metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages m335-m336

Crystal structure of bis­­(propane-1,3-di­ammonium) hexa­fluorido­aluminate fluoride trihydrate

aUniversité de Carthage, Faculté des Sciences de Bizerte, UR11ES30, 7021 Jarzouna, Tunisia, and bDepartment of Chemistry, Girls College of Science, University of Dammam, PO Box 838, Dammam 31113, Saudi Arabia
*Correspondence e-mail: amor.benali@fsb.rnu.tn

Edited by A. M. Chippindale, University of Reading, England (Received 13 June 2014; accepted 19 August 2014; online 30 August 2014)

The title compound, (C3H10N2)2[AlF6]F·3H2O, was obtained using the solvothermal method with aluminium hydroxide, HF and propane-1,3-di­amine as precursors in ethanol as solvent. The structure consists of isolated [AlF6]3− octa­hedra, diprotonated propane-1,3-di­amine cations [(H2dap)2+], free fluoride ions and water mol­ecules of solvation. The Al—F bond lengths in the octa­hedral [AlF6]3− anions range from 1.7690 (19) to 1.8130 (19) Å, with an average value of 1.794 Å. Each [AlF6]3− anion is surrounded by three water mol­ecules and by six diprotonated amine cations. The `free' fluoride ion is hydrogen bonded to four H atoms belonging to four dications and has a distorted tetra­hedral geometry. The three water mol­ecules are connected by hydrogen bonds, forming trimers that connect the AlF6 octa­hedra and dications into a three-dimensional framework.

1. Related literature

For general background to hybrid aluminates, their syntheses and applications, see: Ben Ali et al. (2007[Ben Ali, A., Dang, M. T., Grenèche, J.-M., Hémon-Ribaud, A., Leblanc, M. & Maisonneuve, V. (2007). J. Solid State Chem. 180, 1911-1917.], 2009[Ben Ali, A., Grenèche, J.-M., Leblanc, M. & Maisonneuve, V. (2009). Solid State Sci. 11, 1631-1638.]); Lhoste et al. (2009[Lhoste, J., Gervier, R., Maisonneuve, V., Leblanc, M. & Adil, K. (2009). Solid State Sci. 11, 1582-1586.]); Adil et al. (2010[Adil, K., Maisonneuve, V., Leblanc, M. & Lightfoot, P. (2010). Dalton Trans. 39, 5983-5993.]); Martineau et al. (2012[Martineau, C., Cadiau, A. & Adil, K. (2012). Dalton Trans. 41, 6232-6241.]); Cadiau et al. (2013[Cadiau, A., Auguste, S., Taulelle, F., Martinau, C. & Adil, K. (2013). CrystEngComm, 15, 3430-3435.]). For a review of hydrogen-bonding inter­actions, see: Steiner (1998[Steiner, T. (1998). Acta Cryst. B54, 456-463.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • (C3H10N2)2[AlF6]F·3H2O

  • Mr = 366.31

  • Triclinic, [P \overline 1]

  • a = 9.825 (2) Å

  • b = 9.974 (3) Å

  • c = 10.697 (2) Å

  • α = 70.01 (2)°

  • β = 67.89 (2)°

  • γ = 59.77 (1)°

  • V = 823.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 298 K

  • 0.61 × 0.13 × 0.08 mm

2.2. Data collection

  • Siemens AED2 diffractometer

  • Absorption correction: gaussian (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.968, Tmax = 0.985

  • 3411 measured reflections

  • 3411 independent reflections

  • 3046 reflections with I > 2σ(I)

  • 3 standard reflections every 120 min intensity decay: 4%

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.183

  • S = 1.05

  • 3411 reflections

  • 215 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯F7 0.89 1.81 2.696 (3) 171
N1—H1B⋯F3i 0.89 1.79 2.663 (3) 166
N1—H1C⋯F2ii 0.89 2.08 2.826 (3) 141
N1—H1C⋯F3ii 0.89 2.09 2.796 (3) 136
N2—H2A⋯F4iii 0.89 2.08 2.657 (3) 122
N2—H2B⋯OW2iv 0.89 2.11 2.804 (3) 134
N2—H2C⋯F7v 0.89 2.04 2.724 (3) 132
N3—H3A⋯F7 0.89 1.79 2.677 (3) 176
N3—H3B⋯F5 0.89 2.00 2.792 (3) 148
N3—H3C⋯F5iii 0.89 1.89 2.753 (4) 162
N4—H4A⋯F2ii 0.89 1.90 2.757 (3) 161
N4—H4B⋯F1vi 0.89 1.92 2.776 (4) 162
N4—H4C⋯F7ii 0.89 1.84 2.724 (3) 169
OW1—H11⋯F5 0.92 1.85 2.743 (3) 161
OW1—H12⋯OW3vii 0.95 1.85 2.789 (5) 173
OW2—H21⋯F1 0.74 2.27 (5) 2.943 (3) 152 (5)
OW2—H22⋯OW1viii 0.82 (7) 1.98 2.785 (5) 170
OW3—H31⋯F6vi 0.82 (4) 1.79 (4) 2.612 (4) 176
OW3—H32⋯F1ii 0.81 (7) 1.99 (7) 2.783 (4) 167
Symmetry codes: (i) x, y, z+1; (ii) -x+2, -y, -z+1; (iii) -x+1, -y, -z+1; (iv) x-1, y+1, z+1; (v) -x+1, -y, -z+2; (vi) x, y+1, z; (vii) -x+1, -y+1, -z+1; (viii) -x+2, -y, -z.

Data collection: STADI4 (Stoe, 1998[Stoe (1998). STADI4 and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: STADI4; data reduction: X-RED (Stoe, 1998[Stoe (1998). STADI4 and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); molecular graphics: DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

Hybrid solids, containing both organic and inorganic entities, have diverse crystal structures which can influence their physicochemical properties. In type I solid hybrids, interactions between organic and inorganic networks are generally weak (e.g. hydrogen bonds or van der Waals' interactions), whilst in type II hybrids, covalent bonds are generally established between the metal of the inorganic moiety and the organic moiety. Type II hybrid materials usually exhibit better thermal stability than those of type I. Many chemical systems have been explored by conventional hydro- solvothermal synthesis or microwave heating. This work deals with a new aluminium fluoride salt of hybrid type I prepared under solvothermal conditions. Its structure contains isolated AlF6 distorted octahedra hydrogen bonded to propane-1,3-diamine dications and water molecules, together with fluoride ions which are also hydrogen bonded to the organic dications (Figures 2-4).

Related literature top

For general background to hybrid aluminates, their syntheses and applications, see: Ben Ali et al. (2007, 2009); Lhoste et al. (2009); Adil et al. (2010); Martineau et al. (2012); Cadiau et al. (2013). For a review of hydrogen-bonding interactions, see: Steiner (1998).

Experimental top

The title compound was prepared from a starting mixture of Al(OH)3 (0.75 g) in 40% HF (0.8 ml) and ethanol (5 ml). 1,3- diaminopropane (1 ml) was added and mild hydrothermal conditions (463 K) were applied in a Teflon lined autoclave (25 mL). The resulting product was washed with ethanol and dried in air giving colorless single crystals of the title compound.

Refinement top

All non-hydrogen atoms were refined with anisotropic displacement parameters. The H atoms of the water molecules were located using difference Fourier methods and their positional and isotropic displacement parameters refined. The H atoms of the organic dications were included in the refinement at calculated positions and refined with a common isotropic thermal parameter.

Computing details top

Data collection: STADI4 (Stoe, 1998); cell refinement: STADI4 (Stoe, 1998); data reduction: X-RED (Stoe, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 2012); molecular graphics: DIAMOND (Brandenburg, 2001) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. View of the structure of (I) along the [010] axis.
[Figure 2] Fig. 2. The environment of the AlF6 octahedron.
[Figure 3] Fig. 3. The environment of the isolated fluoride anion.
[Figure 4] Fig. 4. The environment of water molecules
Bis(propane-1,3-diammonium) hexafluoridoaluminate fluoride trihydrate top
Crystal data top
(C3H10N2)2[AlF6]F·3H2OZ = 2
Mr = 366.31F(000) = 388
Triclinic, P1Dx = 1.477 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.825 (2) ÅCell parameters from 32 reflections
b = 9.974 (3) Åθ = 5.0–20.0°
c = 10.697 (2) ŵ = 0.21 mm1
α = 70.01 (2)°T = 298 K
β = 67.89 (2)°Platelet, colorless
γ = 59.77 (1)°0.61 × 0.13 × 0.08 mm
V = 823.8 (3) Å3
Data collection top
Siemens AED2
diffractometer
3046 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 27.6°, θmin = 2.1°
2θ/ω scanh = 1112
Absorption correction: gaussian
(SADABS; Sheldrick, 1996)
k = 1112
Tmin = 0.968, Tmax = 0.985l = 013
3411 measured reflections3 standard reflections every 120 min
3411 independent reflections intensity decay: 4%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.183H atoms treated by a mixture of independent and constrained refinement
S = 1.05 ' w = 1/[σ2(Fo2) + (0.1177P)2 + 0.6344P]
where P = (Fo2 + 2Fc2)/3'
3411 reflections(Δ/σ)max = 0.009
215 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
(C3H10N2)2[AlF6]F·3H2Oγ = 59.77 (1)°
Mr = 366.31V = 823.8 (3) Å3
Triclinic, P1Z = 2
a = 9.825 (2) ÅMo Kα radiation
b = 9.974 (3) ŵ = 0.21 mm1
c = 10.697 (2) ÅT = 298 K
α = 70.01 (2)°0.61 × 0.13 × 0.08 mm
β = 67.89 (2)°
Data collection top
Siemens AED2
diffractometer
3046 reflections with I > 2σ(I)
Absorption correction: gaussian
(SADABS; Sheldrick, 1996)
Rint = 0.000
Tmin = 0.968, Tmax = 0.9853 standard reflections every 120 min
3411 measured reflections intensity decay: 4%
3411 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.183H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.62 e Å3
3411 reflectionsΔρmin = 0.54 e Å3
215 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al10.83033 (8)0.20234 (8)0.29308 (6)0.0238 (2)
F11.0025 (2)0.3849 (2)0.2527 (3)0.0678 (6)
F20.9474 (2)0.1577 (3)0.35631 (17)0.0496 (5)
F30.9030 (2)0.1056 (3)0.12502 (16)0.0518 (5)
F40.7092 (2)0.2378 (3)0.2304 (2)0.0575 (5)
F50.6596 (2)0.0158 (2)0.3295 (2)0.0546 (5)
F60.7625 (3)0.2962 (3)0.4612 (2)0.0747 (8)
F70.80224 (19)0.13548 (18)0.76019 (15)0.0357 (4)
N10.86118 (18)0.02879 (18)0.8720 (2)0.0295 (4)
H1A0.85030.02430.82720.054 (2)*
H1B0.86780.02580.95670.054 (2)*
H1C0.95130.04290.82780.054 (2)*
N20.26017 (18)0.32258 (18)0.9923 (2)0.0333 (4)
H2A0.27470.23790.96900.054 (2)*
H2B0.19270.40940.94800.054 (2)*
H2C0.21780.31711.08250.054 (2)*
N30.6255 (3)0.0499 (3)0.5761 (2)0.0348 (5)
H3A0.67990.00920.64070.054 (2)*
H3B0.67380.00380.50320.054 (2)*
H3C0.52380.05990.60890.054 (2)*
N40.9607 (3)0.3445 (2)0.4048 (2)0.0326 (5)
H4A0.99320.30300.48230.054 (2)*
H4B0.95840.44030.37190.054 (2)*
H4C1.02960.28280.34330.054 (2)*
C10.7954 (3)0.3567 (3)0.4329 (3)0.0355 (5)
H1D0.75670.40930.35010.054 (2)*
H1E0.72140.41990.50310.054 (2)*
C20.7184 (3)0.1845 (3)0.8795 (3)0.0308 (5)
H2D0.71590.24680.78740.054 (2)*
H2E0.72840.24060.93140.054 (2)*
C30.6240 (3)0.2082 (3)0.5355 (3)0.0334 (5)
H3D0.56880.25970.61440.054 (2)*
H3E0.56460.27270.46520.054 (2)*
C40.5606 (3)0.1665 (3)0.9473 (3)0.0312 (5)
H4D0.54850.11280.89450.054 (2)*
H4E0.56280.10341.03910.054 (2)*
C50.7966 (3)0.1947 (3)0.4807 (3)0.0312 (5)
H5D0.85440.13430.55240.054 (2)*
H5E0.85350.13870.40460.054 (2)*
C60.4188 (3)0.3281 (3)0.9548 (3)0.0351 (5)
H6D0.41990.37201.02230.054 (2)*
H6E0.43130.39760.86630.054 (2)*
OW10.6507 (3)0.2741 (3)0.1872 (3)0.0543 (6)
H110.658 (7)0.173 (3)0.216 (5)0.096 (17)*
H120.536 (3)0.334 (6)0.214 (6)0.12 (2)*
OW21.0850 (3)0.3475 (3)0.0480 (3)0.0480 (5)
OW30.6830 (3)0.5567 (4)0.7114 (3)0.0670 (8)
H211.053 (6)0.325 (5)0.020 (5)0.063 (14)*
H221.160 (6)0.322 (6)0.080 (5)0.073 (14)*
H310.712 (5)0.602 (5)0.633 (4)0.052 (10)*
H320.767 (7)0.507 (6)0.735 (6)0.090 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.0238 (3)0.0282 (4)0.0245 (3)0.0153 (3)0.0087 (2)0.0013 (2)
F10.0399 (10)0.0365 (9)0.1124 (18)0.0088 (8)0.0130 (11)0.0167 (10)
F20.0553 (10)0.0851 (13)0.0371 (8)0.0519 (10)0.0159 (7)0.0044 (8)
F30.0537 (10)0.0853 (14)0.0284 (8)0.0501 (10)0.0160 (7)0.0141 (8)
F40.0516 (11)0.0991 (16)0.0566 (11)0.0513 (11)0.0063 (8)0.0322 (10)
F50.0335 (9)0.0417 (9)0.0857 (14)0.0117 (7)0.0063 (9)0.0258 (9)
F60.0929 (17)0.117 (2)0.0379 (9)0.0847 (17)0.0185 (10)0.0246 (11)
F70.0399 (8)0.0398 (8)0.0357 (8)0.0209 (7)0.0141 (6)0.0054 (6)
N10.0270 (9)0.0363 (10)0.0326 (10)0.0193 (8)0.0110 (8)0.0020 (8)
N20.0315 (10)0.0368 (11)0.0344 (10)0.0175 (9)0.0079 (8)0.0058 (8)
N30.0325 (10)0.0493 (12)0.0352 (10)0.0257 (10)0.0110 (8)0.0065 (9)
N40.0341 (11)0.0329 (10)0.0366 (10)0.0194 (9)0.0113 (8)0.0027 (8)
C10.0297 (11)0.0318 (12)0.0465 (14)0.0128 (10)0.0151 (10)0.0035 (10)
C20.0329 (12)0.0322 (12)0.0343 (11)0.0206 (10)0.0095 (9)0.0027 (9)
C30.0271 (11)0.0391 (13)0.0379 (12)0.0158 (10)0.0099 (9)0.0071 (10)
C40.0307 (11)0.0317 (11)0.0367 (12)0.0184 (10)0.0101 (9)0.0031 (9)
C50.0249 (10)0.0349 (12)0.0374 (12)0.0144 (9)0.0082 (9)0.0082 (9)
C60.0303 (12)0.0337 (12)0.0475 (14)0.0162 (10)0.0118 (10)0.0086 (10)
OW10.0534 (13)0.0473 (12)0.0579 (13)0.0279 (11)0.0084 (11)0.0017 (10)
OW20.0400 (11)0.0468 (12)0.0585 (14)0.0144 (10)0.0093 (10)0.0217 (10)
OW30.0425 (13)0.0716 (17)0.0512 (14)0.0207 (12)0.0061 (11)0.0162 (12)
Geometric parameters (Å, º) top
Al1—F61.7690 (19)N3—H3B0.8900
Al1—F41.7832 (17)N3—H3C0.8900
Al1—F31.7929 (16)N4—C11.483 (3)
Al1—F11.803 (2)N4—H4A0.8900
Al1—F21.8126 (16)N4—H4B0.8900
Al1—F51.8130 (19)N4—H4C0.8900
F1—F32.499 (3)C1—C51.514 (3)
F1—F42.556 (3)C1—H1D0.9700
F1—F62.570 (4)C1—H1E0.9700
F1—F22.586 (3)C2—C41.518 (3)
F2—F32.507 (2)C2—H2D0.9700
F2—F52.527 (3)C2—H2E0.9700
F2—F62.529 (3)C3—C51.521 (3)
F3—F42.556 (2)C3—H3D0.9700
F3—F52.559 (3)C3—H3E0.9700
F4—F52.529 (3)C4—C61.513 (3)
F4—F62.529 (3)C4—H4D0.9700
F5—F62.522 (3)C4—H4E0.9700
F5—H111.85 (3)C5—H5D0.9700
N1—C21.481 (3)C5—H5E0.9700
N1—H1A0.8900C6—H6D0.9700
N1—H1B0.8900C6—H6E0.9700
N1—H1C0.8900OW1—H110.925 (19)
N2—C61.481 (3)OW1—H120.95 (2)
N2—H2A0.8900OW2—H210.74 (5)
N2—H2B0.8900OW2—H220.82 (5)
N2—H2C0.8900OW3—H310.83 (4)
N3—C31.482 (3)OW3—H320.81 (6)
N3—H3A0.8900
F6—Al1—F490.79 (10)H1A—N1—H1C109.5
F6—Al1—F3177.96 (9)H1B—N1—H1C109.5
F4—Al1—F391.25 (9)C6—N2—H2A109.5
F6—Al1—F192.04 (13)C6—N2—H2B109.5
F4—Al1—F190.93 (11)H2A—N2—H2B109.5
F3—Al1—F188.04 (11)C6—N2—H2C109.5
F6—Al1—F289.84 (9)H2A—N2—H2C109.5
F4—Al1—F2177.63 (11)H2B—N2—H2C109.5
F3—Al1—F288.11 (8)C3—N3—H3A109.5
F1—Al1—F291.33 (11)C3—N3—H3B109.5
F6—Al1—F589.49 (12)H3A—N3—H3B109.5
F4—Al1—F589.36 (10)C3—N3—H3C109.5
F3—Al1—F590.41 (11)H3A—N3—H3C109.5
F1—Al1—F5178.44 (10)H3B—N3—H3C109.5
F2—Al1—F588.36 (10)C1—N4—H4A109.5
F3—F1—F460.73 (8)C1—N4—H4B109.5
F3—F1—F689.25 (9)H4A—N4—H4B109.5
F4—F1—F659.11 (8)C1—N4—H4C109.5
F3—F1—F259.05 (7)H4A—N4—H4C109.5
F4—F1—F288.70 (8)H4B—N4—H4C109.5
F6—F1—F258.74 (8)N4—C1—C5111.0 (2)
F3—F2—F561.11 (8)N4—C1—H1D109.4
F3—F2—F690.00 (8)C5—C1—H1D109.4
F5—F2—F659.83 (8)N4—C1—H1E109.4
F3—F2—F158.74 (8)C5—C1—H1E109.4
F5—F2—F190.00 (8)H1D—C1—H1E108.0
F6—F2—F160.32 (9)N1—C2—C4111.36 (18)
F1—F3—F262.21 (9)N1—C2—H2D109.4
F1—F3—F460.74 (8)C4—C2—H2D109.4
F2—F3—F490.47 (7)N1—C2—H2E109.4
F1—F3—F591.25 (8)C4—C2—H2E109.4
F2—F3—F559.82 (8)H2D—C2—H2E108.0
F4—F3—F559.25 (7)N3—C3—C5110.7 (2)
F5—F4—F659.81 (9)N3—C3—H3D109.5
F5—F4—F360.43 (8)C5—C3—H3D109.5
F6—F4—F388.90 (7)N3—C3—H3E109.5
F5—F4—F190.64 (8)C5—C3—H3E109.5
F6—F4—F160.72 (10)H3D—C3—H3E108.1
F3—F4—F158.52 (7)C6—C4—C2109.45 (19)
F6—F5—F460.10 (9)C6—C4—H4D109.8
F6—F5—F260.13 (8)C2—C4—H4D109.8
F4—F5—F290.65 (8)C6—C4—H4E109.8
F6—F5—F389.00 (9)C2—C4—H4E109.8
F4—F5—F360.32 (7)H4D—C4—H4E108.2
F2—F5—F359.07 (7)C1—C5—C3110.8 (2)
Al1—F5—H11120.3 (17)C1—C5—H5D109.5
F6—F5—H11160.8 (17)C3—C5—H5D109.5
F4—F5—H11120.6 (16)C1—C5—H5E109.5
F2—F5—H11101.0 (17)C3—C5—H5E109.5
F3—F5—H1176.8 (17)H5D—C5—H5E108.1
F5—F6—F260.03 (8)N2—C6—C4112.33 (19)
F5—F6—F460.09 (9)N2—C6—H6D109.1
F2—F6—F490.59 (8)C4—C6—H6D109.1
F5—F6—F190.47 (8)N2—C6—H6E109.1
F2—F6—F160.94 (8)C4—C6—H6E109.1
F4—F6—F160.16 (9)H6D—C6—H6E107.9
C2—N1—H1A109.5H11—OW1—H12100 (5)
C2—N1—H1B109.5H21—OW2—H22100 (5)
H1A—N1—H1B109.5H31—OW3—H32102 (5)
C2—N1—H1C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···F70.891.812.696 (3)171
N1—H1B···F3i0.891.792.663 (3)166
N1—H1C···F2ii0.892.082.826 (3)141
N1—H1C···F3ii0.892.092.796 (3)136
N2—H2A···F4iii0.892.082.657 (3)122
N2—H2B···OW2iv0.892.112.804 (3)134
N2—H2C···F7v0.892.042.724 (3)132
N3—H3A···F70.891.792.677 (3)176
N3—H3B···F50.892.002.792 (3)148
N3—H3C···F5iii0.891.892.753 (4)162
N4—H4A···F2ii0.891.902.757 (3)161
N4—H4B···F1vi0.891.922.776 (4)162
N4—H4C···F7ii0.891.842.724 (3)169
OW1—H11···F50.921.852.743 (3)161
OW1—H12···OW3vii0.951.852.789 (5)173
OW2—H21···F10.742.27 (5)2.943 (3)152 (5)
OW2—H22···OW1viii0.82 (7)1.982.785 (5)170
OW3—H31···F6vi0.82 (4)1.79 (4)2.612 (4)176
OW3—H32···F1ii0.81 (7)1.99 (7)2.783 (4)167
Symmetry codes: (i) x, y, z+1; (ii) x+2, y, z+1; (iii) x+1, y, z+1; (iv) x1, y+1, z+1; (v) x+1, y, z+2; (vi) x, y+1, z; (vii) x+1, y+1, z+1; (viii) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···F70.891.812.696 (3)171
N1—H1B···F3i0.891.792.663 (3)166
N1—H1C···F2ii0.892.082.826 (3)141
N1—H1C···F3ii0.892.092.796 (3)136
N2—H2A···F4iii0.892.082.657 (3)122
N2—H2B···OW2iv0.892.112.804 (3)134
N2—H2C···F7v0.892.042.724 (3)132
N3—H3A···F70.891.792.677 (3)176
N3—H3B···F50.892.002.792 (3)148
N3—H3C···F5iii0.891.892.753 (4)162
N4—H4A···F2ii0.891.902.757 (3)161
N4—H4B···F1vi0.891.922.776 (4)162
N4—H4C···F7ii0.891.842.724 (3)169
OW1—H11···F50.921.852.743 (3)161
OW1—H12···OW3vii0.951.852.789 (5)173
OW2—H21···F10.742.27 (5)2.943 (3)152 (5)
OW2—H22···OW1viii0.82 (7)1.982.785 (5)170
OW3—H31···F6vi0.82 (4)1.79 (4)2.612 (4)176
OW3—H32···F1ii0.81 (7)1.99 (7)2.783 (4)167
Symmetry codes: (i) x, y, z+1; (ii) x+2, y, z+1; (iii) x+1, y, z+1; (iv) x1, y+1, z+1; (v) x+1, y, z+2; (vi) x, y+1, z; (vii) x+1, y+1, z+1; (viii) x+2, y, z.
 

Acknowledgements

The authors are indebted to Dr V. Maisonneuve (University of Le Mans) for the data collection.

References

First citationAdil, K., Maisonneuve, V., Leblanc, M. & Lightfoot, P. (2010). Dalton Trans. 39, 5983–5993.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBen Ali, A., Dang, M. T., Grenèche, J.-M., Hémon-Ribaud, A., Leblanc, M. & Maisonneuve, V. (2007). J. Solid State Chem. 180, 1911–1917.  Web of Science CSD CrossRef CAS Google Scholar
First citationBen Ali, A., Grenèche, J.-M., Leblanc, M. & Maisonneuve, V. (2009). Solid State Sci. 11, 1631–1638.  CAS Google Scholar
First citationBrandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCadiau, A., Auguste, S., Taulelle, F., Martinau, C. & Adil, K. (2013). CrystEngComm, 15, 3430–3435.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLhoste, J., Gervier, R., Maisonneuve, V., Leblanc, M. & Adil, K. (2009). Solid State Sci. 11, 1582–1586.  Web of Science CSD CrossRef CAS Google Scholar
First citationMartineau, C., Cadiau, A. & Adil, K. (2012). Dalton Trans. 41, 6232–6241.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (1998). Acta Cryst. B54, 456–463.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe (1998). STADI4 and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages m335-m336
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds