organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o987-o988

Crystal structure of 2-[(E)-4-benz­yl­oxy-2-hy­dr­oxy­benzyl­­idene]-N-cyclo­hexyl­hydrazinecarbo­thio­amide aceto­nitrile hemisolvate

aDepartment of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India, and bDepartment of Chemistry, Faculty of Science, Eastern University, Sri Lanka, Chenkalady, Sri Lanka
*Correspondence e-mail: msithambaresan@gmail.com

Edited by R. J. Butcher, Howard University, USA (Received 21 June 2014; accepted 3 August 2014; online 9 August 2014)

The asymmetric unit of the title compound, C21H25N3O2S·0.5C2H3N, contains two independent mol­ecules with almost similar structural properties along with a solvent mol­ecule of aceto­nitrile. The compound exists in the E conformation with respect to the azomethine C=N double bond. The hydrazinecarbo­thio­amide moieties in both independent mol­ecules are almost planar [maximum deviations of 0.013 (2) and 0.007 (2) Å]. The mol­ecular conformation is stabilized in each case by an intra­molecular N—H⋯N hydrogen bond. In the crystal, pairs of N—H⋯S hydrogen bonds link each of the independent mol­ecules into inversion dimers. The dimers are inter­connected by means of three C—H⋯π inter­actions.

1. Related literature

For anti­microbial application, see: Joseph et al. (2004[Joseph, M., Suni, V., Kurup, M. R. P., Nethaji, M., Kishore, A. & Bhat, S. G. (2004). Polyhedron, 23, 3069-3080.]). For fluorescence activity, see: Kumar et al. (2013[Kumar, S. L. A., Kumar, M. S., Sreeja, P. B. & Sreekanth, A. (2013). Spectrochim. Acta Part A, 113, 123-129.]). For versatile coordination ability, see: Sreekanth et al. (2004[Sreekanth, A., Fun, H.-K. & Kurup, M. R. P. (2004). Inorg. Chem. Commun. 7, 1250-1253.]). For the synthesis of related compounds, see: Jacob & Kurup (2012[Jacob, J. M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o836-o837.]). For related structures, see: Seena et al. (2006[Seena, E. B., BessyRaj, B. N., Kurup, M. R. P. & Suresh, E. (2006). J. Chem. Crystallogr. 36, 189-193.]); Jacob & Kurup (2012[Jacob, J. M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o836-o837.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • 2C21H25N3O2S·C2H3N

  • Mr = 808.07

  • Triclinic, [P \overline 1]

  • a = 10.5345 (4) Å

  • b = 10.8341 (4) Å

  • c = 21.8169 (10) Å

  • α = 97.241 (2)°

  • β = 92.120 (2)°

  • γ = 118.901 (2)°

  • V = 2148.72 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 296 K

  • 0.50 × 0.20 × 0.18 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan SADABS (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.918, Tmax = 0.942

  • 15933 measured reflections

  • 9260 independent reflections

  • 6918 reflections with I > 2σ(I)

  • Rint = 0.018

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.136

  • S = 1.03

  • 9260 reflections

  • 540 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5′⋯S2i 0.88 (1) 2.48 (1) 3.3495 (17) 173 (2)
N2—H2′⋯S1ii 0.87 (1) 2.44 (1) 3.3047 (16) 171 (2)
O2—H2A⋯N1 0.84 (1) 1.96 (2) 2.696 (2) 146 (3)
O4—H4′⋯N4 0.84 (1) 1.94 (2) 2.680 (2) 146 (2)
C12—H12⋯Cg1iii 0.93 2.95 3.811 (2) 154
C20—H20BCg2iv 0.96 2.87 3.715 (2) 146
C31—H31⋯Cg4v 0.93 2.84 3.714 (2) 157
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x-1, -y+1, -z; (iii) -x+1, -y+2, -z; (iv) x-1, y-1, z; (v) -x, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Thiosemicarbazones are important class of compounds due to their antimicrobial activity (Joseph et al., 2004). They are also found to act as turn on fluorescent sensors for fluoride anion (Kumar et al., 2013). These compounds are important due to their ability to show versatile coordination abilities in complexes (Sreekanth et al., 2004). Here we present a new N4-substituted thioemicarbazone with interesting structural properties.

The asymmetric unit of the title compound consists of two independent molecules of the thiosemicarbazone and one acetonitrile molecule giving an overall ratio of thiosemicarbazone to acetonitrile to 2:1. The compound crystallizes into triclinic space group P-1. The geometric parameters of each molecule are almost identical. The molecules adopt E configuration with respect to C14—N1 and C35—N4 bonds which is confirmed by the C14/N1/N2/C15 and C35/N4/N5/C36 torsion angles of -177.55 (17)° and 175.50 (18)° respectively (Fig.1). The N1/N2/C15/S1 and N4/N5/C36/S2 torsion angles of 171.78 (3)° and -173.54 (4)° suggest that the thionyl atom S1 of the first molecule and S2 of the second molecule are located trans to azomethine nitrogens N1 and N4 respectively. The torsion angles -6.0 (3)° and 5.2 (3)° for N1/N2/C15/N3 and N4/N5/C36/N6 respectively confirm the cis configuration of N1 with respect to N3 and N4 with respect to N6.

The C14—N1 and C35—N4 bond distances [1.281 (2) and 1.278 (2) Å] are close to that of formal CN bond [1.284 (3) Å] (Seena et al., 2006). Similarly the C15—S1 and C36—S2 bond distances [1.6835 (17) Å and 1.6824 (17) Å] are also close to that of formal CS bond [1.68 (3) Å] (Jacob & Kurup, 2012). The hydrazine carbothioamide moieties in both molecules are almost planar with maximum deviation of 0.013 (2) Å for atom C15 and 0.007 (2) Å for C36 respectively from their least square planes. The cyclohexyl rings in both the molecules adopt chair conformation. The least square plane calculations show that the rings C1–C6/C8–C13 in one molecule and C22–C27/C29–C34 in the other molecule are twisted with a dihedral angles of 82.93 (120)° and 88.59 (12)° respectively.

Whilst one the molecules in the asymmetric unit has only one intramolecular hydrogen bond of the type O—H···N with D···A distance 2.696 (2) Å and one N—H···S type intermolecular hydrogen bonding interaction with D···A distance 3.3046 (18) Å, the other molecule has two types of intramolecular hydrogen bonds of O—H···N and N—H···N with D···A distances 2.680 (2) and 2.655 (3) Å respectively along with one type of N—H···S intermolecular hydrogen bonding with D···A distance 3.3495 (18) Å (Table 1). All these intermolecular interactions present in two asymmetric molecules build two centrosymmetric dimers in the crystal lattice (Fig 2). These dimers are interconnected by means of three C—H···π interactions with H···π distances of 2.95, 2.87 and 2.84 Å (Fig. 3). Fig 4 shows the packing of molecules along crystallographic a axis.

Related literature top

For antimicrobial application, see: Joseph et al. (2004). For fluorescence activity, see: Kumar et al. (2013). For versatile coordination ability, see: Sreekanth et al. (2004). For the synthesis of related compounds, see: Jacob & Kurup (2012). For related structures, see: Seena et al. (2006); Jacob & Kurup (2012).

Experimental top

The preparation of the compound involves a two step process (Jacob & Kurup, 2012). In the first step, cyclohexylisothiocyanate (15 mmol, 2 ml) in 15 ml methanol and hydrazine hydrate (90 mmol, 4.3 ml) in 15 ml methanol were mixed and the resulting solution was stirred for an hour when the colourless product, N(4)-cyclohexylthiosemicarbazide formed was filtered, washed with methanol and dried in vacuo. In the second step, 4-benzyloxy-2-hydroxybenzaldehyde (0.2283 g, 1 mmol), dissolved in 15 ml acetonitrile was added to a solution of N(4)-cyclohexylthiosemicarbazide in 10 ml acetonitrile and the reaction mixture was refluxed for 3 hrs in acidic medium. The resultant solution was kept for one week to give yellow crystals of the compound (yield 51.59%, 0.1978 g)

IR (KBr, ν in cm-1): 3400, 3130, 2985, 2929, 2851, 1627, 1599, 1540, 1505, 1224.

Refinement top

All H atoms on C were placed in calculated positions, guided by difference maps, with C—H bond distances of 0.93 Å. H atoms were assigned Uiso(H) values of 1.2Ueq (carrier). H atoms of N—H bonds were located from difference maps and the bond distances are restrained to 0.88±0.01 Å. Omitted owing to bad disagreement was (0 0 2). The phenolic H atoms were located from difference maps and the O–H bond distances were restrained to 0.84±0.01 Å.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of (E)-2-(4-benzyloxy-2-hydroxybenzylidene)-N-cyclohexylhydrazinecarbothioamide with 50% probability ellipsoids.
[Figure 2] Fig. 2. Hydrogen-bond interactions of the title compound, [C21H25N3O2S]·0.5C2H3N.
[Figure 3] Fig. 3. C—H···π interactions of the title compound.
[Figure 4] Fig. 4. Packing diagram of the title compound along a axis.
2-[(E)-4-Benzyloxy-2-hydroxybenzylidene]-N-cyclohexylhydrazinecarbothioamide acetonitrile hemisolvate top
Crystal data top
2C21H25N3O2S·C2H3NZ = 2
Mr = 808.07F(000) = 860
Triclinic, P1Dx = 1.249 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.5345 (4) ÅCell parameters from 6744 reflections
b = 10.8341 (4) Åθ = 2.2–28.1°
c = 21.8169 (10) ŵ = 0.17 mm1
α = 97.241 (2)°T = 296 K
β = 92.120 (2)°Needle, yellow
γ = 118.901 (2)°0.50 × 0.20 × 0.18 mm
V = 2148.72 (15) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
9260 independent reflections
Radiation source: fine-focus sealed tube6918 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω and ϕ scanθmax = 27.0°, θmin = 1.0°
Absorption correction: multi-scan
SADABS (Bruker, 2004)
h = 1313
Tmin = 0.918, Tmax = 0.942k = 1313
15933 measured reflectionsl = 2719
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0652P)2 + 0.7212P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
9260 reflectionsΔρmax = 0.39 e Å3
540 parametersΔρmin = 0.25 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0036 (9)
Crystal data top
2C21H25N3O2S·C2H3Nγ = 118.901 (2)°
Mr = 808.07V = 2148.72 (15) Å3
Triclinic, P1Z = 2
a = 10.5345 (4) ÅMo Kα radiation
b = 10.8341 (4) ŵ = 0.17 mm1
c = 21.8169 (10) ÅT = 296 K
α = 97.241 (2)°0.50 × 0.20 × 0.18 mm
β = 92.120 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
9260 independent reflections
Absorption correction: multi-scan
SADABS (Bruker, 2004)
6918 reflections with I > 2σ(I)
Tmin = 0.918, Tmax = 0.942Rint = 0.018
15933 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0466 restraints
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.39 e Å3
9260 reflectionsΔρmin = 0.25 e Å3
540 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.60227 (5)0.39508 (6)0.07407 (3)0.05080 (16)
S20.62422 (6)0.49312 (6)0.42617 (3)0.05093 (16)
O10.50839 (13)0.84763 (15)0.05748 (7)0.0500 (4)
O20.04715 (15)0.53001 (16)0.11875 (8)0.0542 (4)
O30.15464 (15)1.13678 (15)0.44214 (7)0.0484 (4)
O40.48815 (17)0.97664 (18)0.38472 (8)0.0576 (4)
N10.18643 (14)0.53120 (15)0.06462 (7)0.0339 (3)
N20.33002 (15)0.49724 (17)0.05214 (8)0.0380 (4)
N30.39713 (15)0.35494 (16)0.12662 (7)0.0364 (3)
N40.47289 (17)0.75978 (16)0.43719 (7)0.0378 (3)
N50.51039 (18)0.65922 (17)0.44969 (8)0.0420 (4)
N60.65106 (19)0.70656 (17)0.36985 (8)0.0451 (4)
N70.3302 (6)0.4151 (5)0.2682 (2)0.1717 (19)
C10.8362 (2)0.9162 (3)0.07453 (12)0.0616 (6)
H10.80230.83970.04200.074*
C20.9830 (3)1.0168 (3)0.08441 (14)0.0701 (7)
H21.04721.00580.05910.084*
C31.0339 (2)1.1302 (3)0.12998 (14)0.0702 (7)
H31.13251.19820.13590.084*
C40.9401 (3)1.1445 (3)0.16734 (16)0.0886 (10)
H40.97441.22270.19910.106*
C50.7939 (3)1.0434 (3)0.15839 (14)0.0759 (8)
H50.73071.05410.18440.091*
C60.74039 (19)0.9283 (2)0.11217 (11)0.0467 (5)
C70.5819 (2)0.8176 (2)0.10456 (13)0.0579 (6)
H7A0.57050.72310.09280.070*
H7B0.54090.82020.14350.070*
C80.35980 (18)0.78021 (19)0.05220 (9)0.0384 (4)
C90.27479 (18)0.67962 (19)0.08791 (9)0.0396 (4)
H90.31770.64860.11580.048*
C100.12462 (18)0.62556 (18)0.08164 (9)0.0357 (4)
C110.05770 (17)0.66738 (17)0.03884 (9)0.0333 (4)
C120.14739 (19)0.76540 (19)0.00217 (9)0.0390 (4)
H120.10490.79300.02750.047*
C130.29580 (19)0.8219 (2)0.00862 (10)0.0416 (4)
H130.35300.88760.01600.050*
C140.09743 (17)0.61556 (18)0.03108 (9)0.0340 (4)
H140.13470.64490.00020.041*
C150.43444 (17)0.41394 (17)0.08528 (8)0.0327 (4)
C160.49581 (18)0.26337 (18)0.16725 (8)0.0345 (4)
H160.56340.29840.17830.041*
C170.4086 (2)0.2746 (2)0.22629 (10)0.0483 (5)
H17A0.35720.37310.24730.058*
H17B0.33670.24610.21610.058*
C180.5082 (2)0.1797 (2)0.26935 (10)0.0549 (5)
H18A0.44950.18310.30550.066*
H18B0.57190.21600.28360.066*
C190.5994 (3)0.0272 (2)0.23745 (12)0.0593 (6)
H19A0.66650.02830.26520.071*
H19B0.53650.01310.22800.071*
C200.6847 (2)0.0171 (2)0.17822 (12)0.0580 (6)
H20A0.75560.04730.18810.070*
H20B0.73740.08140.15740.070*
C210.5842 (2)0.1104 (2)0.13481 (10)0.0487 (5)
H21A0.51910.07490.12180.058*
H21B0.64190.10590.09800.058*
C220.0343 (3)1.1977 (3)0.34536 (13)0.0700 (7)
H220.04801.11390.32150.084*
C230.1360 (3)1.2417 (3)0.33712 (15)0.0828 (9)
H230.21801.18690.30830.099*
C240.1165 (3)1.3645 (3)0.37091 (13)0.0654 (7)
H240.18351.39560.36450.078*
C250.0003 (3)1.4413 (3)0.41389 (14)0.0728 (7)
H250.01341.52510.43750.087*
C260.1011 (3)1.3960 (2)0.42301 (14)0.0663 (7)
H260.18021.44880.45340.080*
C270.0858 (2)1.2751 (2)0.38802 (10)0.0445 (5)
C280.1956 (2)1.2258 (2)0.39536 (12)0.0550 (6)
H28A0.19671.17260.35630.066*
H28B0.29231.30730.40750.066*
C290.22107 (19)1.05710 (19)0.44817 (9)0.0371 (4)
C300.1700 (2)0.9661 (2)0.49167 (10)0.0444 (5)
H300.09890.96540.51590.053*
C310.2259 (2)0.8774 (2)0.49842 (10)0.0420 (4)
H310.19220.81710.52790.050*
C320.33155 (19)0.87403 (18)0.46276 (9)0.0342 (4)
C330.38348 (19)0.96924 (19)0.42039 (9)0.0363 (4)
C340.3293 (2)1.0614 (2)0.41346 (9)0.0387 (4)
H340.36581.12550.38560.046*
C350.38347 (19)0.77485 (18)0.47119 (9)0.0373 (4)
H350.35040.71990.50260.045*
C360.5958 (2)0.62855 (19)0.41394 (9)0.0365 (4)
C370.7455 (2)0.6898 (2)0.32651 (9)0.0426 (4)
H370.71570.58790.31770.051*
C380.9025 (3)0.7690 (3)0.35401 (13)0.0663 (7)
H38A0.91260.73390.39160.080*
H38B0.93400.87000.36500.080*
C390.9981 (3)0.7489 (4)0.30791 (17)0.0894 (10)
H39A0.97220.64900.29980.107*
H39B1.09950.80410.32560.107*
C400.9792 (4)0.7970 (3)0.24691 (17)0.0951 (11)
H40A1.01330.89890.25440.114*
H40B1.03760.77930.21740.114*
C410.8222 (4)0.7181 (3)0.22016 (13)0.0812 (9)
H41A0.79160.61740.20860.097*
H41B0.81170.75390.18280.097*
C420.7237 (3)0.7347 (3)0.26621 (12)0.0688 (7)
H42A0.74590.83360.27400.083*
H42B0.62250.67640.24860.083*
C430.2358 (7)0.5888 (6)0.2730 (3)0.170 (2)
H43A0.20100.59510.31270.256*
H43B0.15750.55720.24050.256*
H43C0.31360.68100.26820.256*
C440.2868 (4)0.4920 (5)0.2694 (2)0.1059 (11)
H3'0.3084 (13)0.368 (2)0.1287 (10)0.047 (6)*
H60.631 (2)0.7759 (16)0.3704 (10)0.046 (6)*
H5'0.473 (2)0.611 (2)0.4799 (8)0.051 (6)*
H2'0.349 (2)0.533 (2)0.0218 (8)0.057 (7)*
H2A0.0407 (13)0.508 (3)0.1130 (13)0.078 (9)*
H4'0.516 (3)0.920 (2)0.3942 (12)0.064 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0261 (2)0.0718 (3)0.0646 (4)0.0249 (2)0.0140 (2)0.0391 (3)
S20.0694 (4)0.0562 (3)0.0588 (3)0.0499 (3)0.0283 (3)0.0274 (3)
O10.0206 (6)0.0553 (8)0.0659 (10)0.0111 (6)0.0027 (6)0.0155 (7)
O20.0293 (7)0.0642 (9)0.0646 (10)0.0139 (7)0.0056 (7)0.0353 (8)
O30.0501 (8)0.0593 (8)0.0634 (9)0.0430 (7)0.0211 (7)0.0294 (7)
O40.0688 (10)0.0879 (11)0.0613 (10)0.0645 (9)0.0364 (8)0.0435 (9)
N10.0213 (6)0.0393 (8)0.0391 (8)0.0130 (6)0.0025 (6)0.0082 (6)
N20.0224 (7)0.0496 (9)0.0448 (9)0.0164 (6)0.0067 (6)0.0218 (7)
N30.0230 (7)0.0445 (8)0.0432 (9)0.0151 (6)0.0057 (6)0.0182 (7)
N40.0445 (8)0.0399 (8)0.0437 (9)0.0305 (7)0.0082 (7)0.0130 (7)
N50.0544 (10)0.0471 (9)0.0483 (10)0.0393 (8)0.0204 (8)0.0224 (8)
N60.0562 (10)0.0451 (9)0.0538 (10)0.0361 (8)0.0229 (8)0.0221 (8)
N70.191 (5)0.199 (5)0.184 (5)0.141 (4)0.050 (4)0.026 (4)
C10.0497 (13)0.0629 (14)0.0688 (16)0.0271 (11)0.0060 (11)0.0017 (12)
C20.0409 (12)0.097 (2)0.0799 (19)0.0362 (13)0.0195 (12)0.0247 (16)
C30.0278 (10)0.0832 (18)0.0795 (19)0.0097 (11)0.0039 (11)0.0250 (15)
C40.0506 (15)0.0773 (18)0.093 (2)0.0053 (13)0.0019 (14)0.0199 (16)
C50.0414 (12)0.0736 (16)0.093 (2)0.0185 (12)0.0145 (13)0.0135 (14)
C60.0256 (9)0.0454 (10)0.0662 (14)0.0157 (8)0.0020 (9)0.0095 (10)
C70.0294 (10)0.0527 (12)0.0854 (17)0.0143 (9)0.0028 (10)0.0183 (12)
C80.0220 (8)0.0373 (9)0.0488 (11)0.0103 (7)0.0027 (7)0.0017 (8)
C90.0264 (8)0.0402 (9)0.0490 (11)0.0142 (7)0.0014 (8)0.0079 (8)
C100.0264 (8)0.0336 (8)0.0425 (10)0.0107 (7)0.0035 (7)0.0079 (7)
C110.0233 (8)0.0326 (8)0.0402 (10)0.0110 (7)0.0034 (7)0.0046 (7)
C120.0292 (9)0.0412 (9)0.0452 (11)0.0149 (8)0.0034 (8)0.0124 (8)
C130.0281 (9)0.0410 (10)0.0490 (11)0.0102 (8)0.0083 (8)0.0131 (8)
C140.0255 (8)0.0366 (9)0.0387 (10)0.0137 (7)0.0022 (7)0.0091 (7)
C150.0242 (8)0.0348 (8)0.0380 (10)0.0129 (7)0.0041 (7)0.0092 (7)
C160.0297 (8)0.0363 (9)0.0383 (10)0.0150 (7)0.0075 (7)0.0128 (7)
C170.0415 (10)0.0488 (11)0.0472 (12)0.0149 (9)0.0008 (9)0.0158 (9)
C180.0548 (13)0.0676 (14)0.0455 (12)0.0284 (11)0.0095 (10)0.0270 (11)
C190.0565 (13)0.0598 (13)0.0741 (16)0.0309 (11)0.0267 (12)0.0380 (12)
C200.0491 (12)0.0432 (11)0.0670 (15)0.0092 (9)0.0145 (11)0.0160 (10)
C210.0474 (11)0.0409 (10)0.0459 (12)0.0123 (9)0.0067 (9)0.0072 (9)
C220.0744 (16)0.0748 (16)0.0774 (18)0.0561 (14)0.0123 (14)0.0097 (13)
C230.0769 (18)0.112 (2)0.080 (2)0.0692 (18)0.0205 (15)0.0063 (17)
C240.0754 (16)0.0935 (18)0.0693 (16)0.0695 (16)0.0170 (14)0.0320 (14)
C250.0910 (19)0.0588 (14)0.091 (2)0.0547 (15)0.0133 (17)0.0093 (14)
C260.0603 (14)0.0538 (13)0.0848 (19)0.0312 (12)0.0106 (13)0.0033 (12)
C270.0422 (10)0.0472 (10)0.0598 (13)0.0303 (9)0.0115 (9)0.0236 (10)
C280.0467 (11)0.0628 (13)0.0794 (16)0.0383 (11)0.0190 (11)0.0393 (12)
C290.0362 (9)0.0419 (9)0.0457 (11)0.0275 (8)0.0064 (8)0.0131 (8)
C300.0419 (10)0.0558 (11)0.0542 (12)0.0347 (9)0.0208 (9)0.0218 (9)
C310.0424 (10)0.0477 (10)0.0506 (12)0.0292 (9)0.0182 (9)0.0238 (9)
C320.0348 (9)0.0364 (9)0.0398 (10)0.0227 (7)0.0063 (7)0.0112 (7)
C330.0370 (9)0.0469 (10)0.0375 (10)0.0282 (8)0.0103 (8)0.0148 (8)
C340.0406 (10)0.0464 (10)0.0435 (11)0.0289 (8)0.0117 (8)0.0214 (8)
C350.0405 (9)0.0381 (9)0.0429 (10)0.0247 (8)0.0098 (8)0.0144 (8)
C360.0409 (9)0.0384 (9)0.0394 (10)0.0259 (8)0.0072 (8)0.0094 (8)
C370.0469 (11)0.0385 (9)0.0473 (11)0.0228 (8)0.0161 (9)0.0127 (8)
C380.0500 (13)0.0692 (15)0.0706 (17)0.0236 (12)0.0104 (12)0.0043 (13)
C390.0498 (14)0.095 (2)0.114 (3)0.0298 (15)0.0298 (16)0.0049 (19)
C400.090 (2)0.0655 (16)0.116 (3)0.0219 (16)0.072 (2)0.0228 (17)
C410.108 (2)0.0781 (18)0.0607 (17)0.0425 (17)0.0419 (16)0.0292 (14)
C420.0760 (17)0.0828 (17)0.0606 (15)0.0430 (14)0.0248 (13)0.0340 (13)
C430.236 (6)0.213 (6)0.147 (5)0.177 (5)0.008 (4)0.031 (4)
C440.092 (2)0.127 (3)0.106 (3)0.060 (2)0.021 (2)0.011 (2)
Geometric parameters (Å, º) top
S1—C151.6834 (17)C18—H18A0.9700
S2—C361.6824 (17)C18—H18B0.9700
O1—C81.363 (2)C19—C201.508 (3)
O1—C71.424 (3)C19—H19A0.9700
O2—C101.355 (2)C19—H19B0.9700
O2—H2A0.838 (10)C20—C211.524 (3)
O3—C291.3631 (19)C20—H20A0.9700
O3—C281.427 (2)C20—H20B0.9700
O4—C331.350 (2)C21—H21A0.9700
O4—H4'0.843 (10)C21—H21B0.9700
N1—C141.281 (2)C22—C271.364 (3)
N1—N21.3798 (19)C22—C231.382 (3)
N2—C151.346 (2)C22—H220.9300
N2—H2'0.872 (9)C23—C241.353 (4)
N3—C151.318 (2)C23—H230.9300
N3—C161.464 (2)C24—C251.347 (4)
N3—H3'0.873 (9)C24—H240.9300
N4—C351.278 (2)C25—C261.385 (3)
N4—N51.3786 (19)C25—H250.9300
N5—C361.343 (2)C26—C271.364 (3)
N5—H5'0.875 (9)C26—H260.9300
N6—C361.323 (2)C27—C281.501 (2)
N6—C371.455 (2)C28—H28A0.9700
N6—H60.875 (9)C28—H28B0.9700
N7—C441.125 (5)C29—C341.378 (2)
C1—C61.368 (3)C29—C301.387 (3)
C1—C21.383 (3)C30—C311.366 (2)
C1—H10.9300C30—H300.9300
C2—C31.342 (4)C31—C321.394 (2)
C2—H20.9300C31—H310.9300
C3—C41.357 (4)C32—C331.396 (2)
C3—H30.9300C32—C351.448 (2)
C4—C51.380 (3)C33—C341.388 (2)
C4—H40.9300C34—H340.9300
C5—C61.361 (3)C35—H350.9300
C5—H50.9300C37—C381.503 (3)
C6—C71.499 (3)C37—C421.506 (3)
C7—H7A0.9700C37—H370.9800
C7—H7B0.9700C38—C391.518 (4)
C8—C131.385 (3)C38—H38A0.9700
C8—C91.385 (3)C38—H38B0.9700
C9—C101.390 (2)C39—C401.529 (5)
C9—H90.9300C39—H39A0.9700
C10—C111.393 (2)C39—H39B0.9700
C11—C121.400 (2)C40—C411.498 (5)
C11—C141.443 (2)C40—H40A0.9700
C12—C131.370 (2)C40—H40B0.9700
C12—H120.9300C41—C421.527 (4)
C13—H130.9300C41—H41A0.9700
C14—H140.9300C41—H41B0.9700
C16—C211.509 (3)C42—H42A0.9700
C16—C171.511 (3)C42—H42B0.9700
C16—H160.9800C43—C441.386 (6)
C17—C181.521 (3)C43—H43A0.9600
C17—H17A0.9700C43—H43B0.9600
C17—H17B0.9700C43—H43C0.9600
C18—C191.505 (3)
C8—O1—C7118.05 (16)C16—C21—H21A109.6
C10—O2—H2A109.1 (19)C20—C21—H21A109.6
C29—O3—C28118.03 (15)C16—C21—H21B109.6
C33—O4—H4'108.7 (17)C20—C21—H21B109.6
C14—N1—N2115.26 (14)H21A—C21—H21B108.1
C15—N2—N1121.70 (15)C27—C22—C23121.0 (2)
C15—N2—H2'122.2 (15)C27—C22—H22119.5
N1—N2—H2'116.1 (15)C23—C22—H22119.5
C15—N3—C16124.67 (14)C24—C23—C22120.2 (3)
C15—N3—H3'117.7 (14)C24—C23—H23119.9
C16—N3—H3'117.6 (14)C22—C23—H23119.9
C35—N4—N5116.27 (15)C25—C24—C23119.6 (2)
C36—N5—N4120.82 (15)C25—C24—H24120.2
C36—N5—H5'120.2 (15)C23—C24—H24120.2
N4—N5—H5'118.9 (15)C24—C25—C26120.3 (2)
C36—N6—C37125.36 (15)C24—C25—H25119.9
C36—N6—H6113.2 (14)C26—C25—H25119.9
C37—N6—H6121.3 (14)C27—C26—C25120.9 (2)
C6—C1—C2120.6 (2)C27—C26—H26119.5
C6—C1—H1119.7C25—C26—H26119.5
C2—C1—H1119.7C26—C27—C22117.92 (19)
C3—C2—C1120.8 (2)C26—C27—C28122.2 (2)
C3—C2—H2119.6C22—C27—C28119.9 (2)
C1—C2—H2119.6O3—C28—C27107.81 (16)
C2—C3—C4119.3 (2)O3—C28—H28A110.1
C2—C3—H3120.3C27—C28—H28A110.1
C4—C3—H3120.3O3—C28—H28B110.1
C3—C4—C5120.2 (3)C27—C28—H28B110.1
C3—C4—H4119.9H28A—C28—H28B108.5
C5—C4—H4119.9O3—C29—C34123.98 (16)
C6—C5—C4121.2 (2)O3—C29—C30115.26 (16)
C6—C5—H5119.4C34—C29—C30120.75 (15)
C4—C5—H5119.4C31—C30—C29118.94 (17)
C5—C6—C1117.9 (2)C31—C30—H30120.5
C5—C6—C7120.2 (2)C29—C30—H30120.5
C1—C6—C7121.9 (2)C30—C31—C32122.41 (17)
O1—C7—C6108.31 (17)C30—C31—H31118.8
O1—C7—H7A110.0C32—C31—H31118.8
C6—C7—H7A110.0C31—C32—C33117.39 (15)
O1—C7—H7B110.0C31—C32—C35119.59 (16)
C6—C7—H7B110.0C33—C32—C35123.01 (16)
H7A—C7—H7B108.4O4—C33—C34117.05 (16)
O1—C8—C13115.07 (16)O4—C33—C32121.98 (15)
O1—C8—C9124.33 (17)C34—C33—C32120.97 (16)
C13—C8—C9120.58 (15)C29—C34—C33119.46 (16)
C8—C9—C10119.27 (17)C29—C34—H34120.3
C8—C9—H9120.4C33—C34—H34120.3
C10—C9—H9120.4N4—C35—C32122.63 (16)
O2—C10—C9116.81 (16)N4—C35—H35118.7
O2—C10—C11121.93 (15)C32—C35—H35118.7
C9—C10—C11121.26 (16)N6—C36—N5117.15 (15)
C10—C11—C12117.46 (15)N6—C36—S2123.67 (14)
C10—C11—C14123.34 (16)N5—C36—S2119.17 (14)
C12—C11—C14119.19 (16)N6—C37—C38111.66 (18)
C13—C12—C11122.03 (17)N6—C37—C42109.76 (17)
C13—C12—H12119.0C38—C37—C42112.18 (19)
C11—C12—H12119.0N6—C37—H37107.7
C12—C13—C8119.33 (17)C38—C37—H37107.7
C12—C13—H13120.3C42—C37—H37107.7
C8—C13—H13120.3C37—C38—C39110.4 (2)
N1—C14—C11123.32 (16)C37—C38—H38A109.6
N1—C14—H14118.3C39—C38—H38A109.6
C11—C14—H14118.3C37—C38—H38B109.6
N3—C15—N2117.35 (15)C39—C38—H38B109.6
N3—C15—S1123.54 (13)H38A—C38—H38B108.1
N2—C15—S1119.07 (13)C38—C39—C40110.8 (3)
N3—C16—C21111.38 (15)C38—C39—H39A109.5
N3—C16—C17109.39 (14)C40—C39—H39A109.5
C21—C16—C17111.35 (16)C38—C39—H39B109.5
N3—C16—H16108.2C40—C39—H39B109.5
C21—C16—H16108.2H39A—C39—H39B108.1
C17—C16—H16108.2C41—C40—C39110.5 (2)
C16—C17—C18110.61 (16)C41—C40—H40A109.5
C16—C17—H17A109.5C39—C40—H40A109.5
C18—C17—H17A109.5C41—C40—H40B109.5
C16—C17—H17B109.5C39—C40—H40B109.5
C18—C17—H17B109.5H40A—C40—H40B108.1
H17A—C17—H17B108.1C40—C41—C42111.9 (3)
C19—C18—C17111.81 (19)C40—C41—H41A109.2
C19—C18—H18A109.3C42—C41—H41A109.2
C17—C18—H18A109.3C40—C41—H41B109.2
C19—C18—H18B109.3C42—C41—H41B109.2
C17—C18—H18B109.3H41A—C41—H41B107.9
H18A—C18—H18B107.9C37—C42—C41110.5 (2)
C18—C19—C20111.37 (17)C37—C42—H42A109.5
C18—C19—H19A109.4C41—C42—H42A109.5
C20—C19—H19A109.4C37—C42—H42B109.5
C18—C19—H19B109.4C41—C42—H42B109.5
C20—C19—H19B109.4H42A—C42—H42B108.1
H19A—C19—H19B108.0C44—C43—H43A109.5
C19—C20—C21111.10 (18)C44—C43—H43B109.5
C19—C20—H20A109.4H43A—C43—H43B109.5
C21—C20—H20A109.4C44—C43—H43C109.5
C19—C20—H20B109.4H43A—C43—H43C109.5
C21—C20—H20B109.4H43B—C43—H43C109.5
H20A—C20—H20B108.0N7—C44—C43177.9 (6)
C16—C21—C20110.36 (17)
C14—N1—N2—C15177.55 (17)C19—C20—C21—C1656.4 (2)
C35—N4—N5—C36175.50 (18)C27—C22—C23—C241.0 (5)
C6—C1—C2—C31.8 (4)C22—C23—C24—C251.9 (5)
C1—C2—C3—C41.1 (4)C23—C24—C25—C260.8 (4)
C2—C3—C4—C50.0 (5)C24—C25—C26—C271.4 (4)
C3—C4—C5—C60.3 (5)C25—C26—C27—C222.3 (4)
C4—C5—C6—C10.3 (4)C25—C26—C27—C28178.0 (2)
C4—C5—C6—C7178.2 (3)C23—C22—C27—C261.1 (4)
C2—C1—C6—C51.3 (4)C23—C22—C27—C28179.1 (3)
C2—C1—C6—C7177.2 (2)C29—O3—C28—C27167.25 (18)
C8—O1—C7—C6166.00 (18)C26—C27—C28—O388.5 (3)
C5—C6—C7—O197.6 (3)C22—C27—C28—O391.3 (3)
C1—C6—C7—O183.9 (3)C28—O3—C29—C342.6 (3)
C7—O1—C8—C13175.50 (19)C28—O3—C29—C30176.06 (19)
C7—O1—C8—C92.8 (3)O3—C29—C30—C31176.84 (19)
O1—C8—C9—C10175.28 (18)C34—C29—C30—C311.9 (3)
C13—C8—C9—C103.0 (3)C29—C30—C31—C320.6 (3)
C8—C9—C10—O2178.48 (17)C30—C31—C32—C332.1 (3)
C8—C9—C10—C112.0 (3)C30—C31—C32—C35178.45 (19)
O2—C10—C11—C12179.23 (17)C31—C32—C33—O4178.46 (19)
C9—C10—C11—C120.3 (3)C35—C32—C33—O41.0 (3)
O2—C10—C11—C141.2 (3)C31—C32—C33—C341.3 (3)
C9—C10—C11—C14179.29 (17)C35—C32—C33—C34179.32 (18)
C10—C11—C12—C131.7 (3)O3—C29—C34—C33175.91 (18)
C14—C11—C12—C13177.95 (18)C30—C29—C34—C332.7 (3)
C11—C12—C13—C80.7 (3)O4—C33—C34—C29179.20 (18)
O1—C8—C13—C12176.74 (17)C32—C33—C34—C291.1 (3)
C9—C8—C13—C121.7 (3)N5—N4—C35—C32178.66 (17)
N2—N1—C14—C11177.59 (16)C31—C32—C35—N4175.26 (19)
C10—C11—C14—N13.0 (3)C33—C32—C35—N45.3 (3)
C12—C11—C14—N1176.58 (17)C37—N6—C36—N5179.92 (19)
C16—N3—C15—N2179.03 (16)C37—N6—C36—S21.2 (3)
C16—N3—C15—S11.3 (3)N4—N5—C36—N65.2 (3)
N1—N2—C15—N36.0 (3)N4—N5—C36—S2173.54 (14)
N1—N2—C15—S1171.78 (13)C36—N6—C37—C3884.5 (3)
C15—N3—C16—C2184.1 (2)C36—N6—C37—C42150.4 (2)
C15—N3—C16—C17152.42 (18)N6—C37—C38—C39179.7 (2)
N3—C16—C17—C18179.61 (17)C42—C37—C38—C3956.6 (3)
C21—C16—C17—C1856.1 (2)C37—C38—C39—C4056.6 (3)
C16—C17—C18—C1954.8 (2)C38—C39—C40—C4156.6 (3)
C17—C18—C19—C2054.8 (3)C39—C40—C41—C4255.7 (3)
C18—C19—C20—C2155.5 (3)N6—C37—C42—C41179.9 (2)
N3—C16—C21—C20179.42 (17)C38—C37—C42—C4155.1 (3)
C17—C16—C21—C2057.0 (2)C40—C41—C42—C3754.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6···N40.88 (1)2.21 (2)2.655 (2)111 (2)
N5—H5···S2i0.88 (1)2.48 (1)3.3495 (17)173 (2)
N2—H2···S1ii0.87 (1)2.44 (1)3.3047 (16)171 (2)
O2—H2A···N10.84 (1)1.96 (2)2.696 (2)146 (3)
O4—H4···N40.84 (1)1.94 (2)2.680 (2)146 (2)
C12—H12···Cg1iii0.932.953.811 (2)154
C20—H20B···Cg2iv0.962.873.715 (2)146
C31—H31···Cg4v0.932.843.714 (2)157
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y+1, z; (iii) x+1, y+2, z; (iv) x1, y1, z; (v) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6···N40.875 (9)2.21 (2)2.655 (2)111.4 (16)
N5—H5'···S2i0.875 (9)2.480 (10)3.3495 (17)172.5 (19)
N2—H2'···S1ii0.872 (9)2.441 (10)3.3047 (16)171 (2)
O2—H2A···N10.838 (10)1.960 (18)2.696 (2)146 (3)
O4—H4'···N40.843 (10)1.941 (16)2.680 (2)146 (2)
C12—H12···Cg1iii0.932.953.811 (2)154
C20—H20B···Cg2iv0.962.873.715 (2)146
C31—H31···Cg4v0.932.843.714 (2)157
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y+1, z; (iii) x+1, y+2, z; (iv) x1, y1, z; (v) x, y+2, z+1.
 

Acknowledgements

NRS thanks the Council of Scientific and Industrial Research (India) for a Junior Research Fellowship. MRPK thanks the University Grants Commission, New Delhi, India, for a UGC–BSR one-time grant to faculty. The authors thank the Sophisticated Analytical Instruments Facility, Cochin University of S & T, for the diffraction measurements and IR data.

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJacob, J. M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o836–o837.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationJoseph, M., Suni, V., Kurup, M. R. P., Nethaji, M., Kishore, A. & Bhat, S. G. (2004). Polyhedron, 23, 3069–3080.  Web of Science CSD CrossRef CAS Google Scholar
First citationKumar, S. L. A., Kumar, M. S., Sreeja, P. B. & Sreekanth, A. (2013). Spectrochim. Acta Part A, 113, 123–129.  Google Scholar
First citationSeena, E. B., BessyRaj, B. N., Kurup, M. R. P. & Suresh, E. (2006). J. Chem. Crystallogr. 36, 189–193.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSreekanth, A., Fun, H.-K. & Kurup, M. R. P. (2004). Inorg. Chem. Commun. 7, 1250–1253.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o987-o988
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds