organic compounds
Z)-2,3-dichloro-1,4-bis(4-methoxyphenyl)but-2-ene-1,4-dione
of (aDepartment of Chemistry, Indian Institute of Technology Delhi, Hauzkhas, New Delhi 110 016, India, and bDepartment of Chemistry, St Stephen's College, University Enclave, Delhi 110 007, India
*Correspondence e-mail: rktittaliitd@nitkkr.ac.in
The title compound, C18H14Cl2O4, adopts a Z conformation around the cental C=C bond. The two aromatic rings of the molecule are nearly perpendicular to each other, with a dihedral angle between of 86.22 (14)°. The methoxy substituents lie close to the plane of the attached benzene rings. The C(ar)—C(ar)—O—C(Me) torsion angles are −2.4 (7) and 7.5 (6)°. Weak C—H⋯O interactions link the molecules forming a three-dimensional network. The crystal packing also displays short [3.160 (3) Å] Cl⋯O halogen-bonding contacts between molecules related by the screw axis. The structure exhibits disorder of one carbonyl O atom with a refined occupancy ratio of 0.21 (6):0.79 (6).
Keywords: crystal structure; 2,3-dichlorobut-2-ene-1,4-dione; dichloromethyl radical; CuCl/bpy; trichloromethyl groups; stereoselectivity.
CCDC reference: 1019996
1. Related literature
For a review of radical reactions, see: Clark (2002); Ram & Tittal (2014a,b); Pintauer & Matyjaszewski (2008). For details of the synthesis, see: Kurosawa & Yamaguchi (1981); Ram et al. (2007). For halogen-bond interactions, see: Agarwal et al. (2014). For a similar structure and short aromatic contacts, see: Tittal et al. (2014).
2. Experimental
2.1. Crystal data
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2, PLATON (Spek, 2009) and publCIF (Westrip, 2010).
Supporting information
CCDC reference: 1019996
10.1107/S1600536814018790/fy2117sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814018790/fy2117Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814018790/fy2117Isup3.cml
Trichloromethyl groups are known to generate free radicals through homolysis of a C—Cl bond with relative ease in presence of radical initiators or UV-light or redox β-position of the radical centre leads to predominantly rearrangement and/or fragmentation reactions through the intermediate formation of contact ion pairs (Ram & Tittal, 2014a,b). It is important to mention here that 2,2,2-trichloroethylalkyl and trichloromethyl with no at β-position to the trichloromethyl around carbon carbon double bond undergoes 1,2-H shift under similar conditions through the intermediate copper-carbenoid species (Ram & Tittal, 2014b). Keeping in view the above discussion, we have decided to study the behavior of the radicals produced from substituted trichloromethyl compounds with no suitably located carbon-carbon double bond and or any hydrogen atom at the β-position of the radical centre in order to restrict the intermolecular or intramolecular addition; ATRP; rearrangement and/or fragmentation or 1,2-H shift. The major product obtained under such conditions is reported here.
salts (such as CuCl) or its complexes. A number of research papers are available that show radical intermediates produced from trichloromethyl group containing compounds. For example, CuCl or its complexes with bipyridine or bi- or tridendentate amine ligands have been used with trichloromethyl groups on a variety of organic substrates under non reducing conditions to generate free radicals. Such radicals have been reported to undergo intramolecular and intermolecular or addition reactions along with mono- and/or-di redution products (Clark, 2002; Ram et al.,2007). The radicals produced in these reactions can also acts as a radical initiator in ATRP (Pintauer & Matyjaszewski, 2008). However, the presence of relatively better at theIn the ═C9. The two aromatic rings are nearly perpendicular with an interplanar angle between the two phenyl rings of 86.22 (14)°. The two methoxy substituents lie close to the plane of the attached benzene rings. The C(ar)—C(ar)—O—C(Me) torsion angles are -2.4 (7)° (C21—C4—O1—C22) and 7.5 (6)° (C14—C9—O2—C20). The structure exhibits disorder of carbonyl group with a refined occupancy ratio of 0.21 (6): 0.79 (6).
(Fig. 1) the moleculecule adopts Z conformation about the C=C bond: C8The crystal packing is stablized by short halogen bond Cl···O interactions (Fig. 2) [3.160 (3)Å]. The
of also displays intermolecular C(ar)—H···O (Table 1, Fig. 3) short contacts.A two-neck round bottom flask fitted with a rubber septum was charged with CuCl (0.8 g, 0.008mol), 2,2'-bipyridine (bpy, 1.25 g, 0.008 mol) under continuous flow of nitrogen followed by addition of 1 mL dry dichloroethane (DCE) or benzene to ensure CuCl-bpy complex formation. To this reaction flask a solution of the 2,2,2-trichloro-1-(4-methoxy-phenyl)-ethanone (0.004 mol) in dry DCE or benzene (5 mL) was injected through the septum with the help of a syringe and the reaction mixture was heated at reflux with stirring under a slow and continuous flow of nitrogen. The completion of the reaction was indicated by TLC (1-2 h). The reaction mixture was cooled and filtered through a celite pad. The filtrate was evaporated under reduced pressure and purified on a silica gel
using n-hexane and ethylacetate mixture as the solvent to get title compound in 60 or 70% isolated yields in DCE or benzene, respectively. Suitable single crystals were obtained from a chloroform:henxane (3:7) mixture by slow evaporation at room temperature. Melting point 132°C, literature melting point 132-134°C (Kurosawa & Yamaguchi, 1981).H atoms were placed in calculated positions and refined using riding model, with C—H 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H. Methyl groups were refined as idealised rotating groups, with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C). Disorder was modeled for O4 atom of the carbonyl group over two sets of sites with minor:major occupancy ratio of 0.21 (6): 0.79 (6). Similarity restraints were used for the C═O bond distances using SADI. Anisotropic displacement parameters of the minor component of oxygen atom O4 were constrained to those of the major component using EADP.
Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), PLATON (Spek, 2009) and publCIF (Westrip, 2010).Fig. 1. Molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms. | |
Fig. 2. A view of the crystal packing of the title compound. A weak C—H···O hydrogen bond is shown as a dashed line. | |
Fig. 3. Part of the structure of the title compound showing O····Cl and C—H····O interactions. |
C18H14Cl2O4 | F(000) = 376 |
Mr = 365.19 | Dx = 1.430 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.877 (3) Å | Cell parameters from 5754 reflections |
b = 9.914 (3) Å | θ = 3.2–26.1° |
c = 10.294 (3) Å | µ = 0.40 mm−1 |
β = 110.565 (5)° | T = 273 K |
V = 848.3 (5) Å3 | Block, colorless |
Z = 2 | 0.31 × 0.23 × 0.14 mm |
Bruker SMART APEX CCD diffractometer | 3755 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.025 |
ϕ and ω scans | θmax = 28.3°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −11→11 |
Tmin = 0.860, Tmax = 1.000 | k = −12→13 |
9879 measured reflections | l = −13→13 |
4012 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.057 | w = 1/[σ2(Fo2) + (0.0741P)2 + 0.0555P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.134 | (Δ/σ)max < 0.001 |
S = 1.17 | Δρmax = 0.41 e Å−3 |
4012 reflections | Δρmin = −0.17 e Å−3 |
223 parameters | Absolute structure: Flack x determined using 1548 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
2 restraints | Absolute structure parameter: 0.01 (2) |
Primary atom site location: structure-invariant direct methods |
C18H14Cl2O4 | V = 848.3 (5) Å3 |
Mr = 365.19 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 8.877 (3) Å | µ = 0.40 mm−1 |
b = 9.914 (3) Å | T = 273 K |
c = 10.294 (3) Å | 0.31 × 0.23 × 0.14 mm |
β = 110.565 (5)° |
Bruker SMART APEX CCD diffractometer | 4012 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | 3755 reflections with I > 2σ(I) |
Tmin = 0.860, Tmax = 1.000 | Rint = 0.025 |
9879 measured reflections |
R[F2 > 2σ(F2)] = 0.057 | H-atom parameters constrained |
wR(F2) = 0.134 | Δρmax = 0.41 e Å−3 |
S = 1.17 | Δρmin = −0.17 e Å−3 |
4012 reflections | Absolute structure: Flack x determined using 1548 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
223 parameters | Absolute structure parameter: 0.01 (2) |
2 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.6776 (4) | 0.5542 (4) | 0.2160 (4) | 0.0447 (8) | |
C2 | 0.5707 (5) | 0.6341 (4) | 0.1270 (4) | 0.0443 (8) | |
C3 | 0.6859 (4) | 0.3333 (4) | 0.3536 (4) | 0.0424 (7) | |
C4 | 0.1894 (4) | 1.0044 (4) | 0.1824 (4) | 0.0456 (8) | |
C6 | 0.3256 (4) | 0.7652 (4) | 0.1360 (4) | 0.0420 (7) | |
C7 | 0.7162 (5) | 0.1437 (5) | 0.5065 (4) | 0.0505 (9) | |
H7 | 0.7053 | 0.1059 | 0.5854 | 0.061* | |
C8 | 0.7473 (4) | 0.2551 (4) | 0.2713 (3) | 0.0444 (8) | |
H8 | 0.7567 | 0.2925 | 0.1916 | 0.053* | |
C9 | 0.7798 (4) | 0.0673 (4) | 0.4242 (4) | 0.0449 (8) | |
C11 | 0.0916 (5) | 0.9011 (5) | 0.1102 (5) | 0.0544 (10) | |
H11 | −0.0196 | 0.9119 | 0.0769 | 0.065* | |
C12 | 0.1581 (4) | 0.7821 (4) | 0.0872 (4) | 0.0507 (9) | |
H12 | 0.0916 | 0.7125 | 0.0391 | 0.061* | |
C13 | 0.6700 (5) | 0.2740 (4) | 0.4710 (4) | 0.0494 (9) | |
H13 | 0.6271 | 0.3242 | 0.5261 | 0.059* | |
C14 | 0.7946 (5) | 0.1233 (4) | 0.3056 (4) | 0.0463 (8) | |
H14 | 0.8360 | 0.0725 | 0.2499 | 0.056* | |
C15 | 0.6357 (5) | 0.4749 (4) | 0.3229 (4) | 0.0535 (9) | |
O4A | 0.516 (5) | 0.509 (5) | 0.347 (7) | 0.088 (5) | 0.20 (6) |
O4B | 0.569 (3) | 0.5385 (17) | 0.390 (2) | 0.088 (5) | 0.80 (6) |
C16 | 0.3938 (5) | 0.6362 (4) | 0.1112 (5) | 0.0496 (9) | |
C18 | 0.4208 (4) | 0.8699 (4) | 0.2085 (4) | 0.0463 (8) | |
H18 | 0.5320 | 0.8598 | 0.2417 | 0.056* | |
C20 | 0.9065 (6) | −0.1371 (5) | 0.3997 (6) | 0.0724 (14) | |
H20A | 0.8372 | −0.1526 | 0.3055 | 0.109* | |
H20B | 0.9380 | −0.2221 | 0.4460 | 0.109* | |
H20C | 1.0004 | −0.0888 | 0.4003 | 0.109* | |
C21 | 0.3548 (4) | 0.9895 (4) | 0.2329 (4) | 0.0456 (8) | |
H21 | 0.4208 | 1.0587 | 0.2826 | 0.055* | |
C22 | 0.2043 (6) | 1.2268 (6) | 0.2784 (6) | 0.0742 (14) | |
H22A | 0.2795 | 1.2571 | 0.2367 | 0.111* | |
H22B | 0.2617 | 1.1972 | 0.3715 | 0.111* | |
H22C | 0.1337 | 1.2996 | 0.2800 | 0.111* | |
O1 | 0.1126 (4) | 1.1181 (3) | 0.2000 (4) | 0.0633 (8) | |
O2 | 0.8234 (4) | −0.0603 (3) | 0.4692 (3) | 0.0620 (8) | |
O3 | 0.3164 (4) | 0.5356 (4) | 0.0744 (6) | 0.0929 (14) | |
Cl1 | 0.62060 (13) | 0.74187 (12) | 0.01732 (11) | 0.0625 (3) | |
Cl2 | 0.87618 (12) | 0.54992 (12) | 0.22528 (13) | 0.0651 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0420 (17) | 0.0381 (17) | 0.0560 (19) | 0.0057 (16) | 0.0198 (15) | −0.0067 (16) |
C2 | 0.0487 (19) | 0.0387 (18) | 0.0471 (19) | −0.0001 (15) | 0.0186 (16) | −0.0032 (14) |
C3 | 0.0382 (16) | 0.0429 (19) | 0.0446 (17) | 0.0046 (15) | 0.0126 (14) | −0.0020 (14) |
C4 | 0.0460 (18) | 0.0446 (19) | 0.048 (2) | 0.0078 (15) | 0.0193 (16) | 0.0042 (15) |
C6 | 0.0404 (17) | 0.0397 (19) | 0.0452 (17) | 0.0031 (15) | 0.0141 (13) | 0.0032 (14) |
C7 | 0.052 (2) | 0.053 (2) | 0.049 (2) | −0.0062 (18) | 0.0214 (17) | 0.0025 (17) |
C8 | 0.0446 (18) | 0.048 (2) | 0.0401 (16) | 0.0033 (17) | 0.0146 (14) | −0.0021 (15) |
C9 | 0.0390 (16) | 0.0403 (19) | 0.0507 (19) | −0.0057 (15) | 0.0098 (15) | −0.0021 (15) |
C11 | 0.0343 (18) | 0.061 (3) | 0.064 (2) | 0.0039 (17) | 0.0122 (17) | −0.0033 (19) |
C12 | 0.0400 (18) | 0.050 (2) | 0.058 (2) | −0.0061 (16) | 0.0123 (16) | −0.0080 (17) |
C13 | 0.050 (2) | 0.052 (2) | 0.052 (2) | 0.0006 (17) | 0.0252 (16) | −0.0062 (17) |
C14 | 0.0454 (19) | 0.0433 (19) | 0.0496 (19) | 0.0016 (16) | 0.0161 (16) | −0.0090 (16) |
C15 | 0.060 (2) | 0.049 (2) | 0.056 (2) | 0.0144 (19) | 0.0261 (19) | 0.0014 (18) |
O4A | 0.131 (10) | 0.066 (5) | 0.099 (8) | 0.046 (6) | 0.079 (8) | 0.018 (5) |
O4B | 0.131 (10) | 0.066 (5) | 0.099 (8) | 0.046 (6) | 0.079 (8) | 0.018 (5) |
C16 | 0.0439 (19) | 0.0402 (19) | 0.061 (2) | 0.0017 (16) | 0.0140 (17) | −0.0052 (17) |
C18 | 0.0321 (16) | 0.047 (2) | 0.055 (2) | 0.0029 (15) | 0.0091 (15) | 0.0002 (16) |
C20 | 0.073 (3) | 0.046 (2) | 0.086 (3) | 0.019 (2) | 0.013 (2) | −0.001 (2) |
C21 | 0.0411 (18) | 0.0391 (18) | 0.053 (2) | −0.0010 (15) | 0.0124 (16) | −0.0070 (15) |
C22 | 0.074 (3) | 0.060 (3) | 0.089 (3) | 0.014 (3) | 0.029 (3) | −0.018 (3) |
O1 | 0.0521 (16) | 0.0538 (19) | 0.083 (2) | 0.0161 (14) | 0.0219 (15) | −0.0103 (16) |
O2 | 0.072 (2) | 0.0416 (16) | 0.0703 (19) | 0.0056 (14) | 0.0220 (15) | 0.0056 (13) |
O3 | 0.0590 (18) | 0.050 (2) | 0.166 (4) | −0.0067 (17) | 0.035 (2) | −0.032 (2) |
Cl1 | 0.0694 (6) | 0.0620 (6) | 0.0619 (6) | 0.0065 (6) | 0.0302 (5) | 0.0126 (5) |
Cl2 | 0.0461 (5) | 0.0549 (6) | 0.0968 (8) | 0.0105 (5) | 0.0284 (5) | 0.0012 (6) |
C1—C2 | 1.326 (5) | C9—O2 | 1.356 (5) |
C1—C15 | 1.502 (6) | C11—H11 | 0.9300 |
C1—Cl2 | 1.732 (3) | C11—C12 | 1.377 (6) |
C2—C16 | 1.521 (5) | C12—H12 | 0.9300 |
C2—Cl1 | 1.722 (4) | C13—H13 | 0.9300 |
C3—C8 | 1.393 (5) | C14—H14 | 0.9300 |
C3—C13 | 1.395 (6) | C15—O4A | 1.219 (13) |
C3—C15 | 1.473 (6) | C15—O4B | 1.229 (8) |
C4—C11 | 1.379 (6) | C16—O3 | 1.195 (5) |
C4—C21 | 1.383 (5) | C18—H18 | 0.9300 |
C4—O1 | 1.362 (5) | C18—C21 | 1.384 (6) |
C6—C12 | 1.402 (5) | C20—H20A | 0.9600 |
C6—C16 | 1.476 (5) | C20—H20B | 0.9600 |
C6—C18 | 1.380 (5) | C20—H20C | 0.9600 |
C7—H7 | 0.9300 | C20—O2 | 1.417 (6) |
C7—C9 | 1.395 (6) | C21—H21 | 0.9300 |
C7—C13 | 1.367 (6) | C22—H22A | 0.9600 |
C8—H8 | 0.9300 | C22—H22B | 0.9600 |
C8—C14 | 1.380 (6) | C22—H22C | 0.9600 |
C9—C14 | 1.389 (6) | C22—O1 | 1.419 (6) |
C2—C1—C15 | 121.2 (3) | C7—C13—H13 | 119.4 |
C2—C1—Cl2 | 121.4 (3) | C8—C14—C9 | 119.3 (3) |
C15—C1—Cl2 | 117.1 (3) | C8—C14—H14 | 120.4 |
C1—C2—C16 | 122.9 (4) | C9—C14—H14 | 120.4 |
C1—C2—Cl1 | 122.5 (3) | C3—C15—C1 | 121.4 (3) |
C16—C2—Cl1 | 114.6 (3) | O4A—C15—C1 | 117 (2) |
C8—C3—C13 | 118.3 (3) | O4A—C15—C3 | 116 (2) |
C8—C3—C15 | 123.6 (4) | O4B—C15—C1 | 115.8 (6) |
C13—C3—C15 | 118.2 (3) | O4B—C15—C3 | 122.5 (6) |
C11—C4—C21 | 120.5 (4) | C6—C16—C2 | 117.7 (3) |
O1—C4—C11 | 115.9 (3) | O3—C16—C2 | 118.7 (4) |
O1—C4—C21 | 123.6 (4) | O3—C16—C6 | 123.6 (4) |
C12—C6—C16 | 119.3 (3) | C6—C18—H18 | 119.2 |
C18—C6—C12 | 118.4 (3) | C6—C18—C21 | 121.6 (3) |
C18—C6—C16 | 122.3 (3) | C21—C18—H18 | 119.2 |
C9—C7—H7 | 120.0 | H20A—C20—H20B | 109.5 |
C13—C7—H7 | 120.0 | H20A—C20—H20C | 109.5 |
C13—C7—C9 | 119.9 (4) | H20B—C20—H20C | 109.5 |
C3—C8—H8 | 119.3 | O2—C20—H20A | 109.5 |
C14—C8—C3 | 121.3 (4) | O2—C20—H20B | 109.5 |
C14—C8—H8 | 119.3 | O2—C20—H20C | 109.5 |
C14—C9—C7 | 120.0 (4) | C4—C21—C18 | 119.0 (3) |
O2—C9—C7 | 115.3 (3) | C4—C21—H21 | 120.5 |
O2—C9—C14 | 124.7 (4) | C18—C21—H21 | 120.5 |
C4—C11—H11 | 119.9 | H22A—C22—H22B | 109.5 |
C12—C11—C4 | 120.1 (3) | H22A—C22—H22C | 109.5 |
C12—C11—H11 | 119.9 | H22B—C22—H22C | 109.5 |
C6—C12—H12 | 119.8 | O1—C22—H22A | 109.5 |
C11—C12—C6 | 120.4 (4) | O1—C22—H22B | 109.5 |
C11—C12—H12 | 119.8 | O1—C22—H22C | 109.5 |
C3—C13—H13 | 119.4 | C4—O1—C22 | 119.3 (3) |
C7—C13—C3 | 121.2 (4) | C9—O2—C20 | 117.7 (4) |
C1—C2—C16—C6 | 121.1 (4) | C13—C7—C9—C14 | −0.6 (6) |
C1—C2—C16—O3 | −61.8 (6) | C13—C7—C9—O2 | 179.4 (4) |
C2—C1—C15—C3 | 137.3 (4) | C14—C9—O2—C20 | 7.5 (6) |
C2—C1—C15—O4A | −17 (4) | C15—C1—C2—C16 | −9.4 (6) |
C2—C1—C15—O4B | −48.1 (18) | C15—C1—C2—Cl1 | 171.9 (3) |
C3—C8—C14—C9 | 0.3 (6) | C15—C3—C8—C14 | 179.1 (4) |
C4—C11—C12—C6 | −0.5 (7) | C15—C3—C13—C7 | −179.1 (4) |
C6—C18—C21—C4 | −0.5 (6) | C16—C6—C12—C11 | 179.4 (4) |
C7—C9—C14—C8 | 0.6 (6) | C16—C6—C18—C21 | −178.9 (4) |
C7—C9—O2—C20 | −172.5 (4) | C18—C6—C12—C11 | 0.7 (6) |
C8—C3—C13—C7 | 1.3 (6) | C18—C6—C16—C2 | −18.6 (6) |
C8—C3—C15—C1 | −12.4 (6) | C18—C6—C16—O3 | 164.4 (5) |
C8—C3—C15—O4A | 142 (4) | C21—C4—C11—C12 | −0.3 (7) |
C8—C3—C15—O4B | 173.5 (19) | C21—C4—O1—C22 | −2.4 (7) |
C9—C7—C13—C3 | −0.4 (6) | O1—C4—C11—C12 | −180.0 (4) |
C11—C4—C21—C18 | 0.8 (6) | O1—C4—C21—C18 | −179.6 (4) |
C11—C4—O1—C22 | 177.3 (4) | O2—C9—C14—C8 | −179.4 (3) |
C12—C6—C16—C2 | 162.7 (4) | Cl1—C2—C16—C6 | −60.1 (4) |
C12—C6—C16—O3 | −14.2 (7) | Cl1—C2—C16—O3 | 117.0 (5) |
C12—C6—C18—C21 | −0.2 (6) | Cl2—C1—C2—C16 | 177.2 (3) |
C13—C3—C8—C14 | −1.3 (5) | Cl2—C1—C2—Cl1 | −1.5 (5) |
C13—C3—C15—C1 | 168.0 (4) | Cl2—C1—C15—C3 | −49.0 (5) |
C13—C3—C15—O4A | −38 (4) | Cl2—C1—C15—O4A | 157 (4) |
C13—C3—C15—O4B | −6.1 (19) | Cl2—C1—C15—O4B | 125.5 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···O4Ai | 0.93 | 2.49 | 3.23 (3) | 137 |
C7—H7···O4Bi | 0.93 | 2.62 | 3.245 (9) | 125 |
C12—H12···O1ii | 0.93 | 2.66 | 3.488 (5) | 149 |
C14—H14···O1iii | 0.93 | 2.72 | 3.363 (5) | 127 |
Symmetry codes: (i) −x+1, y−1/2, −z+1; (ii) −x, y−1/2, −z; (iii) x+1, y−1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···O4Ai | 0.93 | 2.49 | 3.23 (3) | 136.7 |
C7—H7···O4Bi | 0.93 | 2.62 | 3.245 (9) | 124.9 |
C12—H12···O1ii | 0.93 | 2.66 | 3.488 (5) | 148.5 |
C14—H14···O1iii | 0.93 | 2.72 | 3.363 (5) | 127.2 |
Symmetry codes: (i) −x+1, y−1/2, −z+1; (ii) −x, y−1/2, −z; (iii) x+1, y−1, z. |
Footnotes
‡Present address: Departmentof Chemistry, National Institute of Technology, Kurukshetra, Haryana 136 119, India.
Acknowledgements
The authors are thankful to Shailesh Upreti for providing assistance in solving the X-ray structure.
References
Agarwal, P., Mishra, P., Gupta, N., Neelam, , Sahoo, P. & Kumar, S. (2014). Acta Cryst. E70, o418. Google Scholar
Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Clark, A. J. (2002). Chem. Soc. Rev. 31, 1–11. Web of Science CrossRef PubMed CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kurosawa, K. & Yamaguchi, K. (1981). Bull. Chem. Soc. Jpn, 54, 1757–1760. CrossRef CAS Web of Science Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pintauer, T. & Matyjaszewski, K. (2008). Chem. Soc. Rev. 37, 1087–1097. Web of Science CrossRef PubMed CAS Google Scholar
Ram, R. N. & Tittal, R. K. (2014a). Tetrahedron Lett. 55, 4448–4451. Web of Science CrossRef CAS Google Scholar
Ram, R. N. & Tittal, R. K. (2014b). Tetrahedron Lett. 55, 4342–4345. Web of Science CrossRef CAS Google Scholar
Ram, R. N., Tittal, R. K. & Upreti, S. (2007). Tetrahedron Lett. 48, 7994–7997. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tittal, R. K., Kumar, S. & Ram, R. N. (2014). Acta Cryst. E70, o861–o862. CSD CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.