metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages m314-m315

Crystal structure of poly[[trans-di­aqua­bis­­[μ2-trans-4,4′-(diazenedi­yl)di­pyridine]­nickel(II)] diiodide ethanol disolvate]

aDepartamento de Química Inorgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Spain
*Correspondence e-mail: jperles@quim.ucm.es

Edited by I. Brito, University of Antofagasta, Chile (Received 2 July 2014; accepted 11 July 2014; online 1 August 2014)

In the title compound, {[Ni(C10H8N4)2(H2O)2]I2·2C2H5OH}n, the complex shows an octa­hedral environment of the Ni2+ cation in which it is located on a centre of symmetry, linked to two water mol­ecules and the pyridine-N atoms of four 4,4′-(diazenediyl)dipyridine ligands bridging Ni2+ cations along the b- and c-axis directions, giving rise to a two-dimensional arrangement. The Ni—N bond lengths are in the range 2.109 (4)–2.186 (3) Å and the Ni—O bond length is 2.080 (3) Å. The 4,4′-(diazenedi­yl)dipyridine ligand lies on an inversion centre. An O—H⋯O hydrogen-bond inter­action is observed between water and ethanol mol­ecules. The I ions can be regarded as free anions in the crystal lattice.

1. Related literature

For related two-dimensional structures, see: Carlucci et al. (2003[Carlucci, L., Ciani, G., Proserpio, D. M. & Rizzato, S. (2003). CrystEngComm, 5, 190-199.]); Noro et al. (2005[Noro, S.-I., Kitagawa, S., Nakamura, T. & Wada, T. (2005). Inorg. Chem. 44, 3960-3971.], 2006[Noro, S.-I., Kitaura, R., Kitagawa, S., Akutagawa, T. & Nakamura, T. (2006). Inorg. Chem. 45, 8990-8997.]); Li et al. (2007[Li, S.-L., Lan, Y.-Q., Ma, J.-F., Yang, J., Wang, X.-H. & Su, Z.-M. (2007). Inorg. Chem. 46, 8283-8290.]); Pan et al. (2010[Pan, F., Wu, J., Hou, H. & Fan, Y. (2010). Cryst. Growth Des. 10, 3835-3837.]); Aijaz et al. (2011[Aijaz, A., Sañudo, E. C. & Bharadwaj, P. K. (2011). Cryst. Growth Des. 11, 1122-1134.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Ni(C10H8N4)2(H2O)2]I2·2C2H6O

  • Mr = 809.09

  • Monoclinic, P 21 /n

  • a = 8.6367 (11) Å

  • b = 13.2598 (16) Å

  • c = 13.4188 (14) Å

  • β = 101.737 (3)°

  • V = 1504.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.74 mm−1

  • T = 100 K

  • 0.12 × 0.08 × 0.06 mm

2.2. Data collection

  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.77, Tmax = 0.85

  • 19224 measured reflections

  • 2741 independent reflections

  • 1948 reflections with I > 2σ(I)

  • Rint = 0.067

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.097

  • S = 1.00

  • 2741 reflections

  • 185 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.95 e Å−3

  • Δρmin = −0.86 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2i 0.83 (4) 1.91 (4) 2.703 (6) 161 (5)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Related Literature top

A similar laminar structure was found for the compound [Ni(NCS)2(t-apy)2]·3toluene (Noro et al., 2006) although in this latter case there is no one-dimensional H-bond chain. For related 2D structures see: Carlucci et al. (2003); Noro et al. (2005 and 2006); Li et al. (2007); Pan et al. (2010); and Aijaz et al. (2011).

Preparation top

Nickel(II) iodide (0.30 g, 1.0 mmol), trans-4,4'-(diazenediyl)di­pyridine (0.18 g, 1.0 mmol), ethanol (9 mL), and water (3 mL) were placed into an 85 mL Teflon vessel with a magnetic stirrer. The vessel was sealed with a lid equipped with a temperature sensor and placed in a ETHOS ONE microwave oven. The reaction mixture was heated for 3 hours at 120°C and left to cool afterwards. Slow inter­diffusion of di­ethyl ether in the obtained solution gave rise to red crystals suitable for single-crystal X-ray diffraction after a few days.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Related literature top

For related 2D structures see: Carlucci et al. (2003); Noro et al. (2005 and 2006); Li et al. (2007); Pan et al. (2010); and Aijaz et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Part of the polymeric structure for the title compound. Symmetry code for compound (i):-x, -y+2, -z+2; (2i): -x-y+1,-z+1;(3i):-x,-y+1,-z+2.
[Figure 2] Fig. 2. Simplified drawing of a layer parallel to (011). Hydrogen atoms have been omitted for clarity.
Poly[[trans-diaquabis[µ2-trans-4,4'-(diazenediyl)dipyridine]nickel(II)] diiodide ethanol disolvate] top
Crystal data top
[Ni(C10H8N4)2(H2O)2]I2·2C2H6OF(000) = 796
Mr = 809.09Dx = 1.786 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.6367 (11) ÅCell parameters from 3456 reflections
b = 13.2598 (16) Åθ = 2.9–21.6°
c = 13.4188 (14) ŵ = 2.74 mm1
β = 101.737 (3)°T = 100 K
V = 1504.6 (3) Å3Prismatic, clear orange–red
Z = 20.12 × 0.08 × 0.06 mm
Data collection top
Bruker Kappa APEXII
diffractometer
2741 independent reflections
Graphite monochromator1948 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.067
single crystal scansθmax = 25.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.77, Tmax = 0.85k = 1515
19224 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0416P)2 + 2.7231P]
where P = (Fo2 + 2Fc2)/3
2741 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 0.95 e Å3
3 restraintsΔρmin = 0.86 e Å3
Crystal data top
[Ni(C10H8N4)2(H2O)2]I2·2C2H6OV = 1504.6 (3) Å3
Mr = 809.09Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.6367 (11) ŵ = 2.74 mm1
b = 13.2598 (16) ÅT = 100 K
c = 13.4188 (14) Å0.12 × 0.08 × 0.06 mm
β = 101.737 (3)°
Data collection top
Bruker Kappa APEXII
diffractometer
2741 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1948 reflections with I > 2σ(I)
Tmin = 0.77, Tmax = 0.85Rint = 0.067
19224 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0413 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.95 e Å3
2741 reflectionsΔρmin = 0.86 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.01318 (5)0.80017 (3)0.33435 (3)0.05632 (18)
Ni100.51.00.0183 (2)
C10.1600 (6)0.4962 (4)0.8111 (3)0.0278 (11)
H10.25380.49450.86230.033*
C20.1749 (6)0.4983 (4)0.7105 (3)0.0304 (12)
H20.27630.50.69340.036*
C30.0387 (6)0.4978 (4)0.6352 (3)0.0290 (12)
C40.1044 (6)0.4962 (4)0.6634 (4)0.0365 (13)
H40.19960.49520.61340.044*
C50.1092 (6)0.4962 (4)0.7655 (3)0.0363 (13)
H50.20960.4960.7840.044*
C60.1181 (6)0.7073 (4)0.9562 (4)0.0320 (12)
H60.19130.6680.92860.038*
C70.1276 (7)0.8108 (4)0.9503 (4)0.0416 (14)
H70.20520.8420.91960.05*
C80.0228 (7)0.8671 (4)0.9897 (4)0.0402 (15)
C90.0855 (7)0.8207 (4)1.0356 (4)0.0444 (15)
H90.15750.85911.06510.053*
C100.0877 (7)0.7150 (4)1.0381 (4)0.0388 (14)
H100.16340.68241.06940.047*
C110.8888 (11)0.7821 (7)0.7076 (6)0.095 (3)
H11A0.90570.84240.75080.142*
H11B0.90550.72170.75040.142*
H11C0.78040.78230.66750.142*
C121.0001 (11)0.7823 (7)0.6391 (7)0.093 (3)
H12A1.10950.78020.67960.112*
H12B0.98320.72140.59570.112*
N10.0212 (5)0.4964 (3)0.8404 (3)0.0226 (9)
N20.0617 (5)0.4987 (3)0.5323 (3)0.0345 (10)
N30.0113 (5)0.6588 (3)0.9985 (3)0.0240 (9)
N40.0347 (6)0.9783 (4)0.9742 (4)0.0490 (13)
O10.2450 (4)0.4913 (3)1.0428 (2)0.0263 (8)
H1A0.305 (5)0.539 (3)1.062 (4)0.039*
H1B0.293 (6)0.442 (3)1.074 (3)0.039*
O20.9803 (5)0.8708 (3)0.5759 (3)0.0568 (12)
H2A0.91920.85760.52030.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0540 (3)0.0502 (3)0.0633 (3)0.0059 (2)0.0085 (2)0.0198 (2)
Ni10.0260 (5)0.0134 (4)0.0159 (4)0.0006 (4)0.0054 (3)0.0000 (3)
C10.025 (3)0.038 (3)0.019 (2)0.001 (2)0.001 (2)0.000 (2)
C20.028 (3)0.041 (3)0.024 (2)0.001 (2)0.011 (2)0.001 (2)
C30.040 (3)0.030 (3)0.017 (2)0.002 (2)0.005 (2)0.002 (2)
C40.024 (3)0.061 (4)0.025 (3)0.002 (3)0.005 (2)0.003 (3)
C50.030 (3)0.057 (4)0.024 (3)0.000 (3)0.010 (2)0.001 (2)
C60.033 (3)0.024 (3)0.038 (3)0.001 (2)0.007 (2)0.003 (2)
C70.041 (3)0.024 (3)0.058 (4)0.001 (3)0.006 (3)0.009 (3)
C80.041 (4)0.016 (3)0.055 (3)0.009 (3)0.010 (3)0.001 (2)
C90.054 (4)0.027 (3)0.052 (4)0.013 (3)0.008 (3)0.011 (3)
C100.055 (4)0.025 (3)0.038 (3)0.000 (3)0.016 (3)0.001 (2)
C110.103 (7)0.109 (7)0.068 (5)0.001 (6)0.008 (5)0.033 (5)
C120.085 (6)0.091 (7)0.106 (7)0.004 (5)0.025 (5)0.033 (5)
N10.028 (2)0.019 (2)0.0208 (19)0.0026 (18)0.0066 (17)0.0008 (17)
N20.038 (3)0.050 (3)0.018 (2)0.000 (2)0.0098 (16)0.000 (2)
N30.032 (2)0.019 (2)0.0202 (19)0.0020 (19)0.0026 (17)0.0018 (16)
N40.044 (3)0.050 (3)0.056 (3)0.002 (3)0.017 (2)0.008 (2)
O10.027 (2)0.024 (2)0.0267 (17)0.0012 (15)0.0034 (15)0.0030 (14)
O20.056 (3)0.054 (3)0.060 (3)0.006 (2)0.011 (2)0.008 (2)
Geometric parameters (Å, º) top
Ni1—O1i2.080 (3)C7—C81.360 (8)
Ni1—O12.080 (3)C7—H70.95
Ni1—N32.109 (4)C8—C91.366 (8)
Ni1—N3i2.109 (4)C8—N41.496 (7)
Ni1—N12.186 (3)C9—C101.403 (8)
Ni1—N1i2.186 (3)C9—H90.95
C1—N11.336 (6)C10—N31.324 (7)
C1—C21.381 (6)C10—H100.95
C1—H10.95C11—C121.458 (12)
C2—C31.386 (7)C11—H11A0.98
C2—H20.95C11—H11B0.98
C3—C41.365 (7)C11—H11C0.98
C3—N21.435 (6)C12—O21.437 (9)
C4—C51.378 (7)C12—H12A0.99
C4—H40.95C12—H12B0.99
C5—N11.348 (6)N2—N2ii1.229 (8)
C5—H50.95N4—N4iii1.156 (9)
C6—N31.342 (7)O1—H1A0.82 (2)
C6—C71.378 (7)O1—H1B0.833 (19)
C6—H60.95O2—H2A0.84
O1i—Ni1—O1180.00 (19)C6—C7—H7120.9
O1i—Ni1—N389.33 (15)C7—C8—C9119.9 (5)
O1—Ni1—N390.68 (15)C7—C8—N4114.7 (5)
O1i—Ni1—N3i90.67 (15)C9—C8—N4125.3 (6)
O1—Ni1—N3i89.33 (15)C8—C9—C10118.3 (6)
N3—Ni1—N3i180.0 (2)C8—C9—H9120.9
O1i—Ni1—N190.79 (13)C10—C9—H9120.9
O1—Ni1—N189.21 (13)N3—C10—C9122.7 (5)
N3—Ni1—N189.97 (15)N3—C10—H10118.7
N3i—Ni1—N190.03 (15)C9—C10—H10118.7
O1i—Ni1—N1i89.21 (13)C12—C11—H11A109.5
O1—Ni1—N1i90.79 (13)C12—C11—H11B109.5
N3—Ni1—N1i90.03 (15)H11A—C11—H11B109.5
N3i—Ni1—N1i89.97 (15)C12—C11—H11C109.5
N1—Ni1—N1i180.0 (2)H11A—C11—H11C109.5
N1—C1—C2123.7 (4)H11B—C11—H11C109.5
N1—C1—H1118.1O2—C12—C11111.0 (7)
C2—C1—H1118.1O2—C12—H12A109.4
C1—C2—C3118.6 (5)C11—C12—H12A109.4
C1—C2—H2120.7O2—C12—H12B109.4
C3—C2—H2120.7C11—C12—H12B109.4
C4—C3—C2118.7 (4)H12A—C12—H12B108.0
C4—C3—N2125.3 (4)C1—N1—C5116.3 (4)
C2—C3—N2116.0 (5)C1—N1—Ni1123.2 (3)
C3—C4—C5119.2 (5)C5—N1—Ni1120.5 (3)
C3—C4—H4120.4N2ii—N2—C3114.1 (5)
C5—C4—H4120.4C10—N3—C6117.1 (4)
N1—C5—C4123.5 (5)C10—N3—Ni1121.6 (4)
N1—C5—H5118.2C6—N3—Ni1121.3 (3)
C4—C5—H5118.2N4iii—N4—C8110.5 (7)
N3—C6—C7123.7 (5)Ni1—O1—H1A126 (4)
N3—C6—H6118.1Ni1—O1—H1B124 (4)
C7—C6—H6118.1H1A—O1—H1B103 (5)
C8—C7—C6118.2 (5)C12—O2—H2A109.5
C8—C7—H7120.9
Symmetry codes: (i) x, y+1, z+2; (ii) x, y+1, z+1; (iii) x, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2iv0.83 (4)1.91 (4)2.703 (6)161 (5)
Symmetry code: (iv) x1/2, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.83 (4)1.91 (4)2.703 (6)161 (5)
Symmetry code: (i) x1/2, y+3/2, z+1/2.
 

Acknowledgements

Diffraction data were collected at the SCXRD laboratory from the Servicio Interdepartamental de Investigación (SIdI, UAM). Financial support received from the Spanish Ministerio de Economía y Competitividad (CTQ2011-23066) and the Comunidad de Madrid (S2009/MAT-1467) is gratefully acknowledged.

References

First citationAijaz, A., Sañudo, E. C. & Bharadwaj, P. K. (2011). Cryst. Growth Des. 11, 1122–1134.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarlucci, L., Ciani, G., Proserpio, D. M. & Rizzato, S. (2003). CrystEngComm, 5, 190–199.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, S.-L., Lan, Y.-Q., Ma, J.-F., Yang, J., Wang, X.-H. & Su, Z.-M. (2007). Inorg. Chem. 46, 8283–8290.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNoro, S.-I., Kitagawa, S., Nakamura, T. & Wada, T. (2005). Inorg. Chem. 44, 3960–3971.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNoro, S.-I., Kitaura, R., Kitagawa, S., Akutagawa, T. & Nakamura, T. (2006). Inorg. Chem. 45, 8990–8997.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPan, F., Wu, J., Hou, H. & Fan, Y. (2010). Cryst. Growth Des. 10, 3835–3837.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages m314-m315
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds