1118.68 (13)N1—C41—C42114.38 (13)
C6—C1—S1120.90 (12)N1—C41—H41A108.7
C3—C2—C1120.76 (16)C42—C41—H41A108.7
C3—C2—H2A119.6N1—C41—H41B108.7
C1—C2—H2A119.6C42—C41—H41B108.7
C4—C3—C2119.82 (16)H41A—C41—H41B107.6
C4—C3—H3A120.1N2—C42—C41112.76 (13)
C2—C3—H3A120.1N2—C42—H42A109.0
C3—C4—C5119.66 (17)C41—C42—H42A109.0
C3—C4—H4A120.2N2—C42—H42B109.0
C5—C4—H4A120.2C41—C42—H42B109.0
C4—C5—C6121.82 (16)H42A—C42—H42B107.8
C4—C5—H5A119.1O1—C43—N2125.20 (16)
C6—C5—H5A119.1O1—C43—C44129.16 (15)
C5—C6—C1118.16 (15)N2—C43—C44105.62 (14)
C5—C6—C8119.79 (15)C45—C44—C49121.46 (17)
C1—C6—C8122.02 (14)C45—C44—C43129.94 (17)
C11—C7—C21114.91 (12)C49—C44—C43108.58 (14)
C11—C7—C31110.98 (12)C44—C45—C46116.91 (18)
C21—C7—C31107.33 (13)C44—C45—H45A121.5
C11—C7—S1107.99 (10)C46—C45—H45A121.5
C21—C7—S1111.25 (10)C47—C46—C45121.52 (18)
C31—C7—S1103.83 (10)C47—C46—H46A119.2
N1—C8—C6111.43 (12)C45—C46—H46A119.2
N1—C8—H8A109.3C46—C47—C48121.34 (18)
C6—C8—H8A109.3C46—C47—H47A119.3
N1—C8—H8B109.3C48—C47—H47A119.3
C6—C8—H8B109.3C49—C48—C47116.79 (18)
H8A—C8—H8B108.0C49—C48—H48A121.6
C12—C11—C16117.76 (15)C47—C48—H48A121.6
C12—C11—C7121.09 (14)C48—C49—C44121.97 (16)
C16—C11—C7120.95 (14)C48—C49—C50130.19 (16)
C13—C12—C11121.02 (16)C44—C49—C50107.83 (14)
C13—C12—H12A119.5O2—C50—N2125.03 (15)
C11—C12—H12A119.5O2—C50—C49128.90 (16)
C14—C13—C12120.51 (16)N2—C50—C49106.07 (13)
C14—C13—H13A119.7N1—C51—C52111.20 (14)
C12—C13—H13A119.7N1—C51—H51A109.4
C13—C14—C15119.30 (16)C52—C51—H51A109.4
C13—C14—H14A120.3N1—C51—H51B109.4
C15—C14—H14A120.3C52—C51—H51B109.4
C16—C15—C14120.52 (16)H51A—C51—H51B108.0
C16—C15—H15A119.7N3—C52—C51110.21 (13)
C14—C15—H15A119.7N3—C52—H52A109.6
C15—C16—C11120.87 (15)C51—C52—H52A109.6
C15—C16—H16A119.6N3—C52—H52B109.6
C11—C16—H16A119.6C51—C52—H52B109.6
C22—C21—C26117.56 (15)H52A—C52—H52B108.1
C22—C21—C7123.54 (14)O3—C53—N3125.67 (16)
C26—C21—C7118.46 (14)O3—C53—C54128.85 (17)
C21—C22—C23120.89 (16)N3—C53—C54105.47 (14)
C21—C22—H22A119.6C59—C54—C55121.27 (17)
C23—C22—H22A119.6C59—C54—C53108.43 (15)
C24—C23—C22120.69 (16)C55—C54—C53130.30 (17)
C24—C23—H23A119.7C54—C55—C56117.15 (18)
C22—C23—H23A119.7C54—C55—H55A121.4
C23—C24—C25119.11 (16)C56—C55—H55A121.4
C23—C24—H24A120.4C57—C56—C55121.30 (18)
C25—C24—H24A120.4C57—C56—H56A119.4
C26—C25—C24120.32 (17)C55—C56—H56A119.4
C26—C25—H25A119.8C56—C57—C58121.40 (17)
C24—C25—H25A119.8C56—C57—H57A119.3
C25—C26—C21121.38 (16)C58—C57—H57A119.3
C25—C26—H26A119.3C59—C58—C57116.92 (17)
C21—C26—H26A119.3C59—C58—H58A121.5
C32—C31—C36117.78 (15)C57—C58—H58A121.5
C32—C31—C7117.54 (13)C54—C59—C58121.95 (17)
C36—C31—C7124.61 (14)C54—C59—C60108.18 (15)
C33—C32—C31121.08 (15)C58—C59—C60129.85 (17)
C33—C32—H32A119.5O4—C60—N3124.86 (16)
C31—C32—H32A119.5O4—C60—C59129.52 (16)
C32—C33—C34120.68 (16)N3—C60—C59105.61 (15)
C7—S1—C1—C292.52 (13)C8—N1—C41—C4260.72 (18)
C7—S1—C1—C696.80 (13)C50—N2—C42—C4170.20 (19)
C6—C1—C2—C30.8 (2)C43—N2—C42—C41115.51 (17)
S1—C1—C2—C3169.98 (13)N1—C41—C42—N2164.27 (13)
C1—C2—C3—C40.5 (2)C50—N2—C43—O1179.60 (16)
C2—C3—C4—C50.5 (3)C42—N2—C43—O14.7 (3)
C3—C4—C5—C61.1 (3)C50—N2—C43—C440.91 (18)
C4—C5—C6—C10.7 (2)C42—N2—C43—C44173.95 (14)
C4—C5—C6—C8177.38 (14)O1—C43—C44—C450.6 (3)
C2—C1—C6—C50.2 (2)N2—C43—C44—C45178.00 (17)
S1—C1—C6—C5170.37 (12)O1—C43—C44—C49179.04 (17)
C2—C1—C6—C8178.28 (14)N2—C43—C44—C490.42 (18)
S1—C1—C6—C87.7 (2)C49—C44—C45—C460.6 (3)
C1—S1—C7—C1156.76 (12)C43—C44—C45—C46177.62 (17)
C1—S1—C7—C2170.21 (13)C44—C45—C46—C471.3 (3)
C1—S1—C7—C31174.65 (10)C45—C46—C47—C480.8 (3)
C41—N1—C8—C6153.09 (13)C46—C47—C48—C490.3 (3)
C51—N1—C8—C672.99 (17)C47—C48—C49—C440.9 (3)
C5—C6—C8—N1103.61 (16)C47—C48—C49—C50178.11 (17)
C1—C6—C8—N174.43 (18)C45—C44—C49—C480.5 (3)
C21—C7—C11—C12135.76 (15)C43—C44—C49—C48179.05 (15)
C31—C7—C11—C1213.77 (19)C45—C44—C49—C50178.77 (15)
S1—C7—C11—C1299.42 (15)C43—C44—C49—C500.18 (18)
C21—C7—C11—C1649.43 (19)C43—N2—C50—O2179.79 (16)
C31—C7—C11—C16171.42 (13)C42—N2—C50—O25.3 (3)
S1—C7—C11—C1675.40 (15)C43—N2—C50—C491.02 (18)
C16—C11—C12—C130.7 (2)C42—N2—C50—C49173.91 (14)
C7—C11—C12—C13174.26 (15)C48—C49—C50—O20.7 (3)
C11—C12—C13—C140.2 (3)C44—C49—C50—O2179.87 (17)
C12—C13—C14—C150.3 (3)C48—C49—C50—N2178.43 (17)
C13—C14—C15—C160.4 (2)C44—C49—C50—N20.72 (17)
C14—C15—C16—C110.1 (2)C41—N1—C51—C5274.33 (17)
C12—C11—C16—C150.6 (2)C8—N1—C51—C52152.62 (13)
C7—C11—C16—C15174.34 (14)C53—N3—C52—C5197.34 (18)
C11—C7—C21—C2213.1 (2)C60—N3—C52—C5170.26 (19)
C31—C7—C21—C22110.83 (17)N1—C51—C52—N354.76 (18)
S1—C7—C21—C22136.22 (14)C60—N3—C53—O3176.78 (15)
C11—C7—C21—C26174.68 (14)C52—N3—C53—O38.1 (2)
C31—C7—C21—C2661.38 (18)C60—N3—C53—C543.93 (17)
S1—C7—C21—C2651.58 (18)C52—N3—C53—C54172.61 (13)
C26—C21—C22—C230.5 (2)O3—C53—C54—C59177.07 (16)
C7—C21—C22—C23172.81 (15)N3—C53—C54—C593.68 (17)
C21—C22—C23—C241.8 (3)O3—C53—C54—C553.0 (3)
C22—C23—C24—C251.1 (3)N3—C53—C54—C55176.26 (16)
C23—C24—C25—C260.8 (3)C59—C54—C55—C560.2 (2)
C24—C25—C26—C212.1 (3)C53—C54—C55—C56179.73 (15)
C22—C21—C26—C251.4 (3)C54—C55—C56—C570.6 (3)
C7—C21—C26—C25171.32 (16)C55—C56—C57—C580.0 (3)
C11—C7—C31—C3277.93 (17)C56—C57—C58—C591.0 (2)
C21—C7—C31—C3248.38 (18)C55—C54—C59—C580.8 (2)
S1—C7—C31—C32166.28 (12)C53—C54—C59—C58179.23 (14)
C11—C7—C31—C3698.98 (17)C55—C54—C59—C60177.83 (15)
C21—C7—C31—C36134.72 (15)C53—C54—C59—C602.11 (17)
S1—C7—C31—C3616.82 (18)C57—C58—C59—C541.4 (2)
C36—C31—C32—C330.6 (2)C57—C58—C59—C60176.94 (16)
C7—C31—C32—C33177.69 (15)C53—N3—C60—O4178.27 (15)
C31—C32—C33—C341.2 (3)C52—N3—C60—O49.3 (2)
C32—C33—C34—C351.8 (3)C53—N3—C60—C592.70 (17)
C33—C34—C35—C360.7 (3)C52—N3—C60—C59171.71 (13)
C34—C35—C36—C311.0 (3)C54—C59—C60—O4179.19 (17)
C32—C31—C36—C351.7 (2)C58—C59—C60—O40.7 (3)
C7—C31—C36—C35178.56 (15)C54—C59—C60—N30.22 (17)
C51—N1—C41—C4272.27 (17)C58—C59—C60—N3178.30 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C33—H33A···O2i0.952.553.194 (2)125
C42—H42A···O1ii0.992.543.378 (2)142
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C33—H33A···O2i0.952.553.194 (2)125.0
C42—H42A···O1ii0.992.543.378 (2)142.3
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z.
 

Acknowledgements

We thank the German Research Council (DFG) and the Federal Ministry of Education and Research (BMBF) for continuous support of our work.

References

First citationBarrett, D. M. Y., Kahwa, I. A., Mague, J. T. & McPherson, G. L. (1995). J. Org. Chem. 18, 5946–5953.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFormica, M., Giorgi, L., Fusi, V., Micheloni, M. & Pontellini, R. (2002). Polyhedron, 21, 1351–1356.  Web of Science CrossRef CAS Google Scholar
First citationHoppe, T., Josephs, P., Kempf, N., Wölper, C., Schindler, S., Neuba, A. & Henkel, G. (2013). Z. Anorg. Allg. Chem. 639, 1504–1511.  Web of Science CSD CrossRef CAS Google Scholar
First citationHowell, R. C., Selvin, H., Edwards, S. H., Gajadhar-Plummer, A. S., Kahwa, I. A., McPherson, G. L., Mague, J. T., White, A. J. P. & Williams, D. J. (2003). Molecules, 8, 565–592.  Web of Science CrossRef CAS Google Scholar
First citationLatxague, L., Chanseau, C., Durrieu, M.-C., Massip, S. & Leger, J.-M. (2009). X-ray Structure Analysis Online, 25, 55–56.  CSD CrossRef CAS Google Scholar
First citationNeuba, A. (2009). PhD thesis, University of Paderborn, Germany.  Google Scholar
First citationQi, Z.-P., Wang, A.-D., Zhang, H. & Wang, X.-X. (2009). Acta Cryst. E65, m1507–m1508.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSagrera, G. & Seoane, G. (2009). Synthesis, 24, 4190–4202.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o895-o896
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds