organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-acetyl­phenyl 3-methyl­benzoate

aDepartment of Chemistry, Asthagiri Herbal Research Foundation, Perungudi Industrial Estate, Perungudi, Chennai 600 096, India, and bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: shirai2011@gmail.com

Edited by M. Bolte, Goethe-Universität Frankfurt Germany (Received 9 August 2014; accepted 20 August 2014; online 30 August 2014)

The planes of the aromatic rings of the title compound, C16H14O3, make a dihedral angle of 82.52 (8)°. The acetyl group and the phenyl ring make a dihedral angle of 1.65 (1)°. In the crystal, the molecules are linked by C—H⋯O interactions, generating C(7) chains along the a-axis direction.

1. Related literature

For the biological activity of aceto­phenone derivatives, see: Chung et al. (2003[Chung, R. S., Ping, C. K., Meei, L. W., Meei, J. L., Amooru, G. D. & Tian, S. W. (2003). J. Nat. Prod. 66, 990-993.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C16H14O3

  • Mr = 254.27

  • Monoclinic, P 21 /c

  • a = 8.7167 (3) Å

  • b = 9.8521 (3) Å

  • c = 15.4938 (4) Å

  • β = 95.149 (2)°

  • V = 1325.20 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

2.1.2. Data collection

  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.974, Tmax = 0.983

  • 12798 measured reflections

  • 3303 independent reflections

  • 2130 reflections with I > 2σ(I)

  • Rint = 0.033

2.1.3. Refinement

  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.162

  • S = 1.00

  • 3303 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16B⋯O1i 0.96 2.57 3.509 (3) 167
C3—H3⋯O3ii 0.93 2.52 3.265 (2) 137
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Acetophenone derivatives are popular in organic synthesis for their applications in biology and pharmacological activities. They are known to exhibit antioxidant and antityrosinase activities (Chung et al., 2003).

The ORTEP plot of the molecule is shown in Fig. 1. The carbonyl groups are coplanar with the rings to which they are attached, which is evident from torsion angles [C5-C6-C8-O3 2.1 (2)° and C11-C12-C15-O1 0.9 (2)]. The dihedral angle between the two aromatic rings is 82.52 (8)°.

The molecular structure is stabilized by an intramolecular and the crystal packing by intermolecular C—H···O hydrogen bonds (Table 1 & Fig. 2).

Related literature top

For the biological activity of acetophenone derivatives, see: Chung et al. (2003).

Experimental top

A clean and dry 250ml two neck RB flask was fitted with a condenser and an addition funnel. 0.5 mol of 4- hydroxy acetophenone was taken and 200ml of chloroform was added to it with stirring. The reaction mixture was cooled at 5-10°c. 0.5 mol of meta-tolouyl chloride was added dropwise to the reaction mixture. Stirring was continued for another 15 mins and 0.5 mol of potassium carbonate was slowly added. The reaction was continued for 2 hours and monitored using TLC. The reaction mixture was transferred into a 1 l beaker and washed twice with water (2 x 250 ml). The chloroform layer was separated and washed with 10% NaOH solution (2x250ml). The chloroform layer was separated and dried with anhydrous sodium sulphate. The chloroform layer was then filtered and concentrated under reduced pressure using rotary vacuum. It was cooled and hexane was added to it. The solid which precipitated was filtered and the product was air dried. After purification the compound was recrystallised in CHCl3 by slow evaporation method.

Refinement top

The hydrogen atoms were placed in calculated positions with C—H = 0.93Å to 0.96 Å, refined in the riding model with fixed isotropic displacement parameters: Uiso(H) = 1.5Ueq(C) for methyl groups and Uiso(H) = 1.2Ueq(C) for Caromatic. The methyl groups were allowed to rotate but not to tip.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the a axis. Intermolecular hydrogen bonds are shown as dashed lines. H-atoms not involved in H-bonds have been excluded for clarity.
4-Acetylphenyl 3-methylbenzoate top
Crystal data top
C16H14O3F(000) = 536
Mr = 254.27Dx = 1.274 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3303 reflections
a = 8.7167 (3) Åθ = 2.4–28.3°
b = 9.8521 (3) ŵ = 0.09 mm1
c = 15.4938 (4) ÅT = 293 K
β = 95.149 (2)°Block, colourless
V = 1325.20 (7) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3303 independent reflections
Radiation source: fine-focus sealed tube2130 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω and ϕ scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 119
Tmin = 0.974, Tmax = 0.983k = 1013
12798 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0803P)2 + 0.1756P]
where P = (Fo2 + 2Fc2)/3
3303 reflections(Δ/σ)max = 0.043
174 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C16H14O3V = 1325.20 (7) Å3
Mr = 254.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.7167 (3) ŵ = 0.09 mm1
b = 9.8521 (3) ÅT = 293 K
c = 15.4938 (4) Å0.30 × 0.25 × 0.20 mm
β = 95.149 (2)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3303 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2130 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.983Rint = 0.033
12798 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 1.00Δρmax = 0.14 e Å3
3303 reflectionsΔρmin = 0.19 e Å3
174 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2306 (3)1.0754 (3)0.43251 (12)0.0957 (7)
H1A0.30091.12500.46490.144*
H1B0.17931.13700.39660.144*
H1C0.15571.03050.47180.144*
C20.31775 (19)0.97205 (18)0.37669 (9)0.0637 (4)
C30.4192 (2)0.88402 (19)0.41068 (11)0.0747 (5)
H30.43420.88930.46930.090*
C40.4986 (2)0.7889 (2)0.36009 (13)0.0826 (6)
H40.56660.73060.38450.099*
C50.4783 (2)0.77929 (17)0.27263 (11)0.0711 (5)
H50.53260.71510.23810.085*
C60.37624 (16)0.86609 (15)0.23730 (9)0.0538 (4)
C70.29747 (17)0.96191 (16)0.28903 (9)0.0562 (4)
H70.22971.02070.26480.067*
C80.35490 (18)0.85016 (16)0.14433 (9)0.0576 (4)
C90.21558 (18)0.92477 (16)0.03042 (9)0.0581 (4)
C100.10870 (19)0.83096 (17)0.01086 (10)0.0669 (4)
H100.06300.77400.05360.080*
C110.06933 (19)0.82189 (17)0.07360 (11)0.0655 (4)
H110.00270.75780.08760.079*
C120.13591 (17)0.90698 (15)0.13718 (9)0.0553 (4)
C130.24248 (19)1.00229 (17)0.11470 (10)0.0621 (4)
H130.28741.06090.15670.075*
C140.28287 (19)1.01129 (17)0.03027 (10)0.0642 (4)
H140.35451.07520.01540.077*
C150.0930 (2)0.89341 (17)0.22797 (11)0.0662 (4)
C160.1621 (3)0.9862 (2)0.29564 (11)0.0912 (6)
H16A0.12610.96270.35050.137*
H16B0.13291.07790.28110.137*
H16C0.27230.97830.29930.137*
O10.00206 (19)0.80739 (15)0.24608 (9)0.0967 (5)
O20.25094 (14)0.93822 (12)0.11686 (6)0.0694 (3)
O30.42165 (16)0.77076 (15)0.09685 (7)0.0882 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0939 (14)0.1320 (18)0.0614 (10)0.0018 (13)0.0082 (9)0.0211 (11)
C20.0628 (9)0.0782 (11)0.0507 (8)0.0189 (8)0.0079 (7)0.0029 (7)
C30.0875 (12)0.0843 (12)0.0551 (8)0.0229 (10)0.0220 (8)0.0151 (8)
C40.0967 (14)0.0730 (12)0.0838 (12)0.0033 (10)0.0388 (10)0.0202 (10)
C50.0796 (11)0.0615 (10)0.0747 (10)0.0042 (8)0.0199 (9)0.0054 (8)
C60.0544 (8)0.0544 (8)0.0533 (7)0.0079 (6)0.0089 (6)0.0067 (6)
C70.0549 (8)0.0630 (9)0.0513 (7)0.0068 (7)0.0082 (6)0.0048 (6)
C80.0596 (9)0.0581 (8)0.0555 (8)0.0002 (7)0.0080 (6)0.0000 (7)
C90.0636 (9)0.0639 (9)0.0473 (7)0.0127 (7)0.0090 (6)0.0038 (6)
C100.0697 (10)0.0673 (10)0.0635 (9)0.0004 (8)0.0047 (8)0.0113 (7)
C110.0629 (9)0.0638 (9)0.0716 (9)0.0035 (7)0.0164 (7)0.0027 (8)
C120.0558 (8)0.0564 (8)0.0550 (8)0.0108 (6)0.0115 (6)0.0026 (6)
C130.0682 (9)0.0672 (9)0.0511 (7)0.0030 (8)0.0066 (7)0.0032 (7)
C140.0692 (10)0.0687 (10)0.0556 (8)0.0057 (8)0.0107 (7)0.0051 (7)
C150.0742 (10)0.0623 (9)0.0652 (9)0.0159 (8)0.0240 (8)0.0063 (7)
C160.1263 (17)0.0948 (14)0.0551 (9)0.0026 (13)0.0238 (10)0.0015 (9)
O10.1189 (11)0.0866 (9)0.0923 (9)0.0109 (8)0.0523 (8)0.0021 (7)
O20.0850 (8)0.0765 (7)0.0481 (5)0.0207 (6)0.0143 (5)0.0048 (5)
O30.0999 (10)0.0972 (9)0.0702 (7)0.0355 (8)0.0226 (7)0.0232 (7)
Geometric parameters (Å, º) top
C1—C21.498 (3)C9—C141.362 (2)
C1—H1A0.9600C9—C101.366 (2)
C1—H1B0.9600C9—O21.4071 (17)
C1—H1C0.9600C10—C111.385 (2)
C2—C31.377 (2)C10—H100.9300
C2—C71.389 (2)C11—C121.381 (2)
C3—C41.369 (3)C11—H110.9300
C3—H30.9300C12—C131.387 (2)
C4—C51.386 (2)C12—C151.494 (2)
C4—H40.9300C13—C141.388 (2)
C5—C61.382 (2)C13—H130.9300
C5—H50.9300C14—H140.9300
C6—C71.381 (2)C15—O11.210 (2)
C6—C81.477 (2)C15—C161.478 (3)
C7—H70.9300C16—H16A0.9600
C8—O31.1895 (18)C16—H16B0.9600
C8—O21.3506 (18)C16—H16C0.9600
C2—C1—H1A109.5C14—C9—O2118.72 (15)
C2—C1—H1B109.5C10—C9—O2119.14 (14)
H1A—C1—H1B109.5C9—C10—C11119.01 (15)
C2—C1—H1C109.5C9—C10—H10120.5
H1A—C1—H1C109.5C11—C10—H10120.5
H1B—C1—H1C109.5C12—C11—C10120.72 (15)
C3—C2—C7118.12 (16)C12—C11—H11119.6
C3—C2—C1121.15 (15)C10—C11—H11119.6
C7—C2—C1120.73 (16)C11—C12—C13118.68 (14)
C4—C3—C2121.42 (15)C11—C12—C15119.52 (14)
C4—C3—H3119.3C13—C12—C15121.80 (14)
C2—C3—H3119.3C12—C13—C14120.81 (14)
C3—C4—C5120.28 (17)C12—C13—H13119.6
C3—C4—H4119.9C14—C13—H13119.6
C5—C4—H4119.9C9—C14—C13118.74 (15)
C6—C5—C4119.25 (17)C9—C14—H14120.6
C6—C5—H5120.4C13—C14—H14120.6
C4—C5—H5120.4O1—C15—C16120.15 (16)
C7—C6—C5119.82 (14)O1—C15—C12120.37 (16)
C7—C6—C8122.62 (13)C16—C15—C12119.48 (15)
C5—C6—C8117.55 (14)C15—C16—H16A109.5
C6—C7—C2121.10 (14)C15—C16—H16B109.5
C6—C7—H7119.4H16A—C16—H16B109.5
C2—C7—H7119.4C15—C16—H16C109.5
O3—C8—O2122.16 (14)H16A—C16—H16C109.5
O3—C8—C6125.13 (14)H16B—C16—H16C109.5
O2—C8—C6112.70 (13)C8—O2—C9116.74 (11)
C14—C9—C10122.03 (14)
C7—C2—C3—C40.1 (2)C9—C10—C11—C120.5 (2)
C1—C2—C3—C4179.69 (18)C10—C11—C12—C130.3 (2)
C2—C3—C4—C50.0 (3)C10—C11—C12—C15179.06 (14)
C3—C4—C5—C60.4 (3)C11—C12—C13—C140.7 (2)
C4—C5—C6—C70.7 (2)C15—C12—C13—C14178.71 (14)
C4—C5—C6—C8178.48 (15)C10—C9—C14—C130.8 (2)
C5—C6—C7—C20.6 (2)O2—C9—C14—C13176.97 (13)
C8—C6—C7—C2178.52 (13)C12—C13—C14—C90.1 (2)
C3—C2—C7—C60.2 (2)C11—C12—C15—O10.9 (2)
C1—C2—C7—C6179.38 (16)C13—C12—C15—O1178.43 (16)
C7—C6—C8—O3178.76 (16)C11—C12—C15—C16178.87 (16)
C5—C6—C8—O32.1 (2)C13—C12—C15—C161.8 (2)
C7—C6—C8—O20.3 (2)O3—C8—O2—C94.9 (2)
C5—C6—C8—O2178.88 (14)C6—C8—O2—C9176.01 (13)
C14—C9—C10—C111.1 (2)C14—C9—O2—C8100.57 (17)
O2—C9—C10—C11177.29 (13)C10—C9—O2—C883.11 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O20.932.422.7439 (17)100
C16—H16B···O1i0.962.573.509 (3)167
C3—H3···O3ii0.932.523.265 (2)137
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O20.932.422.7439 (17)100.2
C16—H16B···O1i0.962.573.509 (3)167.4
C3—H3···O3ii0.932.523.265 (2)136.9
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+3/2, z1/2.
 

Acknowledgements

VV and DV thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. VV thanks the DBT, Government of India, for providing a fellowship.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChung, R. S., Ping, C. K., Meei, L. W., Meei, J. L., Amooru, G. D. & Tian, S. W. (2003). J. Nat. Prod. 66, 990–993.  Web of Science PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds