organic compounds
E)-N′-benzylidene-1-methyl-4-nitro-1H-pyrrole-2-carbohydrazide
of (aDepartment of Chemistry, Changzhi University, Changzhi, Shanxi 046011, People's Republic of China
*Correspondence e-mail: jlwangczu@163.com
In the title compound, C13H12N4O3, the dihedral angle between the planes of the pyrrole and benzene rings is 7.47 (1)°. In the crystal, molecules are arranged in sheets lying parallel to (101). Neighbouring sheets are linked by N—H⋯O hydrogen bonds, weak π–π [centroid–centroid distance between the pyrrole rings = 3.765 (11) Å] and C—H⋯π interactions, forming a three-dimensional structure.
Keywords: crystal structure; pyrrole-2-carbohydrazide; aroylhydrazones; hydrogen bonding; π–π interactions.
CCDC reference: 1018158
1. Related literature
For applications and structures of aroylhydrazones, see: Krishnamoorthy et al. (2012); Raja et al. (2012); Wang et al. (2014). For similar structures, see: Wang et al. (2011, 2014). For π–π interactions, see: Janiak (2000).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
|
Data collection: SMART (Bruker, 1999); cell SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and DIAMOND (Brandenburg, 2005).
Supporting information
CCDC reference: 1018158
10.1107/S1600536814018054/bt6990sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814018054/bt6990Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814018054/bt6990Isup3.cml
The precursor 1-methyl-4-nitro-1H-pyrrole-2-carbohydrazide was synthesized according to literature procedures (Wang et al., 2011). Similar to the synthesis of (E)-1-methyl-4-nitro-N'-(pyridin-2-ylmethylene)-1H-pyrrole-2-carbohydrazide, the reaction of the precursor and benzaldehyde in a 1:1 molar ratio gave the title compound as a yellowish powder in 80% yield. Anal. Calc. (%) for C13H12N4O3: C 57.35, H 4.44, N 20.58; found: C 57.31, H 4.51, N 20.55. The powder of the title compound was dissolved in N,N-dimethyl formamide and the yellow crystals were collected after slow evaporation at room temperature for about two weeks.
H atoms were placed in geometrically idealized positions, with N–H=0.86 Å, Caromatic–H=0.93, Cmethyl–H 0.96 Å, and with Uiso(H) = k × Ueq(parent C-atom), where k = 1.5 for methyl H-atoms and 1.2 for other H-atoms.
Data collection: SMART (Bruker, 1999); cell
SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005).C13H12N4O3 | F(000) = 568 |
Mr = 272.27 | Dx = 1.406 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1529 reflections |
a = 13.030 (3) Å | θ = 2.3–24.0° |
b = 11.900 (3) Å | µ = 0.10 mm−1 |
c = 8.331 (2) Å | T = 298 K |
β = 95.409 (3)° | Block, yellow |
V = 1285.92 (17) Å3 | 0.32 × 0.20 × 0.17 mm |
Z = 4 |
Bruker SMART 1000 CCD diffractometer | 2248 independent reflections |
Radiation source: fine-focus sealed tube | 1382 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.043 |
phi and ω scans | θmax = 25.0°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −13→15 |
Tmin = 0.968, Tmax = 0.983 | k = −14→14 |
6283 measured reflections | l = −9→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.135 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0571P)2 + 0.2921P] where P = (Fo2 + 2Fc2)/3 |
2248 reflections | (Δ/σ)max < 0.001 |
182 parameters | Δρmax = 0.19 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
C13H12N4O3 | V = 1285.92 (17) Å3 |
Mr = 272.27 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 13.030 (3) Å | µ = 0.10 mm−1 |
b = 11.900 (3) Å | T = 298 K |
c = 8.331 (2) Å | 0.32 × 0.20 × 0.17 mm |
β = 95.409 (3)° |
Bruker SMART 1000 CCD diffractometer | 2248 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 1382 reflections with I > 2σ(I) |
Tmin = 0.968, Tmax = 0.983 | Rint = 0.043 |
6283 measured reflections |
R[F2 > 2σ(F2)] = 0.047 | 0 restraints |
wR(F2) = 0.135 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.19 e Å−3 |
2248 reflections | Δρmin = −0.18 e Å−3 |
182 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.80415 (15) | 0.34342 (17) | 0.4275 (2) | 0.0409 (5) | |
N2 | 0.74919 (15) | 0.27603 (17) | 0.5233 (2) | 0.0435 (6) | |
H2 | 0.7314 | 0.3006 | 0.6138 | 0.052* | |
N3 | 0.64881 (15) | −0.00154 (17) | 0.5892 (2) | 0.0436 (6) | |
N4 | 0.45223 (18) | 0.0771 (3) | 0.8358 (3) | 0.0618 (7) | |
O1 | 0.75036 (14) | 0.12934 (15) | 0.3497 (2) | 0.0540 (5) | |
O2 | 0.41349 (15) | −0.0109 (2) | 0.8783 (2) | 0.0804 (7) | |
O3 | 0.42286 (18) | 0.1703 (2) | 0.8735 (3) | 0.0916 (8) | |
C1 | 0.72375 (18) | 0.1713 (2) | 0.4734 (3) | 0.0397 (6) | |
C2 | 0.65549 (18) | 0.1145 (2) | 0.5783 (3) | 0.0386 (6) | |
C3 | 0.58369 (18) | 0.1601 (2) | 0.6690 (3) | 0.0441 (7) | |
H3 | 0.5704 | 0.2361 | 0.6829 | 0.053* | |
C4 | 0.53470 (19) | 0.0704 (2) | 0.7359 (3) | 0.0469 (7) | |
C5 | 0.57607 (19) | −0.0277 (2) | 0.6867 (3) | 0.0502 (7) | |
H5 | 0.5572 | −0.0998 | 0.7156 | 0.060* | |
C6 | 0.7129 (2) | −0.0846 (2) | 0.5155 (3) | 0.0560 (8) | |
H6A | 0.6865 | −0.1586 | 0.5319 | 0.084* | |
H6B | 0.7825 | −0.0796 | 0.5644 | 0.084* | |
H6C | 0.7117 | −0.0700 | 0.4020 | 0.084* | |
C7 | 0.81171 (19) | 0.4454 (2) | 0.4711 (3) | 0.0419 (6) | |
H7 | 0.7786 | 0.4697 | 0.5589 | 0.050* | |
C8 | 0.87158 (18) | 0.5250 (2) | 0.3853 (3) | 0.0388 (6) | |
C9 | 0.93840 (19) | 0.4903 (2) | 0.2762 (3) | 0.0467 (7) | |
H9 | 0.9426 | 0.4143 | 0.2512 | 0.056* | |
C10 | 0.9988 (2) | 0.5662 (2) | 0.2040 (3) | 0.0530 (8) | |
H10 | 1.0445 | 0.5413 | 0.1324 | 0.064* | |
C11 | 0.9919 (2) | 0.6776 (3) | 0.2370 (3) | 0.0604 (8) | |
H11 | 1.0330 | 0.7290 | 0.1885 | 0.072* | |
C12 | 0.9246 (3) | 0.7139 (2) | 0.3416 (4) | 0.0724 (10) | |
H12 | 0.9186 | 0.7903 | 0.3620 | 0.087* | |
C13 | 0.8655 (2) | 0.6380 (2) | 0.4170 (3) | 0.0587 (8) | |
H13 | 0.8210 | 0.6635 | 0.4901 | 0.070* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0444 (12) | 0.0449 (13) | 0.0346 (12) | −0.0062 (10) | 0.0097 (10) | 0.0028 (10) |
N2 | 0.0533 (13) | 0.0436 (12) | 0.0362 (13) | −0.0105 (10) | 0.0172 (10) | −0.0027 (10) |
N3 | 0.0437 (13) | 0.0442 (13) | 0.0428 (13) | −0.0056 (10) | 0.0024 (10) | 0.0019 (11) |
N4 | 0.0421 (14) | 0.096 (2) | 0.0474 (15) | −0.0117 (15) | 0.0069 (12) | 0.0073 (16) |
O1 | 0.0735 (13) | 0.0526 (11) | 0.0388 (11) | −0.0083 (10) | 0.0211 (10) | −0.0081 (9) |
O2 | 0.0547 (13) | 0.1207 (19) | 0.0668 (15) | −0.0377 (13) | 0.0107 (11) | 0.0153 (14) |
O3 | 0.0764 (17) | 0.112 (2) | 0.0932 (19) | 0.0082 (15) | 0.0433 (14) | −0.0026 (17) |
C1 | 0.0425 (15) | 0.0449 (16) | 0.0319 (15) | −0.0037 (12) | 0.0039 (12) | 0.0031 (13) |
C2 | 0.0400 (14) | 0.0439 (15) | 0.0316 (14) | −0.0057 (12) | 0.0009 (11) | 0.0038 (12) |
C3 | 0.0436 (15) | 0.0507 (16) | 0.0385 (16) | −0.0035 (13) | 0.0065 (13) | 0.0029 (13) |
C4 | 0.0354 (14) | 0.0679 (19) | 0.0379 (16) | −0.0091 (14) | 0.0054 (12) | 0.0040 (14) |
C5 | 0.0473 (17) | 0.0566 (18) | 0.0455 (17) | −0.0171 (14) | −0.0013 (14) | 0.0101 (14) |
C6 | 0.0604 (19) | 0.0455 (16) | 0.061 (2) | 0.0004 (14) | 0.0017 (15) | −0.0036 (14) |
C7 | 0.0439 (15) | 0.0466 (16) | 0.0367 (15) | 0.0009 (13) | 0.0115 (12) | −0.0018 (13) |
C8 | 0.0417 (14) | 0.0402 (15) | 0.0343 (15) | −0.0041 (11) | 0.0023 (12) | 0.0002 (12) |
C9 | 0.0474 (16) | 0.0388 (15) | 0.0552 (17) | 0.0036 (12) | 0.0116 (14) | 0.0038 (13) |
C10 | 0.0493 (16) | 0.0574 (19) | 0.0547 (19) | −0.0070 (14) | 0.0177 (14) | 0.0038 (15) |
C11 | 0.075 (2) | 0.0553 (19) | 0.0521 (19) | −0.0224 (16) | 0.0116 (16) | 0.0043 (15) |
C12 | 0.110 (3) | 0.0413 (17) | 0.069 (2) | −0.0147 (18) | 0.025 (2) | −0.0071 (16) |
C13 | 0.078 (2) | 0.0486 (18) | 0.0523 (19) | −0.0055 (15) | 0.0238 (16) | −0.0101 (15) |
N1—C7 | 1.268 (3) | C6—H6A | 0.9600 |
N1—N2 | 1.379 (3) | C6—H6B | 0.9600 |
N2—C1 | 1.346 (3) | C6—H6C | 0.9600 |
N2—H2 | 0.8600 | C7—C8 | 1.456 (3) |
N3—C5 | 1.342 (3) | C7—H7 | 0.9300 |
N3—C2 | 1.386 (3) | C8—C13 | 1.374 (3) |
N3—C6 | 1.466 (3) | C8—C9 | 1.380 (3) |
N4—O3 | 1.224 (3) | C9—C10 | 1.374 (3) |
N4—O2 | 1.230 (3) | C9—H9 | 0.9300 |
N4—C4 | 1.422 (3) | C10—C11 | 1.359 (4) |
O1—C1 | 1.224 (3) | C10—H10 | 0.9300 |
C1—C2 | 1.469 (3) | C11—C12 | 1.363 (4) |
C2—C3 | 1.369 (3) | C11—H11 | 0.9300 |
C3—C4 | 1.387 (3) | C12—C13 | 1.376 (4) |
C3—H3 | 0.9300 | C12—H12 | 0.9300 |
C4—C5 | 1.365 (4) | C13—H13 | 0.9300 |
C5—H5 | 0.9300 | ||
C7—N1—N2 | 114.9 (2) | N3—C6—H6B | 109.5 |
C1—N2—N1 | 119.1 (2) | H6A—C6—H6B | 109.5 |
C1—N2—H2 | 120.5 | N3—C6—H6C | 109.5 |
N1—N2—H2 | 120.5 | H6A—C6—H6C | 109.5 |
C5—N3—C2 | 108.8 (2) | H6B—C6—H6C | 109.5 |
C5—N3—C6 | 124.1 (2) | N1—C7—C8 | 120.8 (2) |
C2—N3—C6 | 127.0 (2) | N1—C7—H7 | 119.6 |
O3—N4—O2 | 123.5 (3) | C8—C7—H7 | 119.6 |
O3—N4—C4 | 118.2 (3) | C13—C8—C9 | 118.1 (2) |
O2—N4—C4 | 118.3 (3) | C13—C8—C7 | 119.9 (2) |
O1—C1—N2 | 123.8 (2) | C9—C8—C7 | 121.9 (2) |
O1—C1—C2 | 123.3 (2) | C10—C9—C8 | 121.0 (2) |
N2—C1—C2 | 112.8 (2) | C10—C9—H9 | 119.5 |
C3—C2—N3 | 108.0 (2) | C8—C9—H9 | 119.5 |
C3—C2—C1 | 129.0 (2) | C11—C10—C9 | 120.1 (3) |
N3—C2—C1 | 122.8 (2) | C11—C10—H10 | 119.9 |
C2—C3—C4 | 106.3 (2) | C9—C10—H10 | 119.9 |
C2—C3—H3 | 126.8 | C10—C11—C12 | 119.8 (3) |
C4—C3—H3 | 126.8 | C10—C11—H11 | 120.1 |
C5—C4—C3 | 109.1 (2) | C12—C11—H11 | 120.1 |
C5—C4—N4 | 124.4 (3) | C11—C12—C13 | 120.4 (3) |
C3—C4—N4 | 126.4 (3) | C11—C12—H12 | 119.8 |
N3—C5—C4 | 107.8 (2) | C13—C12—H12 | 119.8 |
N3—C5—H5 | 126.1 | C8—C13—C12 | 120.6 (3) |
C4—C5—H5 | 126.1 | C8—C13—H13 | 119.7 |
N3—C6—H6A | 109.5 | C12—C13—H13 | 119.7 |
C7—N1—N2—C1 | 170.0 (2) | O3—N4—C4—C3 | −3.2 (4) |
N1—N2—C1—O1 | 3.3 (4) | O2—N4—C4—C3 | 176.1 (3) |
N1—N2—C1—C2 | −173.4 (2) | C2—N3—C5—C4 | 1.1 (3) |
C5—N3—C2—C3 | −1.1 (3) | C6—N3—C5—C4 | 178.1 (2) |
C6—N3—C2—C3 | −178.0 (2) | C3—C4—C5—N3 | −0.7 (3) |
C5—N3—C2—C1 | −176.4 (2) | N4—C4—C5—N3 | 177.4 (2) |
C6—N3—C2—C1 | 6.7 (4) | N2—N1—C7—C8 | 177.2 (2) |
O1—C1—C2—C3 | −146.8 (3) | N1—C7—C8—C13 | 169.5 (3) |
N2—C1—C2—C3 | 29.9 (4) | N1—C7—C8—C9 | −13.1 (4) |
O1—C1—C2—N3 | 27.4 (4) | C13—C8—C9—C10 | 1.4 (4) |
N2—C1—C2—N3 | −155.9 (2) | C7—C8—C9—C10 | −176.0 (2) |
N3—C2—C3—C4 | 0.7 (3) | C8—C9—C10—C11 | −1.3 (4) |
C1—C2—C3—C4 | 175.6 (2) | C9—C10—C11—C12 | −0.2 (5) |
C2—C3—C4—C5 | 0.0 (3) | C10—C11—C12—C13 | 1.7 (5) |
C2—C3—C4—N4 | −178.1 (2) | C9—C8—C13—C12 | 0.0 (4) |
O3—N4—C4—C5 | 179.0 (3) | C7—C8—C13—C12 | 177.5 (3) |
O2—N4—C4—C5 | −1.7 (4) | C11—C12—C13—C8 | −1.6 (5) |
Cg is the centroid of the C8–C13 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O1i | 0.86 | 2.13 | 2.942 (2) | 158 |
C6—H6B···Cgi | 0.96 | 2.70 | 3.590 (3) | 154 |
Symmetry code: (i) x, −y+1/2, z+1/2. |
Cg is the centroid of the C8–C13 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O1i | 0.86 | 2.13 | 2.942 (2) | 158 |
C6—H6B···Cgi | 0.96 | 2.70 | 3.590 (3) | 154 |
Symmetry code: (i) x, −y+1/2, z+1/2. |
Acknowledgements
The authors thank the National Natural Science Foundation of the People's Republic of China (grant No. 21201024), the Natural Science Foundation of Shanxi Province (grant No. 2012021009-1) and the National-level College Students' Innovative Training Plan Program of the People's Republic of China (grant No. 201410122004).
References
Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896. Web of Science CrossRef Google Scholar
Krishnamoorthy, P., Sathyadevi, P., Butorac, R. R., Cowley, A. H., Bhuvanesh, N. S. P. & Dharmaraj, N. (2012). Dalton Trans. 41, 4423–4436. Web of Science CSD CrossRef CAS PubMed Google Scholar
Raja, D. S., Bhuvanesh, N. S. P. & Natarajan, K. (2012). Dalton Trans. 41, 4365–4377. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, J., Liu, B. & Yang, B. (2011). CrystEngComm, 13, 7086–7097. CAS Google Scholar
Wang, J., Zhao, Y. & Yang, B. (2014). Inorg. Chim. Acta, 409, 484–496. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Hydrazones and analogous compounds have attracted attention from researchers due to their well known chelating capability and structural flexibility (Krishnamoorthy, et al., 2012; Raja, et al., 2012). In our lab, a series of asymmetric N-heterocyclic substituted hydrazones and their metal complexes were obtained and characterized (Wang et al., 2011). The interactions of these compounds with CT-DNA and pBR322 DNA has been explored (Wang et al., 2014). The present work is an extension of our earlier studies.
In the title compound (Fig. 1) the phenyl and pyrrolyl ring are linked by an acyl-hydrazone moiety. The dihedral angle between the phenyl and pyrrolyl rings is 7.47 (1)°.
As shown in Figure 2, molecules of the title compound form sheet parallel to the (101) plane.
The neighbouring sheets are linked by N–H···O hydrogen bonds, weak π···π interactions between pyrrolyl rings and C–H···π interactions (Figure 3). These interactions result in the formation of a three-dimensional network (Fig. 4).