organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o930-o931

Crystal structure of ethyl 3-anilino-2-{[bis­­(methyl­sulfan­yl)methyl­­idene]amino}-3-oxo­propano­ate

aDepartamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, México DF, Mexico, and bFacultad de Química, Universidad Nacional Autónoma de México, 04510, México DF, Mexico
*Correspondence e-mail: mfa@unam.mx

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 16 July 2014; accepted 16 July 2014; online 1 August 2014)

The mol­ecular conformation of the title compound, C14H18N2O3S2, is stabilized by intra­molecular N—H⋯N and C—H⋯O hydrogen bonds. The crystal packing is characterized by a series of C—H⋯O hydrogen bonds, resulting in a three-dimensional network.

1. Related literature

For the synthesis and cytotoxic activity of thia­zolo[5,4-b]quinoline derivatives, see: Rodríguez-Loaiza et al. (2004[Rodríguez-Loaiza, P., Quintero, A., Rodríguez-Sotres, R., Solano, J. D. & Lira-Rocha, A. (2004). Eur. J. Med. Chem. 39, 5-10.]); Loza-Mejía et al. (2008[Loza-Mejía, M., Maldonado-Hernández, K., Rodríguez-Hernández, F., Rodríguez-Sotres, R., González-Sánchez, I., Quintero, A., Solano, J. D. & Lira-Rocha, A. (2008). Bioorg. Med. Chem. 16, 1142-1149.], 2009[Loza-Mejía, M., Olvera-Vázquez, S., Maldonado-Hernández, K., Guadarrama-Salgado, T., González-Sánchez, I., Rodríguez-Hernández, F., Solano, J. D., Rodríguez-Sotres, R. & Lira-Rocha, A. (2009). Bioorg. Med. Chem. 17, 3266-3277.]); Adams et al. (2002[Adams, A., Mitchell-Guss, J., Denny, W. A. & Wakelin, P. G. (2002). Nucleic Acids Res. 30, 719-725.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C14H18N2O3S2

  • Mr = 326.42

  • Triclinic, [P \overline 1]

  • a = 8.5298 (11) Å

  • b = 9.1422 (16) Å

  • c = 11.0268 (13) Å

  • α = 101.377 (12)°

  • β = 102.102 (10)°

  • γ = 104.457 (13)°

  • V = 785.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 145 K

  • 0.6 × 0.5 × 0.35 mm

2.2. Data collection

  • Agilent Xcalibur Atlas Gemini diffractometer

  • Absorption correction: analytical (CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.87, Tmax = 0.922

  • 5879 measured reflections

  • 3625 independent reflections

  • 3022 reflections with I > 2σ(I)

  • Rint = 0.028

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.101

  • S = 1.05

  • 3625 reflections

  • 197 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1F⋯N2 0.889 (15) 2.019 (18) 2.586 (2) 120.5 (15)
C2—H2⋯O1 0.95 2.33 2.932 (2) 121
C6—H6⋯O2i 0.95 2.4 3.295 (2) 156
C10—H10B⋯O1ii 0.99 2.53 3.340 (2) 138
C10—H10B⋯O3ii 0.99 2.65 3.377 (2) 131
C11—H11A⋯O2iii 0.98 2.64 3.465 (2) 141
C13—H13B⋯O1iv 0.98 2.63 3.579 (2) 162
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z; (iii) -x+1, -y+1, -z; (iv) x, y-1, z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Quinoline fused five-membered heterocyclic compounds have been the subject of sustained interest because many of them have cytotoxic properties. Thus, they are potential antitumor agents (Adams et al., 2002). We have reported the synthesis and cytotoxic activity of several thiazolo[5,4-b]quinoline (TQ) derivatives (Rodríguez-Loaiza et al., 2004; Loza-Mejía et al., 2008; Loza-Mejía et al., 2009.). During a study on the synthesis of new oxazolo[5,4-b]quinoline derivatives, which can be considered as analogues of TQ, the preparation of a key intermediate was tried by using a procedure previously reported by our group.

In the title compound, the asymmetric unit consist of one molecule of the ethyl-2-{[bis(methylsulfanyl)methylidene]amino}-3-oxo-3-(phenylamino)-propanoate (Fig. 1). The planes formed by phenyl ring C1/C6 (equation plane: 6.499 (4) x + 3.679 (6) y - 5.701 (6) z = 0.613 (6)) and the N1—C7/O1—C8 group (equation plane: 6.941 (4) x + 3.217 (7) y - 4.499 (8) z = 1.040 (4)) are almost coplanar with a dihedral angle between them of 7.64 (11)°; of the same way the dihedral angle of 8.34 (9)° between planes formed by N1—C7/O1—C8 and S1—C12/N2—S2 (equation plane: 7.465 (2) x + 2.049 (5) y - 4.965 (2) z = 0.633 (9)) evidence the coplanarity. On the other hand, the plane formed by C8—C9/O2—O3 (equation plane: - 3.115 (6) x + 8.551 (3) y + 1.760 (9) z = 3.314 (1)) shows a behavior near to orthogonality with the other planes.

In the crystal structure there are intermolecular C—H···O contacts (Table 1) connecting the molecules to a three-dimensional network.

Related literature top

For the synthesis and cytotoxic activity of thiazolo[5,4-b]quinoline derivatives, see: Rodríguez-Loaiza et al. (2004); Loza-Mejía et al. (2008, 2009); Adams et al. (2002).

Experimental top

Ethyl {[bis(methylsulfanyl)methylidene]amino}acetate was reacted with phenyl isocyanate at low temperature (-75°) under basic conditions, in order to obtain the oxazole derivative which is a intermediate suitable for the formation of the oxazolo[5,4-b]quinoline system. Surprisingly, this reaction gave in a high yield a different crystal intermediate, whose structure was characterized by IR, NMR and X-ray studies. Yield: 66.7%. Colorless crystals; mp: 103°C; IR (νmax, cm-1): 3283 (–NH amidic); 2982, 2930, 2891 (–CH aliph.); 1733 (C=O ester); 1687 (C=O amidic); 1H NMR (400 MHz, DMSO-d 6): d 1.17 (t, J = 7.1 Hz, 3H) –CH3; 2.46 (s, 3H) –SCH3; 2.59 (s, 3H) –SCH3; 4.14 (q, J = 7.1, 2H) –CH2; 5.00 (s, 1H) –CH; 7.07 (t, J = 7.8 Hz, 1H) –H4; 7.31 (d, J = 7.8 Hz, 2H) –H3, –H5; 7.61 (d, J = 8.4 Hz, 2H) –H2, –H6; 9.97 (s, 1H) –NH–; 13C NMR (101 MHz, DMSO– d 6): d 14.42, 14.98, 15.26, 61.69, 69.68, 120.03, 124.33, 129.20, 138.74, 165.34, 167.06.

Refinement top

The H atom of the amine group (N1/H1F) was located in a difference map and refined isotropically with Uiso(H) = 1.2Ueq(N). The N-H distance was restrained to 0.92 (2)Å. H atoms attached to C atoms were placed in geometrically idealized positions and refined as riding on their parent atoms, with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2Ueq(C), for aromatic and methylene groups and Uiso(H) = 1.5Ueq(C) for methyl groups.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis CCD (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as circles of arbitrary size.
[Figure 2] Fig. 2. Crystal packing with intermolecular interactions of type C—H···O forming a three-dimensional network.
Ethyl 3-anilino-2-{[bis(methylsulfanyl)methylidene]amino}-3-oxopropanoate top
Crystal data top
C14H18N2O3S2Z = 2
Mr = 326.42F(000) = 344
Triclinic, P1Dx = 1.38 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5298 (11) ÅCell parameters from 2290 reflections
b = 9.1422 (16) Åθ = 3.6–29.4°
c = 11.0268 (13) ŵ = 0.35 mm1
α = 101.377 (12)°T = 145 K
β = 102.102 (10)°Block, colourless
γ = 104.457 (13)°0.6 × 0.5 × 0.35 mm
V = 785.3 (2) Å3
Data collection top
Agilent Xcalibur Atlas Gemini
diffractometer
3625 independent reflections
Graphite monochromator3022 reflections with I > 2σ(I)
Detector resolution: 10.4685 pixels mm-1Rint = 0.028
ω scansθmax = 29.4°, θmin = 3.6°
Absorption correction: analytical
(CrysAlis RED; Agilent, 2012)
h = 1111
Tmin = 0.87, Tmax = 0.922k = 911
5879 measured reflectionsl = 1514
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0448P)2 + 0.1551P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.039(Δ/σ)max < 0.001
wR(F2) = 0.101Δρmax = 0.34 e Å3
S = 1.05Δρmin = 0.36 e Å3
3625 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
197 parametersExtinction coefficient: 0.033 (3)
1 restraint
Crystal data top
C14H18N2O3S2γ = 104.457 (13)°
Mr = 326.42V = 785.3 (2) Å3
Triclinic, P1Z = 2
a = 8.5298 (11) ÅMo Kα radiation
b = 9.1422 (16) ŵ = 0.35 mm1
c = 11.0268 (13) ÅT = 145 K
α = 101.377 (12)°0.6 × 0.5 × 0.35 mm
β = 102.102 (10)°
Data collection top
Agilent Xcalibur Atlas Gemini
diffractometer
3625 independent reflections
Absorption correction: analytical
(CrysAlis RED; Agilent, 2012)
3022 reflections with I > 2σ(I)
Tmin = 0.87, Tmax = 0.922Rint = 0.028
5879 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.34 e Å3
3625 reflectionsΔρmin = 0.36 e Å3
197 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.22485 (19)0.68715 (19)0.59186 (14)0.0184 (3)
C20.1478 (2)0.8032 (2)0.57936 (16)0.0216 (4)
H20.07860.79970.49850.026*
C30.1738 (2)0.9243 (2)0.68710 (16)0.0260 (4)
H30.12171.00380.67920.031*
C40.2741 (2)0.9311 (2)0.80562 (17)0.0289 (4)
H40.29091.01460.87840.035*
C50.3498 (2)0.8150 (2)0.81709 (16)0.0276 (4)
H50.41880.8190.89810.033*
C60.3254 (2)0.6930 (2)0.71085 (16)0.0241 (4)
H60.37730.61350.71930.029*
C70.13582 (19)0.5349 (2)0.36177 (15)0.0194 (3)
C80.1513 (2)0.38584 (19)0.27795 (14)0.0187 (3)
H80.03620.31410.22940.022*
C90.24576 (19)0.43850 (19)0.18264 (15)0.0188 (3)
C100.2175 (2)0.4733 (2)0.02788 (15)0.0244 (4)
H10A0.31760.56630.01320.029*
H10B0.13630.50230.08970.029*
C110.2686 (2)0.3427 (2)0.09767 (18)0.0325 (4)
H11A0.3150.37460.16590.049*
H11B0.17010.24960.13560.049*
H11C0.35410.31860.03720.049*
C120.2467 (2)0.1698 (2)0.31142 (14)0.0195 (3)
C130.2088 (2)0.1139 (2)0.13307 (17)0.0294 (4)
H13A0.15760.180.04480.044*
H13B0.16280.16730.19250.044*
H13C0.33090.09440.15450.044*
C140.4017 (3)0.2120 (2)0.56368 (16)0.0317 (4)
H14A0.47780.30920.55890.048*
H14B0.45950.17230.63050.048*
H14C0.30180.23240.58470.048*
N10.20693 (17)0.56002 (17)0.48823 (12)0.0200 (3)
N20.23886 (17)0.30580 (16)0.35854 (12)0.0200 (3)
O10.06584 (17)0.61847 (16)0.31231 (11)0.0308 (3)
O20.39713 (14)0.48975 (15)0.20888 (11)0.0265 (3)
O30.14030 (13)0.42455 (14)0.07059 (10)0.0217 (3)
S10.16283 (5)0.06980 (5)0.14655 (4)0.02388 (13)
S20.33924 (6)0.06874 (5)0.41135 (4)0.02561 (14)
H1F0.254 (2)0.487 (2)0.5037 (18)0.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0190 (7)0.0190 (9)0.0168 (7)0.0042 (6)0.0079 (6)0.0029 (6)
C20.0246 (8)0.0205 (9)0.0218 (8)0.0075 (7)0.0089 (7)0.0064 (7)
C30.0335 (9)0.0187 (9)0.0300 (9)0.0100 (7)0.0155 (8)0.0061 (7)
C40.0343 (9)0.0227 (10)0.0251 (9)0.0037 (8)0.0121 (8)0.0017 (7)
C50.0272 (9)0.0317 (11)0.0187 (8)0.0059 (8)0.0030 (7)0.0024 (7)
C60.0243 (8)0.0268 (10)0.0220 (8)0.0095 (7)0.0061 (7)0.0059 (7)
C70.0205 (7)0.0190 (9)0.0189 (7)0.0062 (6)0.0062 (7)0.0044 (6)
C80.0210 (7)0.0178 (8)0.0165 (7)0.0065 (6)0.0035 (6)0.0040 (6)
C90.0217 (8)0.0162 (8)0.0182 (7)0.0080 (6)0.0036 (7)0.0025 (6)
C100.0272 (8)0.0315 (10)0.0191 (8)0.0124 (7)0.0075 (7)0.0113 (7)
C110.0356 (10)0.0377 (12)0.0288 (9)0.0133 (9)0.0161 (8)0.0086 (8)
C120.0212 (7)0.0201 (9)0.0177 (7)0.0057 (6)0.0062 (7)0.0055 (6)
C130.0382 (10)0.0196 (9)0.0280 (9)0.0107 (8)0.0077 (8)0.0001 (7)
C140.0426 (10)0.0306 (11)0.0177 (8)0.0121 (9)0.0001 (8)0.0043 (7)
N10.0251 (7)0.0197 (8)0.0175 (6)0.0116 (6)0.0057 (6)0.0040 (5)
N20.0243 (7)0.0189 (7)0.0173 (6)0.0082 (6)0.0048 (6)0.0049 (5)
O10.0461 (7)0.0291 (7)0.0208 (6)0.0229 (6)0.0034 (6)0.0061 (5)
O20.0202 (6)0.0324 (8)0.0245 (6)0.0052 (5)0.0029 (5)0.0092 (5)
O30.0208 (6)0.0300 (7)0.0153 (5)0.0094 (5)0.0038 (5)0.0072 (5)
S10.0304 (2)0.0213 (2)0.0173 (2)0.00912 (18)0.00318 (17)0.00107 (16)
S20.0351 (3)0.0212 (2)0.0211 (2)0.01201 (19)0.00365 (19)0.00657 (17)
Geometric parameters (Å, º) top
C1—C61.392 (2)C10—O31.4683 (19)
C1—C21.395 (2)C10—C111.498 (3)
C1—N11.412 (2)C10—H10A0.99
C2—C31.390 (2)C10—H10B0.99
C2—H20.95C11—H11A0.98
C3—C41.384 (3)C11—H11B0.98
C3—H30.95C11—H11C0.98
C4—C51.386 (3)C12—N21.273 (2)
C4—H40.95C12—S21.7587 (17)
C5—C61.388 (2)C12—S11.7678 (16)
C5—H50.95C13—S11.8035 (19)
C6—H60.95C13—H13A0.98
C7—O11.2217 (19)C13—H13B0.98
C7—N11.347 (2)C13—H13C0.98
C7—C81.541 (2)C14—S21.7968 (18)
C8—N21.461 (2)C14—H14A0.98
C8—C91.532 (2)C14—H14B0.98
C8—H81C14—H14C0.98
C9—O21.2075 (19)N1—H1F0.889 (15)
C9—O31.3292 (18)
C6—C1—C2120.11 (15)C11—C10—H10A109.6
C6—C1—N1116.63 (15)O3—C10—H10B109.6
C2—C1—N1123.25 (14)C11—C10—H10B109.6
C3—C2—C1118.97 (16)H10A—C10—H10B108.2
C3—C2—H2120.5C10—C11—H11A109.5
C1—C2—H2120.5C10—C11—H11B109.5
C4—C3—C2121.22 (17)H11A—C11—H11B109.5
C4—C3—H3119.4C10—C11—H11C109.5
C2—C3—H3119.4H11A—C11—H11C109.5
C3—C4—C5119.36 (16)H11B—C11—H11C109.5
C3—C4—H4120.3N2—C12—S2120.47 (12)
C5—C4—H4120.3N2—C12—S1123.28 (12)
C4—C5—C6120.39 (16)S2—C12—S1116.23 (10)
C4—C5—H5119.8S1—C13—H13A109.5
C6—C5—H5119.8S1—C13—H13B109.5
C5—C6—C1119.94 (17)H13A—C13—H13B109.5
C5—C6—H6120S1—C13—H13C109.5
C1—C6—H6120H13A—C13—H13C109.5
O1—C7—N1126.13 (16)H13B—C13—H13C109.5
O1—C7—C8120.39 (14)S2—C14—H14A109.5
N1—C7—C8113.48 (14)S2—C14—H14B109.5
N2—C8—C9112.30 (13)H14A—C14—H14B109.5
N2—C8—C7110.24 (12)S2—C14—H14C109.5
C9—C8—C7106.50 (13)H14A—C14—H14C109.5
N2—C8—H8109.2H14B—C14—H14C109.5
C9—C8—H8109.2C7—N1—C1129.37 (14)
C7—C8—H8109.2C7—N1—H1F111.8 (13)
O2—C9—O3125.06 (15)C1—N1—H1F118.7 (13)
O2—C9—C8123.37 (14)C12—N2—C8120.84 (13)
O3—C9—C8111.54 (13)C9—O3—C10116.15 (12)
O3—C10—C11110.09 (15)C12—S1—C13104.78 (8)
O3—C10—H10A109.6C12—S2—C1499.96 (8)
C6—C1—C2—C30.3 (2)O1—C7—N1—C12.9 (3)
N1—C1—C2—C3179.69 (15)C8—C7—N1—C1176.35 (15)
C1—C2—C3—C40.1 (3)C6—C1—N1—C7171.05 (16)
C2—C3—C4—C50.1 (3)C2—C1—N1—C78.9 (3)
C3—C4—C5—C60.0 (3)S2—C12—N2—C8175.45 (11)
C4—C5—C6—C10.2 (3)S1—C12—N2—C82.8 (2)
C2—C1—C6—C50.4 (2)C9—C8—N2—C1270.50 (19)
N1—C1—C6—C5179.60 (15)C7—C8—N2—C12170.92 (14)
O1—C7—C8—N2179.82 (15)O2—C9—O3—C101.2 (2)
N1—C7—C8—N20.92 (19)C8—C9—O3—C10179.46 (13)
O1—C7—C8—C958.11 (19)C11—C10—O3—C983.60 (18)
N1—C7—C8—C9121.15 (14)N2—C12—S1—C13179.81 (14)
N2—C8—C9—O238.3 (2)S2—C12—S1—C131.86 (12)
C7—C8—C9—O282.41 (19)N2—C12—S2—C141.14 (16)
N2—C8—C9—O3143.40 (13)S1—C12—S2—C14179.52 (10)
C7—C8—C9—O395.84 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1F···N20.889 (15)2.019 (18)2.586 (2)120.5 (15)
C2—H2···O10.952.332.932 (2)121
C6—H6···O2i0.952.43.295 (2)156
C10—H10B···O1ii0.992.533.340 (2)138
C10—H10B···O3ii0.992.653.377 (2)131
C11—H11A···O2iii0.982.643.465 (2)141
C13—H13B···O1iv0.982.633.579 (2)162
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y+1, z; (iv) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1F···N20.889 (15)2.019 (18)2.586 (2)120.5 (15)
C2—H2···O10.952.332.932 (2)120.5
C6—H6···O2i0.952.43.295 (2)155.8
C10—H10B···O1ii0.992.533.340 (2)138.4
C10—H10B···O3ii0.992.653.377 (2)130.8
C11—H11A···O2iii0.982.643.465 (2)141.4
C13—H13B···O1iv0.982.633.579 (2)162.2
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y+1, z; (iv) x, y1, z.
 

Acknowledgements

AKLR wishes to thank the Consejo Nacional de Ciencia y Tecnología (CONACYT-Mexico) for a scholarship for his doctoral studies. The authors also thank DGAPA–UNAM for financing project DGAPA–PAPIIT IN221113. MFA is indebted to Dr A. L. Maldonado-Hermenegildo for useful comments.

References

First citationAdams, A., Mitchell-Guss, J., Denny, W. A. & Wakelin, P. G. (2002). Nucleic Acids Res. 30, 719–725.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAgilent (2012). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLoza-Mejía, M., Maldonado-Hernández, K., Rodríguez-Hernández, F., Rodríguez-Sotres, R., González-Sánchez, I., Quintero, A., Solano, J. D. & Lira-Rocha, A. (2008). Bioorg. Med. Chem. 16, 1142–1149.  Web of Science PubMed Google Scholar
First citationLoza-Mejía, M., Olvera-Vázquez, S., Maldonado-Hernández, K., Guadarrama-Salgado, T., González-Sánchez, I., Rodríguez-Hernández, F., Solano, J. D., Rodríguez-Sotres, R. & Lira-Rocha, A. (2009). Bioorg. Med. Chem. 17, 3266–3277.  Web of Science PubMed Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRodríguez-Loaiza, P., Quintero, A., Rodríguez-Sotres, R., Solano, J. D. & Lira-Rocha, A. (2004). Eur. J. Med. Chem. 39, 5–10.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o930-o931
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds