organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o949-o950

Two tautomers in the same crystal: 3-(4-fluoro­phen­yl)-1H-pyrazole and 5-(4-fluoro­phen­yl)-1H-pyrazole

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 20 July 2014; accepted 23 July 2014; online 1 August 2014)

The title co-crystal, 3-(4-fluoro­phen­yl)-1H-pyrazole–5-(4-fluoro­phen­yl)-1H-pyrazole (1/1), C9H7FN2, crystallizes with four independent mol­ecules (A, B, C and D) in the asymmetric unit exhibiting two tautomeric forms (A and D; B and C) due to N—H proton exchange between the two N atoms of the pyrazole ring. The dihedral angles between the mean planes of the pyrazole and benzene rings are 15.6 (1), 19.8 (9), 14.0 (1) and 10.7 (7)° in mol­ecules A, B, C and D, respectively. In the crystal, N—H⋯N hydrogen bonds link the four mol­ecules in the asymmetric unit into a ring with an R44(12) motif. Furthermore, weak C—H⋯F inter­actions link the mol­ecules into a three-dimensional network.

1. Related literature

For biological and pharmacological properties of pyrazole compounds, see: Isloor et al. (2009[Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784-3787.]); Patel et al. (2010[Patel, C. K., Rami, C. S., Panigrahi, B. & Patel, C. N. (2010). J. Chem. Pharm. Res. 2, 73-78.]); Sarojini et al. (2010[Sarojini, B. K., Vidyagayatri, M., Darshanraj, C. G., Bharath, B. R. & Manjunatha, H. (2010). Lett. Drug Des. Discov. 7, 214-224.]); Samshuddin et al. (2012[Samshuddin, S., Narayana, B., Yathirajan, H. S., Gerber, T., Hosten, E. & Betz, R. (2012). Acta Cryst. E68, o3216-o3217.]). For related structures, see: Baktır et al. (2011[Baktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1292-o1293.]); Fun et al. (2012[Fun, H.-K., Chia, T. S., Sapnakumari, M., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o2680.]); Yamuna et al. (2013[Yamuna, T. S., Jasinski, J. P., Scadova, D. R., Yathirajan, H. S. & Kaur, M. (2013). Acta Cryst. E69, o1425-o1426.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For a description of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C9H7FN2

  • Mr = 162.17

  • Triclinic, [P \overline 1]

  • a = 10.3961 (5) Å

  • b = 10.8565 (6) Å

  • c = 16.1431 (7) Å

  • α = 84.704 (4)°

  • β = 76.223 (4)°

  • γ = 68.249 (5)°

  • V = 1643.57 (16) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.81 mm−1

  • T = 173 K

  • 0.22 × 0.16 × 0.10 mm

2.2. Data collection

  • Agilent Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED, Agilent (2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]). Tmin = 0.881, Tmax = 1.000

  • 11343 measured reflections

  • 6209 independent reflections

  • 5042 reflections with I > 2σ(I)

  • Rint = 0.019

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.122

  • S = 1.03

  • 6209 reflections

  • 449 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2A⋯N2C 0.94 (3) 1.94 (3) 2.886 (2) 177 (2)
C3A—H3A⋯F1Ai 0.95 2.58 3.226 (2) 125
N1B—H1B⋯N1D 1.00 (3) 1.86 (3) 2.8506 (19) 175 (2)
C3B—H3B⋯F1Bi 0.95 2.36 3.187 (2) 145
C6B—H6B⋯F1Aii 0.95 2.51 3.287 (3) 139
N1C—H1C⋯N2B 0.98 (3) 1.90 (3) 2.881 (2) 173 (2)
N2D—H2D⋯N1A 1.02 (3) 1.87 (3) 2.896 (2) 178 (3)
C3D—H3D⋯F1Diii 0.95 2.49 3.301 (2) 143
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+2, -z+1; (iii) x+1, y, z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Structural commentary top

Pyrazoles are an important class of heterocyclic compounds and many pyrazole derivatives are reported to have a broad spectrum of biological properties, including anti­bacterial and anti-inflammatory activities (Patel et al., 2010), anti­cancer (Sarojini et al., 2010; Samshuddin et al., 2012) anti-inflammatory, anti­depressant, anti­convulsant and anti-HIV properties (Isloor et al., 2009). Because of these various inter­esting fields of application as well as their fairly assessable path of synthesis, the pyrazoline ring became a center of attraction for organic chemists. Crystal structures of some related compounds include 3, 5-bis­(4-fluoro­phenyl)-1-(4-nitro­phenyl)-4,5-di­hydro-1H-pyrazole (Samshuddin et al., 2012), 5-(4-bromo­phenyl)- 3-(4-fluoro­phenyl)-1-phenyl-4,5-di­hydro-1H-pyrazole (Fun et al., 2012), 3,5-bis­(4-fluoro­phenyl)-4,5-di­hydro-1H-pyrazole-1-carbaldehyde (Baktır et al., 2011) and 3-amino-1H-pyrazol-2-ium tri­fluoro­acetate (Yamuna et al., 2013). In view of the importance of the title compound, C9H7FN2, the paper reports its crystal structure.

The title compound, C9H7FN2, crystallises with four independent molecules (A,B,C and D) in the asymmetric unit exhibiting two tautomeric forms (A and D; B and C) due to N—H proton exchange between the two nitro­gen atoms (N1 and N2) of the pyrazole ring (Fig. 1). The dihedral angles between the mean planes of the pyrazole ring and phenyl ring are 15.6 (1)°, 19.8 (9)°, 14.0 (1)° and 10.7 (7)°, in the molecules A, B, C and D, respectively. Bond lengths are in normal ranges (Allen et al., 1987). In the crystal, N—H···N inter­molecular hydrogen bonds link the four molecules in the asymmetric unit to a ring with motif R44(12) (Etter et al., 1990). Furthermore, weak C—H···F inter­molecular inter­actions link the molecules to a three-dimensional network (Fig. 2).

Synthesis and crystallization top

Commercially available 3-(4-fluoro­phenyl)-1H-pyrazole was dissolved in 5 ml of di­methyl­formamide at 303 K over a heating magnetic stirrer. X-ray quality crystals were formed on slow evaporation. (m.p.: 368-373 K).

Refinement top

The H atoms bonded to N (H2A, H1B, H1C and H2D) were refined isotropically and all of the remaining H atoms were placed in their calculated positions and then refined using the riding model with C—H lengths of 0.93Å. Isotropic displacement parameters for these atoms were set to 1.2 times Ueq of the parent C atom.

Related literature top

For biological and pharmacological properties of pyrazole compounds, see: Isloor et al. (2009); Patel et al. (2010); Sarojini et al. (2010); Samshuddin et al. (2012). For related structures, see: Baktır et al. (2011); Fun et al. (2012); Yamuna et al. (2013). For bond-length data, see: Allen et al. (1987). For a description of hydrogen bonds, see: Etter et al. (1990).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title compound showing the labeling scheme of the asymmetric unit of the title compound with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Molecular packing for the title compound viewed along the c axis. Dashed lines indicate N—H···N intermolecular hydrogen bonds and weak C—H···F intermolecular interactions together forming a 2D supramolecular network structure. H atoms not involved in hydrogen bonding have been removed for clarity.
[Figure 3] Fig. 3. The two tautomers in the same crystal: 3-(4-fluorophenyl)-1H-pyrazole (left) and 5-(4-fluorophenyl)-1H-pyrazole (right).
3-(4-Fluorophenyl)-1H-pyrazole–5-(4-fluorophenyl)-1H-pyrazole (1/1) top
Crystal data top
C9H7FN2Z = 8
Mr = 162.17F(000) = 672
Triclinic, P1Dx = 1.311 Mg m3
a = 10.3961 (5) ÅCu Kα radiation, λ = 1.54184 Å
b = 10.8565 (6) ÅCell parameters from 4341 reflections
c = 16.1431 (7) Åθ = 4.4–71.4°
α = 84.704 (4)°µ = 0.81 mm1
β = 76.223 (4)°T = 173 K
γ = 68.249 (5)°Irregular, colourless
V = 1643.57 (16) Å30.22 × 0.16 × 0.10 mm
Data collection top
Agilent Eos Gemini
diffractometer
6209 independent reflections
Radiation source: Enhance (Cu) X-ray Source5042 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 16.0416 pixels mm-1θmax = 71.3°, θmin = 4.4°
ω scansh = 126
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED, Agilent (2012).
k = 1312
Tmin = 0.881, Tmax = 1.000l = 1918
11343 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0568P)2 + 0.3619P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
6209 reflectionsΔρmax = 0.26 e Å3
449 parametersΔρmin = 0.22 e Å3
0 restraints
Crystal data top
C9H7FN2γ = 68.249 (5)°
Mr = 162.17V = 1643.57 (16) Å3
Triclinic, P1Z = 8
a = 10.3961 (5) ÅCu Kα radiation
b = 10.8565 (6) ŵ = 0.81 mm1
c = 16.1431 (7) ÅT = 173 K
α = 84.704 (4)°0.22 × 0.16 × 0.10 mm
β = 76.223 (4)°
Data collection top
Agilent Eos Gemini
diffractometer
6209 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED, Agilent (2012).
5042 reflections with I > 2σ(I)
Tmin = 0.881, Tmax = 1.000Rint = 0.019
11343 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.26 e Å3
6209 reflectionsΔρmin = 0.22 e Å3
449 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F1A0.91461 (15)0.91870 (11)0.36091 (9)0.0741 (4)
N1A0.86295 (14)0.36783 (13)0.29541 (9)0.0411 (3)
N2A0.89322 (16)0.23574 (14)0.30565 (10)0.0464 (3)
H2A0.850 (3)0.194 (3)0.2780 (16)0.085 (8)*
C1A0.93710 (16)0.40020 (15)0.34199 (9)0.0368 (3)
C2A1.01500 (19)0.28686 (17)0.38175 (11)0.0452 (4)
H2AA1.07640.28100.41830.054*
C3A0.9839 (2)0.18559 (18)0.35684 (12)0.0493 (4)
H3A1.02080.09520.37330.059*
C4A0.92972 (16)0.53758 (15)0.34570 (9)0.0357 (3)
C5A0.81711 (18)0.64507 (17)0.32574 (11)0.0436 (4)
H5A0.74300.62990.30850.052*
C6A0.8112 (2)0.77360 (17)0.33054 (12)0.0512 (4)
H6A0.73450.84670.31640.061*
C7A0.9187 (2)0.79295 (17)0.35624 (12)0.0499 (4)
C8A1.0311 (2)0.69078 (19)0.37737 (12)0.0521 (4)
H8A1.10370.70750.39540.063*
C9A1.03655 (19)0.56220 (17)0.37178 (11)0.0455 (4)
H9A1.11400.48990.38590.055*
F1B0.3343 (2)1.06776 (13)0.43105 (13)0.1157 (6)
N1B0.45578 (15)0.46841 (13)0.33291 (8)0.0390 (3)
H1B0.500 (3)0.495 (2)0.2756 (17)0.088 (8)*
N2B0.45026 (16)0.34515 (13)0.34547 (9)0.0451 (3)
C1B0.39261 (16)0.54133 (15)0.40414 (9)0.0336 (3)
C2B0.34397 (18)0.46175 (16)0.46561 (10)0.0425 (4)
H2B0.29480.48460.52290.051*
C3B0.3821 (2)0.34208 (16)0.42597 (11)0.0473 (4)
H3B0.36230.26740.45270.057*
C4B0.37974 (16)0.67949 (15)0.40913 (10)0.0357 (3)
C5B0.3388 (2)0.73875 (18)0.48847 (12)0.0514 (4)
H5B0.32090.68860.53840.062*
C6B0.3238 (2)0.8687 (2)0.49627 (16)0.0677 (6)
H6B0.29630.90840.55090.081*
C7B0.3493 (3)0.93936 (19)0.42403 (18)0.0711 (6)
C8B0.3899 (3)0.8856 (2)0.34485 (17)0.0778 (7)
H8B0.40760.93690.29550.093*
C9B0.4048 (2)0.75479 (19)0.33745 (13)0.0581 (5)
H9B0.43270.71620.28250.070*
F1C0.06409 (14)0.15006 (18)0.11668 (9)0.0902 (5)
N1C0.62673 (16)0.14637 (14)0.21875 (9)0.0428 (3)
H1C0.560 (3)0.214 (3)0.2606 (19)0.106 (9)*
N2C0.76704 (16)0.10753 (14)0.21687 (10)0.0496 (4)
C1C0.60268 (18)0.07149 (15)0.16611 (10)0.0397 (3)
C2C0.7333 (2)0.01966 (17)0.12914 (12)0.0485 (4)
H2C0.75220.08650.08910.058*
C3C0.8310 (2)0.00694 (18)0.16274 (13)0.0521 (4)
H3C0.93060.04050.14890.063*
C4C0.46026 (18)0.09391 (16)0.15406 (10)0.0402 (4)
C5C0.4371 (2)0.0033 (2)0.11510 (12)0.0559 (5)
H5C0.51390.08350.09690.067*
C6C0.3038 (3)0.0154 (2)0.10251 (14)0.0673 (6)
H6C0.28850.05110.07610.081*
C7C0.1955 (2)0.1309 (3)0.12873 (12)0.0602 (5)
C8C0.2129 (2)0.2291 (2)0.16722 (12)0.0581 (5)
H8C0.13500.30880.18490.070*
C9C0.34629 (18)0.21022 (18)0.17996 (11)0.0470 (4)
H9C0.35970.27760.20670.056*
F1D0.00377 (12)0.72341 (13)0.04635 (8)0.0704 (3)
N1D0.59139 (15)0.52634 (14)0.16671 (8)0.0429 (3)
N2D0.72929 (16)0.51037 (17)0.15930 (10)0.0501 (4)
H2D0.778 (3)0.459 (3)0.206 (2)0.114 (10)*
C1D0.55077 (17)0.59754 (16)0.09872 (9)0.0388 (3)
C2D0.6648 (2)0.62687 (19)0.04769 (11)0.0503 (4)
H2DA0.66600.67600.00420.060*
C3D0.7748 (2)0.5694 (2)0.08865 (12)0.0562 (5)
H3D0.86770.57150.06970.067*
C4D0.40598 (17)0.63199 (15)0.08592 (10)0.0380 (3)
C5D0.29879 (19)0.61209 (19)0.14987 (11)0.0507 (4)
H5D0.31920.57630.20320.061*
C6D0.1633 (2)0.6436 (2)0.13699 (12)0.0570 (5)
H6D0.09060.63000.18080.068*
C7D0.13651 (18)0.69495 (18)0.05921 (12)0.0489 (4)
C8D0.2375 (2)0.71705 (17)0.00511 (11)0.0492 (4)
H8D0.21560.75360.05800.059*
C9D0.37280 (19)0.68496 (16)0.00855 (10)0.0436 (4)
H9D0.44430.69940.03580.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F1A0.0908 (9)0.0394 (6)0.0995 (10)0.0298 (6)0.0218 (7)0.0071 (6)
N1A0.0438 (7)0.0414 (7)0.0421 (7)0.0192 (6)0.0082 (6)0.0062 (6)
N2A0.0523 (8)0.0424 (8)0.0506 (8)0.0241 (7)0.0091 (7)0.0069 (6)
C1A0.0385 (8)0.0405 (8)0.0324 (7)0.0167 (6)0.0045 (6)0.0034 (6)
C2A0.0554 (10)0.0409 (9)0.0451 (9)0.0210 (8)0.0162 (8)0.0013 (7)
C3A0.0580 (10)0.0389 (9)0.0532 (10)0.0202 (8)0.0123 (8)0.0006 (7)
C4A0.0391 (8)0.0377 (8)0.0299 (7)0.0159 (6)0.0023 (6)0.0026 (6)
C5A0.0448 (9)0.0439 (9)0.0440 (9)0.0180 (7)0.0096 (7)0.0004 (7)
C6A0.0542 (10)0.0386 (9)0.0566 (11)0.0124 (8)0.0119 (8)0.0013 (8)
C7A0.0627 (11)0.0362 (9)0.0532 (10)0.0229 (8)0.0068 (8)0.0061 (7)
C8A0.0553 (10)0.0502 (10)0.0607 (11)0.0263 (8)0.0163 (9)0.0072 (8)
C9A0.0469 (9)0.0413 (9)0.0521 (10)0.0164 (7)0.0159 (8)0.0032 (7)
F1B0.1591 (16)0.0346 (7)0.1658 (17)0.0410 (9)0.0453 (13)0.0091 (8)
N1B0.0529 (8)0.0327 (6)0.0319 (7)0.0170 (6)0.0067 (6)0.0028 (5)
N2B0.0587 (9)0.0327 (7)0.0467 (8)0.0178 (6)0.0127 (7)0.0054 (6)
C1B0.0371 (8)0.0331 (7)0.0321 (7)0.0139 (6)0.0083 (6)0.0000 (6)
C2B0.0522 (10)0.0391 (8)0.0366 (8)0.0214 (7)0.0028 (7)0.0004 (6)
C3B0.0612 (11)0.0357 (8)0.0517 (10)0.0265 (8)0.0122 (8)0.0046 (7)
C4B0.0358 (8)0.0323 (7)0.0391 (8)0.0128 (6)0.0071 (6)0.0011 (6)
C5B0.0625 (11)0.0395 (9)0.0488 (10)0.0170 (8)0.0049 (8)0.0092 (7)
C6B0.0804 (15)0.0426 (10)0.0767 (14)0.0170 (10)0.0115 (11)0.0216 (10)
C7B0.0859 (15)0.0292 (9)0.1048 (18)0.0217 (9)0.0287 (14)0.0076 (10)
C8B0.119 (2)0.0464 (11)0.0788 (16)0.0452 (13)0.0219 (14)0.0153 (11)
C9B0.0885 (15)0.0437 (10)0.0467 (10)0.0342 (10)0.0078 (10)0.0029 (8)
F1C0.0624 (8)0.1541 (15)0.0731 (9)0.0566 (9)0.0189 (7)0.0068 (9)
N1C0.0485 (8)0.0366 (7)0.0464 (8)0.0168 (6)0.0111 (6)0.0065 (6)
N2C0.0511 (8)0.0389 (7)0.0637 (9)0.0168 (6)0.0203 (7)0.0021 (7)
C1C0.0533 (9)0.0337 (8)0.0354 (8)0.0190 (7)0.0100 (7)0.0012 (6)
C2C0.0563 (10)0.0386 (9)0.0508 (10)0.0135 (8)0.0154 (8)0.0082 (7)
C3C0.0493 (10)0.0410 (9)0.0638 (11)0.0101 (8)0.0171 (9)0.0031 (8)
C4C0.0501 (9)0.0444 (9)0.0302 (7)0.0236 (7)0.0059 (7)0.0001 (6)
C5C0.0648 (12)0.0559 (11)0.0554 (11)0.0272 (9)0.0157 (9)0.0112 (9)
C6C0.0776 (15)0.0851 (16)0.0592 (12)0.0482 (13)0.0175 (11)0.0111 (11)
C7C0.0541 (11)0.0995 (17)0.0409 (9)0.0436 (11)0.0104 (8)0.0011 (10)
C8C0.0469 (10)0.0782 (14)0.0454 (10)0.0226 (9)0.0005 (8)0.0070 (9)
C9C0.0480 (9)0.0548 (10)0.0393 (9)0.0221 (8)0.0035 (7)0.0069 (7)
F1D0.0458 (6)0.0818 (9)0.0781 (8)0.0133 (6)0.0200 (6)0.0014 (7)
N1D0.0442 (7)0.0503 (8)0.0321 (7)0.0153 (6)0.0061 (6)0.0040 (6)
N2D0.0475 (8)0.0618 (10)0.0423 (8)0.0202 (7)0.0096 (7)0.0047 (7)
C1D0.0461 (9)0.0385 (8)0.0300 (7)0.0159 (7)0.0027 (6)0.0039 (6)
C2D0.0540 (10)0.0567 (11)0.0419 (9)0.0266 (9)0.0046 (8)0.0042 (8)
C3D0.0503 (10)0.0704 (13)0.0528 (11)0.0311 (9)0.0039 (8)0.0038 (9)
C4D0.0449 (8)0.0335 (7)0.0323 (7)0.0130 (6)0.0036 (6)0.0025 (6)
C5D0.0481 (10)0.0642 (11)0.0343 (8)0.0183 (8)0.0049 (7)0.0061 (8)
C6D0.0452 (10)0.0727 (13)0.0454 (10)0.0199 (9)0.0016 (8)0.0012 (9)
C7D0.0409 (9)0.0461 (9)0.0546 (10)0.0078 (7)0.0125 (8)0.0047 (8)
C8D0.0583 (11)0.0444 (9)0.0420 (9)0.0140 (8)0.0151 (8)0.0044 (7)
C9D0.0512 (9)0.0420 (9)0.0359 (8)0.0175 (7)0.0059 (7)0.0023 (7)
Geometric parameters (Å, º) top
F1A—C7A1.3584 (19)F1C—C7C1.362 (2)
N1A—N2A1.3525 (19)N1C—H1C0.98 (3)
N1A—C1A1.345 (2)N1C—N2C1.353 (2)
N2A—H2A0.94 (3)N1C—C1C1.351 (2)
N2A—C3A1.333 (2)N2C—C3C1.326 (2)
C1A—C2A1.395 (2)C1C—C2C1.381 (2)
C1A—C4A1.471 (2)C1C—C4C1.466 (2)
C2A—H2AA0.9500C2C—H2C0.9500
C2A—C3A1.372 (2)C2C—C3C1.384 (3)
C3A—H3A0.9500C3C—H3C0.9500
C4A—C5A1.391 (2)C4C—C5C1.396 (2)
C4A—C9A1.395 (2)C4C—C9C1.388 (2)
C5A—H5A0.9500C5C—H5C0.9500
C5A—C6A1.382 (2)C5C—C6C1.386 (3)
C6A—H6A0.9500C6C—H6C0.9500
C6A—C7A1.370 (3)C6C—C7C1.357 (3)
C7A—C8A1.368 (3)C7C—C8C1.369 (3)
C8A—H8A0.9500C8C—H8C0.9500
C8A—C9A1.387 (2)C8C—C9C1.387 (3)
C9A—H9A0.9500C9C—H9C0.9500
F1B—C7B1.356 (2)F1D—C7D1.361 (2)
N1B—H1B1.00 (3)N1D—N2D1.356 (2)
N1B—N2B1.3551 (18)N1D—C1D1.343 (2)
N1B—C1B1.343 (2)N2D—H2D1.02 (3)
N2B—C3B1.328 (2)N2D—C3D1.329 (2)
C1B—C2B1.383 (2)C1D—C2D1.397 (2)
C1B—C4B1.464 (2)C1D—C4D1.471 (2)
C2B—H2B0.9500C2D—H2DA0.9500
C2B—C3B1.380 (2)C2D—C3D1.375 (3)
C3B—H3B0.9500C3D—H3D0.9500
C4B—C5B1.388 (2)C4D—C5D1.394 (2)
C4B—C9B1.384 (2)C4D—C9D1.391 (2)
C5B—H5B0.9500C5D—H5D0.9500
C5B—C6B1.375 (3)C5D—C6D1.383 (3)
C6B—H6B0.9500C6D—H6D0.9500
C6B—C7B1.362 (3)C6D—C7D1.374 (3)
C7B—C8B1.361 (3)C7D—C8D1.364 (3)
C8B—H8B0.9500C8D—H8D0.9500
C8B—C9B1.383 (3)C8D—C9D1.385 (2)
C9B—H9B0.9500C9D—H9D0.9500
C1A—N1A—N2A106.39 (13)N2C—N1C—H1C118.1 (16)
N1A—N2A—H2A118.9 (16)C1C—N1C—H1C130.5 (17)
C3A—N2A—N1A110.49 (14)C1C—N1C—N2C110.98 (14)
C3A—N2A—H2A130.6 (16)C3C—N2C—N1C105.89 (14)
N1A—C1A—C2A109.52 (14)N1C—C1C—C2C106.74 (15)
N1A—C1A—C4A121.34 (14)N1C—C1C—C4C122.62 (15)
C2A—C1A—C4A129.14 (14)C2C—C1C—C4C130.62 (15)
C1A—C2A—H2AA127.4C1C—C2C—H2C127.3
C3A—C2A—C1A105.28 (15)C1C—C2C—C3C105.42 (15)
C3A—C2A—H2AA127.4C3C—C2C—H2C127.3
N2A—C3A—C2A108.33 (16)N2C—C3C—C2C110.97 (16)
N2A—C3A—H3A125.8N2C—C3C—H3C124.5
C2A—C3A—H3A125.8C2C—C3C—H3C124.5
C5A—C4A—C1A121.94 (14)C5C—C4C—C1C119.78 (16)
C5A—C4A—C9A118.47 (15)C9C—C4C—C1C121.88 (15)
C9A—C4A—C1A119.57 (14)C9C—C4C—C5C118.33 (17)
C4A—C5A—H5A119.4C4C—C5C—H5C119.5
C6A—C5A—C4A121.12 (16)C6C—C5C—C4C121.1 (2)
C6A—C5A—H5A119.4C6C—C5C—H5C119.5
C5A—C6A—H6A120.8C5C—C6C—H6C120.7
C7A—C6A—C5A118.34 (17)C7C—C6C—C5C118.55 (19)
C7A—C6A—H6A120.8C7C—C6C—H6C120.7
F1A—C7A—C6A118.98 (17)F1C—C7C—C8C118.5 (2)
F1A—C7A—C8A118.17 (17)C6C—C7C—F1C118.9 (2)
C8A—C7A—C6A122.85 (16)C6C—C7C—C8C122.57 (18)
C7A—C8A—H8A120.8C7C—C8C—H8C120.6
C7A—C8A—C9A118.35 (17)C7C—C8C—C9C118.84 (19)
C9A—C8A—H8A120.8C9C—C8C—H8C120.6
C4A—C9A—H9A119.6C4C—C9C—H9C119.7
C8A—C9A—C4A120.86 (16)C8C—C9C—C4C120.64 (17)
C8A—C9A—H9A119.6C8C—C9C—H9C119.7
N2B—N1B—H1B120.0 (15)C1D—N1D—N2D106.73 (14)
C1B—N1B—H1B128.9 (15)N1D—N2D—H2D117.9 (17)
C1B—N1B—N2B111.08 (13)C3D—N2D—N1D110.18 (15)
C3B—N2B—N1B105.72 (13)C3D—N2D—H2D131.9 (17)
N1B—C1B—C2B106.85 (14)N1D—C1D—C2D109.36 (15)
N1B—C1B—C4B123.31 (13)N1D—C1D—C4D121.20 (14)
C2B—C1B—C4B129.83 (14)C2D—C1D—C4D129.44 (15)
C1B—C2B—H2B127.3C1D—C2D—H2DA127.4
C3B—C2B—C1B105.37 (14)C3D—C2D—C1D105.16 (16)
C3B—C2B—H2B127.3C3D—C2D—H2DA127.4
N2B—C3B—C2B110.99 (14)N2D—C3D—C2D108.57 (16)
N2B—C3B—H3B124.5N2D—C3D—H3D125.7
C2B—C3B—H3B124.5C2D—C3D—H3D125.7
C5B—C4B—C1B119.17 (14)C5D—C4D—C1D121.57 (15)
C9B—C4B—C1B122.57 (15)C9D—C4D—C1D120.35 (14)
C9B—C4B—C5B118.26 (16)C9D—C4D—C5D118.08 (16)
C4B—C5B—H5B119.4C4D—C5D—H5D119.4
C6B—C5B—C4B121.24 (18)C6D—C5D—C4D121.17 (16)
C6B—C5B—H5B119.4C6D—C5D—H5D119.4
C5B—C6B—H6B120.7C5D—C6D—H6D120.8
C7B—C6B—C5B118.6 (2)C7D—C6D—C5D118.35 (17)
C7B—C6B—H6B120.7C7D—C6D—H6D120.8
F1B—C7B—C6B119.0 (2)F1D—C7D—C6D118.09 (17)
F1B—C7B—C8B118.7 (2)F1D—C7D—C8D119.25 (16)
C8B—C7B—C6B122.33 (18)C8D—C7D—C6D122.65 (17)
C7B—C8B—H8B120.6C7D—C8D—H8D120.8
C7B—C8B—C9B118.8 (2)C7D—C8D—C9D118.44 (16)
C9B—C8B—H8B120.6C9D—C8D—H8D120.8
C4B—C9B—H9B119.6C4D—C9D—H9D119.3
C8B—C9B—C4B120.79 (19)C8D—C9D—C4D121.31 (16)
C8B—C9B—H9B119.6C8D—C9D—H9D119.3
F1A—C7A—C8A—C9A179.30 (16)F1C—C7C—C8C—C9C179.81 (17)
N1A—N2A—C3A—C2A0.2 (2)N1C—N2C—C3C—C2C0.2 (2)
N1A—C1A—C2A—C3A0.03 (19)N1C—C1C—C2C—C3C0.09 (19)
N1A—C1A—C4A—C5A20.9 (2)N1C—C1C—C4C—C5C165.31 (16)
N1A—C1A—C4A—C9A160.61 (15)N1C—C1C—C4C—C9C15.0 (2)
N2A—N1A—C1A—C2A0.12 (18)N2C—N1C—C1C—C2C0.23 (19)
N2A—N1A—C1A—C4A179.93 (13)N2C—N1C—C1C—C4C178.51 (14)
C1A—N1A—N2A—C3A0.17 (19)C1C—N1C—N2C—C3C0.28 (19)
C1A—C2A—C3A—N2A0.1 (2)C1C—C2C—C3C—N2C0.1 (2)
C1A—C4A—C5A—C6A179.25 (15)C1C—C4C—C5C—C6C179.71 (17)
C1A—C4A—C9A—C8A178.84 (16)C1C—C4C—C9C—C8C179.57 (16)
C2A—C1A—C4A—C5A159.34 (17)C2C—C1C—C4C—C5C16.3 (3)
C2A—C1A—C4A—C9A19.2 (2)C2C—C1C—C4C—C9C163.36 (18)
C4A—C1A—C2A—C3A179.82 (16)C4C—C1C—C2C—C3C178.51 (17)
C4A—C5A—C6A—C7A0.5 (3)C4C—C5C—C6C—C7C0.2 (3)
C5A—C4A—C9A—C8A0.3 (2)C5C—C4C—C9C—C8C0.1 (3)
C5A—C6A—C7A—F1A179.73 (16)C5C—C6C—C7C—F1C179.94 (18)
C5A—C6A—C7A—C8A0.1 (3)C5C—C6C—C7C—C8C0.2 (3)
C6A—C7A—C8A—C9A0.5 (3)C6C—C7C—C8C—C9C0.0 (3)
C7A—C8A—C9A—C4A0.3 (3)C7C—C8C—C9C—C4C0.1 (3)
C9A—C4A—C5A—C6A0.7 (2)C9C—C4C—C5C—C6C0.0 (3)
F1B—C7B—C8B—C9B179.8 (2)F1D—C7D—C8D—C9D178.71 (16)
N1B—N2B—C3B—C2B0.2 (2)N1D—N2D—C3D—C2D0.2 (2)
N1B—C1B—C2B—C3B0.10 (19)N1D—C1D—C2D—C3D0.1 (2)
N1B—C1B—C4B—C5B167.30 (16)N1D—C1D—C4D—C5D10.9 (2)
N1B—C1B—C4B—C9B13.7 (3)N1D—C1D—C4D—C9D168.65 (15)
N2B—N1B—C1B—C2B0.01 (18)N2D—N1D—C1D—C2D0.01 (19)
N2B—N1B—C1B—C4B178.70 (13)N2D—N1D—C1D—C4D179.25 (14)
C1B—N1B—N2B—C3B0.09 (19)C1D—N1D—N2D—C3D0.1 (2)
C1B—C2B—C3B—N2B0.2 (2)C1D—C2D—C3D—N2D0.2 (2)
C1B—C4B—C5B—C6B179.28 (18)C1D—C4D—C5D—C6D179.36 (17)
C1B—C4B—C9B—C8B179.22 (19)C1D—C4D—C9D—C8D179.45 (15)
C2B—C1B—C4B—C5B14.3 (3)C2D—C1D—C4D—C5D170.03 (18)
C2B—C1B—C4B—C9B164.73 (18)C2D—C1D—C4D—C9D10.4 (3)
C4B—C1B—C2B—C3B178.49 (16)C4D—C1D—C2D—C3D179.03 (16)
C4B—C5B—C6B—C7B0.3 (3)C4D—C5D—C6D—C7D0.1 (3)
C5B—C4B—C9B—C8B0.2 (3)C5D—C4D—C9D—C8D0.1 (2)
C5B—C6B—C7B—F1B179.7 (2)C5D—C6D—C7D—F1D178.79 (17)
C5B—C6B—C7B—C8B0.4 (4)C5D—C6D—C7D—C8D0.6 (3)
C6B—C7B—C8B—C9B0.4 (4)C6D—C7D—C8D—C9D0.7 (3)
C7B—C8B—C9B—C4B0.3 (4)C7D—C8D—C9D—C4D0.3 (3)
C9B—C4B—C5B—C6B0.2 (3)C9D—C4D—C5D—C6D0.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2A···N2C0.94 (3)1.94 (3)2.886 (2)177 (2)
C3A—H3A···F1Ai0.952.583.226 (2)125
N1B—H1B···N1D1.00 (3)1.86 (3)2.8506 (19)175 (2)
C3B—H3B···F1Bi0.952.363.187 (2)145
C6B—H6B···F1Aii0.952.513.287 (3)139
N1C—H1C···N2B0.98 (3)1.90 (3)2.881 (2)173 (2)
N2D—H2D···N1A1.02 (3)1.87 (3)2.896 (2)178 (3)
C3D—H3D···F1Diii0.952.493.301 (2)143
Symmetry codes: (i) x, y1, z; (ii) x+1, y+2, z+1; (iii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2A···N2C0.94 (3)1.94 (3)2.886 (2)177 (2)
C3A—H3A···F1Ai0.952.583.226 (2)125.3
N1B—H1B···N1D1.00 (3)1.86 (3)2.8506 (19)175 (2)
C3B—H3B···F1Bi0.952.363.187 (2)145.4
C6B—H6B···F1Aii0.952.513.287 (3)138.8
N1C—H1C···N2B0.98 (3)1.90 (3)2.881 (2)173 (2)
N2D—H2D···N1A1.02 (3)1.87 (3)2.896 (2)178 (3)
C3D—H3D···F1Diii0.952.493.301 (2)142.7
Symmetry codes: (i) x, y1, z; (ii) x+1, y+2, z+1; (iii) x+1, y, z.
 

Acknowledgements

TSY thanks the University of Mysore for research facilities and also is grateful to the Principal, Maharani's Science College for Women, Mysore, for giving permission to undertake research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBaktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1292–o1293.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Chia, T. S., Sapnakumari, M., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o2680.  CSD CrossRef IUCr Journals Google Scholar
First citationIsloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784–3787.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPatel, C. K., Rami, C. S., Panigrahi, B. & Patel, C. N. (2010). J. Chem. Pharm. Res. 2, 73–78.  CAS Google Scholar
First citationSamshuddin, S., Narayana, B., Yathirajan, H. S., Gerber, T., Hosten, E. & Betz, R. (2012). Acta Cryst. E68, o3216–o3217.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSarojini, B. K., Vidyagayatri, M., Darshanraj, C. G., Bharath, B. R. & Manjunatha, H. (2010). Lett. Drug Des. Discov. 7, 214–224.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamuna, T. S., Jasinski, J. P., Scadova, D. R., Yathirajan, H. S. & Kaur, M. (2013). Acta Cryst. E69, o1425–o1426.  CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o949-o950
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds