organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-N′-benzyl­­idene-1-methyl-4-nitro-1H-pyrrole-2-carbohydrazide

aDepartment of Chemistry, Changzhi University, Changzhi, Shanxi 046011, People's Republic of China
*Correspondence e-mail: jlwangczu@163.com

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 30 July 2014; accepted 6 August 2014; online 13 August 2014)

In the title compound, C13H12N4O3, the dihedral angle between the planes of the pyrrole and benzene rings is 7.47 (1)°. In the crystal, mol­ecules are arranged in sheets lying parallel to (101). Neighbouring sheets are linked by N—H⋯O hydrogen bonds, weak ππ [centroid–centroid distance between the pyrrole rings = 3.765 (11) Å] and C—H⋯π inter­actions, forming a three-dimensional structure.

1. Related literature

For applications and structures of aroylhydrazones, see: Krishnamoorthy et al. (2012[Krishnamoorthy, P., Sathyadevi, P., Butorac, R. R., Cowley, A. H., Bhuvanesh, N. S. P. & Dharmaraj, N. (2012). Dalton Trans. 41, 4423-4436.]); Raja et al. (2012[Raja, D. S., Bhuvanesh, N. S. P. & Natarajan, K. (2012). Dalton Trans. 41, 4365-4377.]); Wang et al. (2014[Wang, J., Zhao, Y. & Yang, B. (2014). Inorg. Chim. Acta, 409, 484-496.]). For similar structures, see: Wang et al. (2011[Wang, J., Liu, B. & Yang, B. (2011). CrystEngComm, 13, 7086-7097.], 2014[Wang, J., Zhao, Y. & Yang, B. (2014). Inorg. Chim. Acta, 409, 484-496.]). For ππ inter­actions, see: Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C13H12N4O3

  • Mr = 272.27

  • Monoclinic, P 21 /c

  • a = 13.030 (3) Å

  • b = 11.900 (3) Å

  • c = 8.331 (2) Å

  • β = 95.409 (3)°

  • V = 1285.92 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.32 × 0.20 × 0.17 mm

2.2. Data collection

  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.968, Tmax = 0.983

  • 6283 measured reflections

  • 2248 independent reflections

  • 1382 reflections with I > 2σ(I)

  • Rint = 0.043

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.135

  • S = 1.03

  • 2248 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C8–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.86 2.13 2.942 (2) 158
C6—H6BCgi 0.96 2.70 3.590 (3) 154
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Comment top

Hydrazones and analogous compounds have attracted attention from researchers due to their well known chelating capability and structural flexibility (Krishnamoorthy, et al., 2012; Raja, et al., 2012). In our lab, a series of asymmetric N-heterocyclic substituted hydrazones and their metal complexes were obtained and characterized (Wang et al., 2011). The interactions of these compounds with CT-DNA and pBR322 DNA has been explored (Wang et al., 2014). The present work is an extension of our earlier studies.

In the title compound (Fig. 1) the phenyl and pyrrolyl ring are linked by an acyl-hydrazone moiety. The dihedral angle between the phenyl and pyrrolyl rings is 7.47 (1)°.

As shown in Figure 2, molecules of the title compound form sheet parallel to the (101) plane.

The neighbouring sheets are linked by N–H···O hydrogen bonds, weak π···π interactions between pyrrolyl rings and C–H···π interactions (Figure 3). These interactions result in the formation of a three-dimensional network (Fig. 4).

Related literature top

For applications and structures of aroylhydrazones, see: Krishnamoorthy et al. (2012); Raja et al. (2012); Wang et al. (2014). For similar structures, see: Wang et al. (2011, 2014). For ππ interactions, see: Janiak (2000).

Experimental top

The precursor 1-methyl-4-nitro-1H-pyrrole-2-carbohydrazide was synthesized according to literature procedures (Wang et al., 2011). Similar to the synthesis of (E)-1-methyl-4-nitro-N'-(pyridin-2-ylmethylene)-1H-pyrrole-2-carbohydrazide, the reaction of the precursor and benzaldehyde in a 1:1 molar ratio gave the title compound as a yellowish powder in 80% yield. Anal. Calc. (%) for C13H12N4O3: C 57.35, H 4.44, N 20.58; found: C 57.31, H 4.51, N 20.55. The powder of the title compound was dissolved in N,N-dimethyl formamide and the yellow crystals were collected after slow evaporation at room temperature for about two weeks.

Refinement top

H atoms were placed in geometrically idealized positions, with N–H=0.86 Å, Caromatic–H=0.93, Cmethyl–H 0.96 Å, and with Uiso(H) = k × Ueq(parent C-atom), where k = 1.5 for methyl H-atoms and 1.2 for other H-atoms.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Molecules of the title compound forming planes parallel to the (101) plane.
[Figure 3] Fig. 3. The intermolecular N–H···O hydrogen bonds (black dotted lines), π···π and C–H···π interactions (pink dotted lines) between adjacent sheets (H atoms not involved in hydrogen bonds have been omitted for clarity, all distances in Å).
[Figure 4] Fig. 4. Packing of the title compound viewed along the b axis.
(E)-N'-Benzylidene-1-methyl-4-nitro-1H-pyrrole-2-carbohydrazide top
Crystal data top
C13H12N4O3F(000) = 568
Mr = 272.27Dx = 1.406 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1529 reflections
a = 13.030 (3) Åθ = 2.3–24.0°
b = 11.900 (3) ŵ = 0.10 mm1
c = 8.331 (2) ÅT = 298 K
β = 95.409 (3)°Block, yellow
V = 1285.92 (17) Å30.32 × 0.20 × 0.17 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
2248 independent reflections
Radiation source: fine-focus sealed tube1382 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
phi and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1315
Tmin = 0.968, Tmax = 0.983k = 1414
6283 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0571P)2 + 0.2921P]
where P = (Fo2 + 2Fc2)/3
2248 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C13H12N4O3V = 1285.92 (17) Å3
Mr = 272.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.030 (3) ŵ = 0.10 mm1
b = 11.900 (3) ÅT = 298 K
c = 8.331 (2) Å0.32 × 0.20 × 0.17 mm
β = 95.409 (3)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2248 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1382 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.983Rint = 0.043
6283 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.03Δρmax = 0.19 e Å3
2248 reflectionsΔρmin = 0.18 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.80415 (15)0.34342 (17)0.4275 (2)0.0409 (5)
N20.74919 (15)0.27603 (17)0.5233 (2)0.0435 (6)
H20.73140.30060.61380.052*
N30.64881 (15)0.00154 (17)0.5892 (2)0.0436 (6)
N40.45223 (18)0.0771 (3)0.8358 (3)0.0618 (7)
O10.75036 (14)0.12934 (15)0.3497 (2)0.0540 (5)
O20.41349 (15)0.0109 (2)0.8783 (2)0.0804 (7)
O30.42286 (18)0.1703 (2)0.8735 (3)0.0916 (8)
C10.72375 (18)0.1713 (2)0.4734 (3)0.0397 (6)
C20.65549 (18)0.1145 (2)0.5783 (3)0.0386 (6)
C30.58369 (18)0.1601 (2)0.6690 (3)0.0441 (7)
H30.57040.23610.68290.053*
C40.53470 (19)0.0704 (2)0.7359 (3)0.0469 (7)
C50.57607 (19)0.0277 (2)0.6867 (3)0.0502 (7)
H50.55720.09980.71560.060*
C60.7129 (2)0.0846 (2)0.5155 (3)0.0560 (8)
H6A0.68650.15860.53190.084*
H6B0.78250.07960.56440.084*
H6C0.71170.07000.40200.084*
C70.81171 (19)0.4454 (2)0.4711 (3)0.0419 (6)
H70.77860.46970.55890.050*
C80.87158 (18)0.5250 (2)0.3853 (3)0.0388 (6)
C90.93840 (19)0.4903 (2)0.2762 (3)0.0467 (7)
H90.94260.41430.25120.056*
C100.9988 (2)0.5662 (2)0.2040 (3)0.0530 (8)
H101.04450.54130.13240.064*
C110.9919 (2)0.6776 (3)0.2370 (3)0.0604 (8)
H111.03300.72900.18850.072*
C120.9246 (3)0.7139 (2)0.3416 (4)0.0724 (10)
H120.91860.79030.36200.087*
C130.8655 (2)0.6380 (2)0.4170 (3)0.0587 (8)
H130.82100.66350.49010.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0444 (12)0.0449 (13)0.0346 (12)0.0062 (10)0.0097 (10)0.0028 (10)
N20.0533 (13)0.0436 (12)0.0362 (13)0.0105 (10)0.0172 (10)0.0027 (10)
N30.0437 (13)0.0442 (13)0.0428 (13)0.0056 (10)0.0024 (10)0.0019 (11)
N40.0421 (14)0.096 (2)0.0474 (15)0.0117 (15)0.0069 (12)0.0073 (16)
O10.0735 (13)0.0526 (11)0.0388 (11)0.0083 (10)0.0211 (10)0.0081 (9)
O20.0547 (13)0.1207 (19)0.0668 (15)0.0377 (13)0.0107 (11)0.0153 (14)
O30.0764 (17)0.112 (2)0.0932 (19)0.0082 (15)0.0433 (14)0.0026 (17)
C10.0425 (15)0.0449 (16)0.0319 (15)0.0037 (12)0.0039 (12)0.0031 (13)
C20.0400 (14)0.0439 (15)0.0316 (14)0.0057 (12)0.0009 (11)0.0038 (12)
C30.0436 (15)0.0507 (16)0.0385 (16)0.0035 (13)0.0065 (13)0.0029 (13)
C40.0354 (14)0.0679 (19)0.0379 (16)0.0091 (14)0.0054 (12)0.0040 (14)
C50.0473 (17)0.0566 (18)0.0455 (17)0.0171 (14)0.0013 (14)0.0101 (14)
C60.0604 (19)0.0455 (16)0.061 (2)0.0004 (14)0.0017 (15)0.0036 (14)
C70.0439 (15)0.0466 (16)0.0367 (15)0.0009 (13)0.0115 (12)0.0018 (13)
C80.0417 (14)0.0402 (15)0.0343 (15)0.0041 (11)0.0023 (12)0.0002 (12)
C90.0474 (16)0.0388 (15)0.0552 (17)0.0036 (12)0.0116 (14)0.0038 (13)
C100.0493 (16)0.0574 (19)0.0547 (19)0.0070 (14)0.0177 (14)0.0038 (15)
C110.075 (2)0.0553 (19)0.0521 (19)0.0224 (16)0.0116 (16)0.0043 (15)
C120.110 (3)0.0413 (17)0.069 (2)0.0147 (18)0.025 (2)0.0071 (16)
C130.078 (2)0.0486 (18)0.0523 (19)0.0055 (15)0.0238 (16)0.0101 (15)
Geometric parameters (Å, º) top
N1—C71.268 (3)C6—H6A0.9600
N1—N21.379 (3)C6—H6B0.9600
N2—C11.346 (3)C6—H6C0.9600
N2—H20.8600C7—C81.456 (3)
N3—C51.342 (3)C7—H70.9300
N3—C21.386 (3)C8—C131.374 (3)
N3—C61.466 (3)C8—C91.380 (3)
N4—O31.224 (3)C9—C101.374 (3)
N4—O21.230 (3)C9—H90.9300
N4—C41.422 (3)C10—C111.359 (4)
O1—C11.224 (3)C10—H100.9300
C1—C21.469 (3)C11—C121.363 (4)
C2—C31.369 (3)C11—H110.9300
C3—C41.387 (3)C12—C131.376 (4)
C3—H30.9300C12—H120.9300
C4—C51.365 (4)C13—H130.9300
C5—H50.9300
C7—N1—N2114.9 (2)N3—C6—H6B109.5
C1—N2—N1119.1 (2)H6A—C6—H6B109.5
C1—N2—H2120.5N3—C6—H6C109.5
N1—N2—H2120.5H6A—C6—H6C109.5
C5—N3—C2108.8 (2)H6B—C6—H6C109.5
C5—N3—C6124.1 (2)N1—C7—C8120.8 (2)
C2—N3—C6127.0 (2)N1—C7—H7119.6
O3—N4—O2123.5 (3)C8—C7—H7119.6
O3—N4—C4118.2 (3)C13—C8—C9118.1 (2)
O2—N4—C4118.3 (3)C13—C8—C7119.9 (2)
O1—C1—N2123.8 (2)C9—C8—C7121.9 (2)
O1—C1—C2123.3 (2)C10—C9—C8121.0 (2)
N2—C1—C2112.8 (2)C10—C9—H9119.5
C3—C2—N3108.0 (2)C8—C9—H9119.5
C3—C2—C1129.0 (2)C11—C10—C9120.1 (3)
N3—C2—C1122.8 (2)C11—C10—H10119.9
C2—C3—C4106.3 (2)C9—C10—H10119.9
C2—C3—H3126.8C10—C11—C12119.8 (3)
C4—C3—H3126.8C10—C11—H11120.1
C5—C4—C3109.1 (2)C12—C11—H11120.1
C5—C4—N4124.4 (3)C11—C12—C13120.4 (3)
C3—C4—N4126.4 (3)C11—C12—H12119.8
N3—C5—C4107.8 (2)C13—C12—H12119.8
N3—C5—H5126.1C8—C13—C12120.6 (3)
C4—C5—H5126.1C8—C13—H13119.7
N3—C6—H6A109.5C12—C13—H13119.7
C7—N1—N2—C1170.0 (2)O3—N4—C4—C33.2 (4)
N1—N2—C1—O13.3 (4)O2—N4—C4—C3176.1 (3)
N1—N2—C1—C2173.4 (2)C2—N3—C5—C41.1 (3)
C5—N3—C2—C31.1 (3)C6—N3—C5—C4178.1 (2)
C6—N3—C2—C3178.0 (2)C3—C4—C5—N30.7 (3)
C5—N3—C2—C1176.4 (2)N4—C4—C5—N3177.4 (2)
C6—N3—C2—C16.7 (4)N2—N1—C7—C8177.2 (2)
O1—C1—C2—C3146.8 (3)N1—C7—C8—C13169.5 (3)
N2—C1—C2—C329.9 (4)N1—C7—C8—C913.1 (4)
O1—C1—C2—N327.4 (4)C13—C8—C9—C101.4 (4)
N2—C1—C2—N3155.9 (2)C7—C8—C9—C10176.0 (2)
N3—C2—C3—C40.7 (3)C8—C9—C10—C111.3 (4)
C1—C2—C3—C4175.6 (2)C9—C10—C11—C120.2 (5)
C2—C3—C4—C50.0 (3)C10—C11—C12—C131.7 (5)
C2—C3—C4—N4178.1 (2)C9—C8—C13—C120.0 (4)
O3—N4—C4—C5179.0 (3)C7—C8—C13—C12177.5 (3)
O2—N4—C4—C51.7 (4)C11—C12—C13—C81.6 (5)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.862.132.942 (2)158
C6—H6B···Cgi0.962.703.590 (3)154
Symmetry code: (i) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.862.132.942 (2)158
C6—H6B···Cgi0.962.703.590 (3)154
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the National Natural Science Foundation of the People's Republic of China (grant No. 21201024), the Natural Science Foundation of Shanxi Province (grant No. 2012021009-1) and the National-level College Students' Innovative Training Plan Program of the People's Republic of China (grant No. 201410122004).

References

First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationKrishnamoorthy, P., Sathyadevi, P., Butorac, R. R., Cowley, A. H., Bhuvanesh, N. S. P. & Dharmaraj, N. (2012). Dalton Trans. 41, 4423–4436.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRaja, D. S., Bhuvanesh, N. S. P. & Natarajan, K. (2012). Dalton Trans. 41, 4365–4377.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J., Liu, B. & Yang, B. (2011). CrystEngComm, 13, 7086–7097.  CAS Google Scholar
First citationWang, J., Zhao, Y. & Yang, B. (2014). Inorg. Chim. Acta, 409, 484–496.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds