organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1063-o1064

Crystal structure of 3-[4-(pyrimidin-2-yl)piperazin-1-ium-1-yl]butano­ate

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

Edited by M. Bolte, Goethe-Universität Frankfurt Germany (Received 15 August 2014; accepted 21 August 2014; online 30 August 2014)

The title compound, C12H18N4O2, crystallizes in the zwitterionic form with protonation at the N atom of the piperazine ring bearing the carboxylate group. The piperazine ring adopts a slightly distorted chair conformation. In the crystal, N—H⋯O hydrogen bonds are observed, forming chains along [010]. The packing is consolidated by C—H⋯O inter­actions, which generate a three-dimensional network.

1. Related literature

For general background and pharmacological properties of fused heterocyclic derivatives, see: Amin et al. (2009[Amin, K. M., Hanna, M. M., Abo-Youssef, H. E., Riham, F. & George, R. F. (2009). Eur. J. Med. Chem., 44, 4572-4584.]); Ibrahim & El-Metwally (2010[Ibrahim, D. A. & El-Metwally, A. M. (2010). Eur. J. Med. Chem., 45, 1158-1166.]); Kuyper et al. (1996[Kuyper, L. F., Garvey, J. M., Baccanari, D. P., Champness, J. N., Stammers, D. K. & Beddell, C. R. (1996). Bioorg. Med. Chem. Lett., 4, 593-602.]); Onal & Yıldırım (2007[Onal, Z. & Yıldırım, I. (2007). Heterocycl. Commun. 13, 113-120.]); Padmaja et al. (2009[Padmaja, A., Payani, T., Reddy, G. D., Dinneswara Reddy, G. & Padmavathi, V. (2009). Eur. J. Med. Chem. 44, 4557-4566.]); Tollefson et al. (1991[Tollefson, G. D., Lancaster, S. P. & Montague-Clouse, J. (1991). Psychopharmacol. Bull., 27, 163-170.]). For pharmacological properties of pyrimidines, see: Burdge (2000[Burdge, E. L. (2000). Pest Manag. Sci. 56, 245-248.]). For background to aza-Michael reactions, see: Arend et al.(1998[Arend, M., Westermann, B. & Risch, N. (1998). Angew.Chem. Int. Ed. 37, 1045-1070.]); Vicario et al. (2005[Vicario, J. L., Badia, D. & Carrillo, L. (2005). Org. Prep. Proced. Int. 37, 513-538.]); Xu & Xia (2005[Xu, L.-W. & Xia, C.-G. (2005). Eur. J. Org. Chem. pp. 633-639.]). For related structures, see: Jin et al. (2012[Jin, S., Huang, Y., Fang, H., Wang, T. & Ding, L. (2012). Acta Cryst. E68, o2827.]); Parvez et al. (2004[Parvez, M., Arayne, S., Sultana, N. & Siddiqi, A. Z. (2004). Acta Cryst. C60, o281-o283.]); Yamuna et al. (2014a[Yamuna, T. S., Kaur, M., Jasinski, J. P. & Yathirajan, H. S. (2014a). Acta Cryst. E70, o702-o703.],b[Yamuna, T. S., Kaur, M., Anderson, B. J., Jasinski, J. P. & Yathirajan, H. S. (2014b). Acta Cryst. E70, o206-o207.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C12H18N4O2

  • Mr = 250.30

  • Monoclinic, P 21 /c

  • a = 13.5157 (6) Å

  • b = 7.8454 (3) Å

  • c = 12.2147 (5) Å

  • β = 106.884 (5)°

  • V = 1239.36 (9) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.77 mm−1

  • T = 173 K

  • 0.32 × 0.22 × 0.06 mm

2.1.2. Data collection

  • Agilent Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.854, Tmax = 1.000

  • 3995 measured reflections

  • 3995 independent reflections

  • 3668 reflections with I > 2σ(I)

2.1.3. Refinement

  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.149

  • S = 1.06

  • 3995 reflections

  • 169 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 1.00 1.67 2.653 (2) 168
C2—H2B⋯O2i 0.99 2.51 3.277 (3) 134
C4—H4B⋯O1ii 0.99 2.58 3.428 (3) 144
C7—H7B⋯O1i 0.99 2.53 3.147 (3) 120
C11—H11⋯O1iii 0.95 2.47 3.352 (3) 155
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z+1; (iii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Pyrimidines in general have been of much interest for biological and medical reasons and thus their chemistry has been investigated extensively (Onal & Yıldırım, 2007) and in many drugs used for the treatment of hypothyroidism and hypertension, in cancer chemotherapy or HIV infections (Burdge, 2000) and with related fused heterocyclic compounds that exhibit biological activities such as anticancer (Amin et al., 2009), antiviral (Ibrahim & El-Metwally, 2010), antibacterial (Kuyper et al., 1996) and antioxidant (Padmaja et al., 2009). Some pyrimidinylpiperazinyl compounds like buspirone and BuSpar (Tollefson et al., 1991) are used to treat anxiety. The incorporation of two moieties increases biological activity of both the molecules. Aza-Michael addition reaction has been extensively studied using a variety of catalysts as well as solvents and various researchers have also reported the utility of aza-Michael addition towards the synthesis of various pharmacological active compounds and proved useful in the synthesis of core intermediates of many natural products (Arend et al., 1998). The role of aza-Michael reaction in the synthesis of pharmacologically important families of β-amino carbonyl compounds and its derivatives is well documented in the literature (Vicario et al., 2005; Xu & Xia, 2005). Our research group has published many papers on incorporated heterocyclic ring structures, viz; 4-(pyrimidin-2-yl)piperazin-1-ium (E)-3-carboxyprop-2-enoate (Yamuna et al., 2014a); flupentixol tartarate (Yamuna et al., 2014b). Some related zwitterion structures are: 3,3'-(piperazine-1,4-diium-1,4-diyl)dipropionate dihydrate (Jin et al., 2012), enoxacin trihydrate[1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(piperazin-4-ium-1-yl)-1,8- naphthyridine-3-carboxylate trihydrate] (Parvez et al., 2004). In view of the importance of derivatives of the incorporated heterocyclic pyrimidylpiperazines, this paper reports the crystal structure of the title zwitterionic compound, (I), 3-(4-Pyrimidin-2-yl-piperazin-1-ium-1-yl)-butanoate, C12H18N4O2 prepared from 2-(piperazin-1-yl)pyrimidine and but-2-enoic acid by aza-Michael addition reaction.

The title compound, (I), C12H18N4O2 crystallizes in the zwitterionic form with protonation on the N1 nitrogen atom of the piperazine ring (Fig. 1). In the compound, the piperazine ring adopts a slightly disordered chair conformation (puckering parameters Q, θ, and ϕ = 0.576 (2)Å, 3.0 (2)° and 282 (4)°, respectively. Bond lengths are in normal ranges. In the crystal, N—H···O intermolecular hydrogen bonds are observed forming 1D chains along [0 1 0] (Fig. 2). The packing is consolidated by weak C—H···O interactions which generate a three-dimensional network.

Related literature top

For general background and pharmacological properties of fused heterocyclic derivatives, see: Amin et al. (2009); Ibrahim & El-Metwally (2010); Kuyper et al. (1996); Onal & Yıldırım (2007); Padmaja et al. (2009); Tollefson et al. (1991). For pharmacological properties of pyrimidines, see: Burdge (2000). For the importance of aza-Michael reactions, see: Arend et al.(1998); Vicario et al. (2005); Xu & Xia (2005). For related structures, see: Jin et al. (2012); Parvez et al. (2004); Yamuna et al. (2014a,b).

Experimental top

A mixture of 1-(2-pyrimidyl)piperazine, from sigma-aldrich (0.2 g, 1.22 mmol) and crotonic acid (but-2-enoic acid) (0.1048 g, 1.22 mmol ) were dissolved in DMSO, stirred well and warmed at 343 K for 20 minutes. After few days, X-ray quality crystals were obtained on slow evaporation (m.p.: 411-418 K).

Refinement top

H3 was refined isotropically and all of the remaining H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH); 0.99Å (CH2); 0.98Å (CH3) or 1.00Å (NH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2, NH) or 1.5 (CH3) times Ueq of the parent atom. Idealised Me was refined as a rotating group. The title compound was refined as a twin with BASF = 0.41572.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of (C12H18N4O2) showing the labeling scheme of the asymmetric unit of the title compound with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Molecular packing for (I), viewed along the b axis. Dashed lines indicate weak C—H···O intermolecular interactions in addition to N—H···O intermolecular hydrogen bonds which together form an extended three-dimensional supramolecular network structure. H atoms not involved in hydrogen bonding have been removed for clarity.
3-[4-(Pyrimidin-2-yl)piperazin-1-ium-1-yl]butanoate top
Crystal data top
C12H18N4O2F(000) = 536
Mr = 250.30Dx = 1.341 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 13.5157 (6) ÅCell parameters from 5404 reflections
b = 7.8454 (3) Åθ = 3.8–71.4°
c = 12.2147 (5) ŵ = 0.77 mm1
β = 106.884 (5)°T = 173 K
V = 1239.36 (9) Å3Irregular, colourless
Z = 40.32 × 0.22 × 0.06 mm
Data collection top
Agilent Eos Gemini
diffractometer
3995 independent reflections
Radiation source: Enhance (Cu) X-ray Source3668 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1θmax = 71.2°, θmin = 3.4°
ω scansh = 1616
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
k = 99
Tmin = 0.854, Tmax = 1.000l = 1314
3995 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.0768P)2 + 0.6386P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3995 reflectionsΔρmax = 0.36 e Å3
169 parametersΔρmin = 0.27 e Å3
0 restraints
Crystal data top
C12H18N4O2V = 1239.36 (9) Å3
Mr = 250.30Z = 4
Monoclinic, P21/cCu Kα radiation
a = 13.5157 (6) ŵ = 0.77 mm1
b = 7.8454 (3) ÅT = 173 K
c = 12.2147 (5) Å0.32 × 0.22 × 0.06 mm
β = 106.884 (5)°
Data collection top
Agilent Eos Gemini
diffractometer
3995 measured reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
3995 independent reflections
Tmin = 0.854, Tmax = 1.0003668 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.36 e Å3
3995 reflectionsΔρmin = 0.27 e Å3
169 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.15848 (13)0.4680 (3)0.29107 (16)0.0449 (5)
O20.05978 (12)0.4109 (2)0.17822 (15)0.0339 (4)
N10.16438 (12)0.1694 (2)0.44116 (14)0.0217 (4)
H10.13130.06180.40400.026*
N20.32869 (12)0.0043 (3)0.60849 (16)0.0287 (4)
N30.40034 (14)0.0836 (3)0.79721 (17)0.0324 (5)
N40.50457 (13)0.0549 (3)0.66957 (17)0.0336 (5)
C10.08258 (15)0.4025 (3)0.2726 (2)0.0277 (5)
C20.00940 (16)0.2979 (3)0.3691 (2)0.0308 (5)
H2A0.01740.33570.44340.037*
H2B0.02960.17630.35880.037*
C30.10322 (15)0.3150 (3)0.3722 (2)0.0260 (5)
H30.098 (2)0.289 (4)0.289 (3)0.041 (8)*
C40.16425 (15)0.1604 (3)0.56333 (18)0.0261 (5)
H4A0.09220.15320.56710.031*
H4B0.19590.26500.60400.031*
C50.22479 (15)0.0048 (3)0.6211 (2)0.0290 (5)
H5A0.22910.00530.70340.035*
H5B0.18800.10010.58660.035*
C60.32772 (15)0.0092 (3)0.48941 (19)0.0276 (5)
H6A0.29180.09280.44910.033*
H6B0.39950.00840.48450.033*
C70.27285 (14)0.1685 (3)0.43312 (18)0.0243 (4)
H7A0.31020.27070.47160.029*
H7B0.27190.17160.35180.029*
C80.41389 (15)0.0508 (3)0.69526 (18)0.0248 (4)
C90.48642 (19)0.1182 (3)0.8810 (2)0.0359 (5)
H90.48020.14560.95450.043*
C100.58388 (18)0.1162 (3)0.8665 (2)0.0372 (6)
H100.64440.13490.92840.045*
C110.58837 (17)0.0857 (3)0.7574 (2)0.0376 (6)
H110.65400.08640.74360.045*
C120.14735 (18)0.4895 (3)0.4145 (2)0.0329 (5)
H12A0.15450.49970.49640.049*
H12B0.10070.57840.37250.049*
H12C0.21530.50260.40190.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0322 (9)0.0605 (12)0.0415 (11)0.0190 (8)0.0099 (8)0.0110 (9)
O20.0282 (8)0.0318 (8)0.0409 (10)0.0066 (6)0.0087 (7)0.0019 (7)
N10.0143 (7)0.0280 (9)0.0214 (9)0.0003 (6)0.0028 (6)0.0038 (7)
N20.0138 (8)0.0488 (11)0.0234 (9)0.0065 (7)0.0053 (7)0.0076 (8)
N30.0284 (9)0.0427 (11)0.0266 (10)0.0100 (8)0.0088 (8)0.0026 (8)
N40.0184 (8)0.0522 (12)0.0303 (10)0.0007 (8)0.0070 (8)0.0065 (9)
C10.0200 (9)0.0303 (11)0.0295 (11)0.0011 (8)0.0018 (8)0.0025 (9)
C20.0222 (10)0.0364 (12)0.0335 (12)0.0054 (9)0.0078 (9)0.0073 (10)
C30.0200 (9)0.0287 (10)0.0259 (10)0.0018 (8)0.0014 (8)0.0052 (9)
C40.0166 (9)0.0379 (12)0.0245 (10)0.0041 (8)0.0072 (8)0.0033 (9)
C50.0158 (9)0.0441 (13)0.0282 (11)0.0042 (8)0.0084 (8)0.0112 (10)
C60.0169 (9)0.0424 (13)0.0233 (10)0.0046 (8)0.0059 (8)0.0012 (9)
C70.0154 (9)0.0373 (11)0.0204 (10)0.0038 (8)0.0055 (7)0.0012 (9)
C80.0184 (9)0.0304 (10)0.0254 (11)0.0077 (8)0.0062 (8)0.0044 (9)
C90.0359 (12)0.0428 (13)0.0264 (12)0.0102 (10)0.0051 (10)0.0020 (10)
C100.0297 (11)0.0408 (13)0.0336 (13)0.0035 (10)0.0027 (10)0.0052 (10)
C110.0199 (10)0.0495 (14)0.0407 (14)0.0000 (10)0.0046 (9)0.0103 (11)
C120.0322 (11)0.0287 (11)0.0337 (13)0.0001 (9)0.0032 (10)0.0024 (10)
Geometric parameters (Å, º) top
O1—C11.226 (3)C4—H4A0.9900
O2—C11.278 (3)C4—H4B0.9900
N1—H11.0000C4—C51.524 (3)
N1—C31.514 (2)C5—H5A0.9900
N1—C41.494 (3)C5—H5B0.9900
N1—C71.498 (2)C6—H6A0.9900
N2—C51.457 (2)C6—H6B0.9900
N2—C61.451 (3)C6—C71.513 (3)
N2—C81.369 (3)C7—H7A0.9900
N3—C81.335 (3)C7—H7B0.9900
N3—C91.335 (3)C9—H90.9500
N4—C81.351 (3)C9—C101.379 (3)
N4—C111.336 (3)C10—H100.9500
C1—C21.538 (3)C10—C111.373 (4)
C2—H2A0.9900C11—H110.9500
C2—H2B0.9900C12—H12A0.9800
C2—C31.518 (3)C12—H12B0.9800
C3—H31.01 (3)C12—H12C0.9800
C3—C121.523 (3)
C3—N1—H1106.5N2—C5—H5B109.4
C4—N1—H1106.5C4—C5—H5A109.4
C4—N1—C3115.63 (17)C4—C5—H5B109.4
C4—N1—C7110.51 (15)H5A—C5—H5B108.0
C7—N1—H1106.5N2—C6—H6A109.7
C7—N1—C3110.70 (15)N2—C6—H6B109.7
C6—N2—C5112.18 (17)N2—C6—C7109.75 (18)
C8—N2—C5122.52 (19)H6A—C6—H6B108.2
C8—N2—C6121.99 (18)C7—C6—H6A109.7
C8—N3—C9115.4 (2)C7—C6—H6B109.7
C11—N4—C8115.6 (2)N1—C7—C6109.51 (16)
O1—C1—O2125.4 (2)N1—C7—H7A109.8
O1—C1—C2118.0 (2)N1—C7—H7B109.8
O2—C1—C2116.65 (19)C6—C7—H7A109.8
C1—C2—H2A109.0C6—C7—H7B109.8
C1—C2—H2B109.0H7A—C7—H7B108.2
H2A—C2—H2B107.8N3—C8—N2117.45 (18)
C3—C2—C1112.91 (18)N3—C8—N4126.3 (2)
C3—C2—H2A109.0N4—C8—N2116.26 (19)
C3—C2—H2B109.0N3—C9—H9118.3
N1—C3—C2109.19 (17)N3—C9—C10123.5 (2)
N1—C3—H3105.9 (16)C10—C9—H9118.3
N1—C3—C12113.11 (17)C9—C10—H10122.0
C2—C3—H3100.5 (16)C11—C10—C9116.1 (2)
C2—C3—C12112.28 (19)C11—C10—H10122.0
C12—C3—H3115.0 (17)N4—C11—C10123.0 (2)
N1—C4—H4A109.6N4—C11—H11118.5
N1—C4—H4B109.6C10—C11—H11118.5
N1—C4—C5110.12 (17)C3—C12—H12A109.5
H4A—C4—H4B108.1C3—C12—H12B109.5
C5—C4—H4A109.6C3—C12—H12C109.5
C5—C4—H4B109.6H12A—C12—H12B109.5
N2—C5—C4110.96 (17)H12A—C12—H12C109.5
N2—C5—H5A109.4H12B—C12—H12C109.5
O1—C1—C2—C3144.6 (2)C6—N2—C5—C457.3 (3)
O2—C1—C2—C336.8 (3)C6—N2—C8—N3163.5 (2)
N1—C4—C5—N254.5 (2)C6—N2—C8—N418.1 (3)
N2—C6—C7—N159.2 (2)C7—N1—C3—C2172.41 (18)
N3—C9—C10—C113.7 (4)C7—N1—C3—C1261.8 (2)
C1—C2—C3—N1161.91 (18)C7—N1—C4—C555.5 (2)
C1—C2—C3—C1271.8 (3)C8—N2—C5—C4102.5 (2)
C3—N1—C4—C5177.77 (16)C8—N2—C6—C7100.4 (2)
C3—N1—C7—C6172.54 (17)C8—N3—C9—C101.8 (4)
C4—N1—C3—C261.0 (2)C8—N4—C11—C101.8 (4)
C4—N1—C3—C1264.8 (2)C9—N3—C8—N2176.1 (2)
C4—N1—C7—C658.0 (2)C9—N3—C8—N42.2 (3)
C5—N2—C6—C759.5 (2)C9—C10—C11—N41.7 (4)
C5—N2—C8—N35.7 (3)C11—N4—C8—N2174.3 (2)
C5—N2—C8—N4175.9 (2)C11—N4—C8—N34.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i1.001.672.653 (2)168
C2—H2B···O2i0.992.513.277 (3)134
C4—H4B···O1ii0.992.583.428 (3)144
C7—H7B···O1i0.992.533.147 (3)120
C11—H11···O1iii0.952.473.352 (3)155
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1, z+1; (iii) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i1.001.672.653 (2)167.7
C2—H2B···O2i0.992.513.277 (3)133.8
C4—H4B···O1ii0.992.583.428 (3)143.5
C7—H7B···O1i0.992.533.147 (3)120.3
C11—H11···O1iii0.952.473.352 (3)155.0
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1, z+1; (iii) x+1, y+1/2, z+1/2.
 

Acknowledgements

TSY thanks University of Mysore for research facilities and also grateful to the Principal, Maharani's Science College for Women, Mysore, for giving permission to do research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAmin, K. M., Hanna, M. M., Abo-Youssef, H. E., Riham, F. & George, R. F. (2009). Eur. J. Med. Chem., 44, 4572–4584.  Web of Science CrossRef PubMed CAS Google Scholar
First citationArend, M., Westermann, B. & Risch, N. (1998). Angew.Chem. Int. Ed. 37, 1045–1070.  CAS Google Scholar
First citationBurdge, E. L. (2000). Pest Manag. Sci. 56, 245–248.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIbrahim, D. A. & El-Metwally, A. M. (2010). Eur. J. Med. Chem., 45, 1158–1166.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJin, S., Huang, Y., Fang, H., Wang, T. & Ding, L. (2012). Acta Cryst. E68, o2827.  CSD CrossRef IUCr Journals Google Scholar
First citationKuyper, L. F., Garvey, J. M., Baccanari, D. P., Champness, J. N., Stammers, D. K. & Beddell, C. R. (1996). Bioorg. Med. Chem. Lett., 4, 593–602.  CrossRef CAS Web of Science Google Scholar
First citationOnal, Z. & Yıldırım, I. (2007). Heterocycl. Commun. 13, 113–120.  CAS Google Scholar
First citationPadmaja, A., Payani, T., Reddy, G. D., Dinneswara Reddy, G. & Padmavathi, V. (2009). Eur. J. Med. Chem. 44, 4557–4566.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParvez, M., Arayne, S., Sultana, N. & Siddiqi, A. Z. (2004). Acta Cryst. C60, o281–o283.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTollefson, G. D., Lancaster, S. P. & Montague-Clouse, J. (1991). Psychopharmacol. Bull., 27, 163-170.  PubMed CAS Web of Science Google Scholar
First citationVicario, J. L., Badia, D. & Carrillo, L. (2005). Org. Prep. Proced. Int. 37, 513-538.  CrossRef CAS Google Scholar
First citationXu, L.-W. & Xia, C.-G. (2005). Eur. J. Org. Chem. pp. 633–639.  Web of Science CrossRef Google Scholar
First citationYamuna, T. S., Kaur, M., Anderson, B. J., Jasinski, J. P. & Yathirajan, H. S. (2014b). Acta Cryst. E70, o206–o207.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationYamuna, T. S., Kaur, M., Jasinski, J. P. & Yathirajan, H. S. (2014a). Acta Cryst. E70, o702–o703.  CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1063-o1064
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds