organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1073-o1074

Crystal structure of 2,5-di­methyl-3-(3-methyl­phenyl­sulfon­yl)-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

Edited by L. Fabian, University of East Anglia, England (Received 7 August 2014; accepted 27 August 2014; online 30 August 2014)

In the title compound, C17H16O3S, the dihedral angle between the plane of the benzo­furan ring system [r.m.s. deviation = 0.010 (1) Å] and that of the 3-methyl­phenyl ring is 79.09 (5)°. Intra­molecular C—H⋯O hydrogen bonds are observed. In the crystal, mol­ecules are connected into a chain along the c-axis direction by two different pairs of inversion-generated inter­actions: C—H⋯π hydrogen bonds between the methyl groups and the benzene rings of the 3-methyl­phenyl fragments and ππ inter­actions between the benzene and furan rings of neighbouring mol­ecules [centroid–centroid distance = 3.673 (2) Å].

1. Related literature

For the pharmacological properties of compounds containing a benzo­furan moiety, see: Aslam et al. (2009[Aslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191-195.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Howlett et al. (1999[Howlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283-289.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]); Ono et al. (2002[Ono, M., Kung, M. P., Hou, C. & Kung, H. F. (2002). Nucl. Med. Biol. 29, 633-642.]). For natural products with a benzo­furan ring, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For the synthesis of the starting material, 2,5-dimethyl-3-(3-methyl­phenyl­sulfan­yl)-1-benzo­furan, see: Choi et al. (1999[Choi, H. D., Seo, P. J. & Son, B. W. (1999). J. Korean Chem. Soc. 43, 606-608.]). For a related structure, see: Choi et al. (2013[Choi, H. D., Seo, P. J. & Lee, U. (2013). Acta Cryst. E69, o817.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C17H16O3S

  • Mr = 300.36

  • Monoclinic, P 21 /n

  • a = 9.8769 (2) Å

  • b = 11.3190 (2) Å

  • c = 13.1320 (2) Å

  • β = 101.951 (1)°

  • V = 1436.29 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 173 K

  • 0.33 × 0.29 × 0.23 mm

2.1.2. Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.927, Tmax = 0.947

  • 13810 measured reflections

  • 3589 independent reflections

  • 2861 reflections with I > 2σ(I)

  • Rint = 0.035

2.1.3. Refinement

  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.128

  • S = 1.08

  • 3589 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C11–C16 3-methyl­phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10C⋯O3 0.98 2.34 3.078 (3) 131
C17—H17BCg1i 0.98 2.88 3.478 (2) 121
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Molecules containing a benzofuran ring show interesting pharmacological properties such as antibacterial and antifungal, antitumor and antiviral, antimicrobial activities (Aslam et al. 2009, Galal et al., 2009, Khan et al., 2005), and they are potential inhibitors of β-amyloid aggregation (Howlett et al., 1999, Ono et al., 2002). These benzofuran compounds are widely occurring in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our ongoing program of 3-arylsulfonyl-2,5-dimethyl-1-benzofuran derivatives containing 4-methylphenylsulfonyl substituent in 3-position (Choi et al., 2013), we report herein on the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.010 (1) Å from the least-squares plane defined by the nine constituent atoms. The 3-methylphenyl ring is essentially planar, with a mean deviation of 0.005 (1) Å from the least-squares plane defined by the six constituent atoms. The dihedral angle formed by the benzofuran ring system and the 3-methylphenyl ring is 79.09 (5)°. In the crystal structure (Fig. 2), molecules are linked along the c-axis direction by two different inversion-generated pairs of C–H···π hydrogen bonds (Table 1, Cg1 is the centroid of the C11-C16 3-methylphenyl ring), and ππ interactions between the benzene and furan rings of neighbouring molecules, with a Cg2···Cg3ii distance of 3.673 (2) Å and an interplanar distance of 3.570 (2) Å resulting in a slippage of 0.864 (2) Å (Cg2 and Cg3 are the centroids of the C2-C7 benzene ring and the C1/C2/C7/O1/C8 furan ring, respectively). In addition, intramolecular C–H···O hydrogen bonds (Table 1) are observed .

Related literature top

For the pharmacological properties of compounds containing a benzofuran moiety, see: Aslam et al. (2009); Galal et al. (2009); Howlett et al. (1999); Khan et al. (2005); Ono et al. (2002). For natural products with a benzofuran ring, see: Akgul & Anil (2003); Soekamto et al. (2003). For the synthesis of the starting material, 2,5-dimethyl-3-(3-methylphenylsulfanyl)-1-benzofuran, see: Choi et al. (1999). For a related structure, see: Choi et al. (2013).

Experimental top

The starting material 2,5-dimethyl-3-(3-methylphenylsulfanyl)-1-benzofuran was prepared by literature method (Choi et al. 1999). 3-Chloroperoxybenzoic acid (77%, 515 mg, 2.3 mmol) was added in small portions to a stirred solution of 2,5-dimethyl-3-(3-methylphenylsulfanyl)-1-benzofuran (295 mg, 1.1 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 8h, the mixture was washed with saturated sodium bicarbonate solution (2 X 20 mL) and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane-ethyl acetate, 4:1 v/v) to afford the title compound as a colorless solid [yield 73% (241 mg); m.p. 378-379 K; Rf = 0.43 (hexane-ethyl acetate, 4:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound (28 mg) in acetone (15 mL) at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.95 Å for aryl and 0.98 Å for methyl H atoms, Uiso (H) = 1.2Ueq (C) for aryl and 1.5Ueq (C) for methyl H atoms.The positions of methyl hydrogens were optimized using the SHELXL-97's command AFIX 137 (Sheldrick, 2008).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C–H···O, C–H···π and ππ interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) - x + 1, - y + 1, - z + 1; (ii) - x + 1, - y + 1, - z.]
2,5-Dimethyl-3-(3-methylphenylsulfonyl)-1-benzofuran top
Crystal data top
C17H16O3SF(000) = 632
Mr = 300.36Dx = 1.389 Mg m3
Monoclinic, P21/nMelting point = 378–379 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 9.8769 (2) ÅCell parameters from 3458 reflections
b = 11.3190 (2) Åθ = 2.4–25.7°
c = 13.1320 (2) ŵ = 0.23 mm1
β = 101.951 (1)°T = 173 K
V = 1436.29 (4) Å3Block, colourless
Z = 40.33 × 0.29 × 0.23 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3589 independent reflections
Radiation source: rotating anode2861 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.035
Detector resolution: 10.0 pixels mm-1θmax = 28.4°, θmin = 2.4°
ϕ and ω scansh = 1312
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1415
Tmin = 0.927, Tmax = 0.947l = 1717
13810 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: difference Fourier map
wR(F2) = 0.128H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0639P)2 + 0.4013P]
where P = (Fo2 + 2Fc2)/3
3589 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C17H16O3SV = 1436.29 (4) Å3
Mr = 300.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.8769 (2) ŵ = 0.23 mm1
b = 11.3190 (2) ÅT = 173 K
c = 13.1320 (2) Å0.33 × 0.29 × 0.23 mm
β = 101.951 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3589 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2861 reflections with I > 2σ(I)
Tmin = 0.927, Tmax = 0.947Rint = 0.035
13810 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.08Δρmax = 0.35 e Å3
3589 reflectionsΔρmin = 0.39 e Å3
193 parameters
Special details top

Experimental. 1H NMR (δ p.p.m., CDCl3, 400 Hz): 7.77-7.83 (m, 2H), 7.67 (s, 1H), 7.34-7.41 (m, 2H), 7.29 (d, J = 8.56 Hz, 1H), 7.10 (dd, J = 8.56 Hz and 1.72 Hz, 1H), 2.78 (s, 3H), 2.45 (s, 3H), 2.40 (s, 3H).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.29608 (4)0.36272 (4)0.17488 (3)0.02967 (14)
O10.66012 (13)0.37182 (11)0.09943 (10)0.0345 (3)
O20.20801 (13)0.46348 (11)0.14867 (10)0.0366 (3)
O30.24998 (14)0.24951 (11)0.13176 (10)0.0384 (3)
C10.45457 (18)0.39515 (16)0.14324 (12)0.0287 (4)
C20.52013 (17)0.51022 (15)0.14998 (12)0.0273 (4)
C30.48710 (18)0.62452 (15)0.17608 (13)0.0297 (4)
H30.40060.64080.19400.036*
C40.58250 (19)0.71390 (16)0.17537 (13)0.0306 (4)
C50.70909 (19)0.68878 (18)0.14708 (14)0.0356 (4)
H50.77340.75110.14680.043*
C60.74318 (19)0.57618 (17)0.11965 (14)0.0361 (4)
H60.82870.55970.10030.043*
C70.64635 (19)0.48979 (16)0.12196 (13)0.0306 (4)
C80.54295 (19)0.31645 (16)0.11373 (13)0.0315 (4)
C90.5504 (2)0.83842 (17)0.20414 (15)0.0385 (4)
H9A0.48610.87490.14580.058*
H9B0.63620.88450.21990.058*
H9C0.50820.83670.26540.058*
C100.5398 (2)0.18729 (17)0.09586 (16)0.0410 (5)
H10A0.60520.14850.15230.062*
H10B0.56600.17040.02930.062*
H10C0.44630.15740.09410.062*
C110.33565 (18)0.34750 (15)0.31193 (14)0.0293 (4)
C120.3862 (2)0.24005 (16)0.35446 (15)0.0350 (4)
H120.39970.17620.31070.042*
C130.4166 (2)0.22735 (18)0.46169 (15)0.0405 (5)
H130.45270.15490.49220.049*
C140.3941 (2)0.32033 (18)0.52383 (15)0.0383 (4)
H140.41470.31040.59730.046*
C150.34268 (18)0.42744 (16)0.48270 (14)0.0321 (4)
C160.31430 (18)0.44131 (16)0.37446 (14)0.0306 (4)
H160.28060.51460.34410.037*
C170.3154 (2)0.52658 (18)0.55131 (15)0.0387 (4)
H17A0.21580.53230.54880.058*
H17B0.34860.60090.52700.058*
H17C0.36410.51140.62300.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0298 (2)0.0263 (2)0.0322 (2)0.00279 (17)0.00464 (17)0.00376 (16)
O10.0356 (7)0.0348 (7)0.0345 (6)0.0044 (5)0.0105 (5)0.0018 (5)
O20.0326 (7)0.0328 (7)0.0437 (7)0.0038 (5)0.0062 (6)0.0015 (6)
O30.0415 (8)0.0308 (7)0.0403 (7)0.0082 (6)0.0027 (6)0.0085 (6)
C10.0305 (9)0.0286 (9)0.0259 (8)0.0005 (7)0.0036 (7)0.0013 (6)
C20.0276 (8)0.0302 (9)0.0230 (7)0.0000 (7)0.0026 (6)0.0015 (6)
C30.0278 (9)0.0307 (9)0.0301 (8)0.0001 (7)0.0050 (7)0.0002 (7)
C40.0318 (9)0.0306 (9)0.0272 (8)0.0003 (7)0.0008 (7)0.0040 (7)
C50.0327 (9)0.0371 (11)0.0367 (9)0.0059 (8)0.0066 (7)0.0085 (8)
C60.0315 (9)0.0431 (11)0.0355 (9)0.0018 (8)0.0109 (7)0.0062 (8)
C70.0340 (9)0.0333 (10)0.0247 (8)0.0047 (8)0.0064 (7)0.0024 (7)
C80.0349 (9)0.0317 (10)0.0268 (8)0.0014 (8)0.0035 (7)0.0018 (7)
C90.0408 (11)0.0325 (10)0.0415 (10)0.0034 (8)0.0066 (8)0.0004 (8)
C100.0458 (11)0.0337 (11)0.0427 (10)0.0065 (9)0.0075 (9)0.0075 (8)
C110.0277 (9)0.0279 (9)0.0330 (8)0.0063 (7)0.0078 (7)0.0021 (7)
C120.0384 (10)0.0289 (10)0.0391 (9)0.0042 (8)0.0112 (8)0.0014 (8)
C130.0472 (12)0.0335 (11)0.0416 (10)0.0008 (9)0.0115 (9)0.0056 (8)
C140.0392 (10)0.0424 (11)0.0348 (9)0.0034 (9)0.0110 (8)0.0037 (8)
C150.0263 (8)0.0358 (10)0.0357 (9)0.0053 (7)0.0098 (7)0.0051 (8)
C160.0282 (9)0.0282 (9)0.0359 (9)0.0032 (7)0.0079 (7)0.0016 (7)
C170.0403 (11)0.0411 (11)0.0363 (9)0.0004 (9)0.0115 (8)0.0036 (8)
Geometric parameters (Å, º) top
S1—O21.4324 (13)C9—H9B0.9800
S1—O31.4364 (13)C9—H9C0.9800
S1—C11.7399 (18)C10—H10A0.9800
S1—C111.7693 (18)C10—H10B0.9800
O1—C81.363 (2)C10—H10C0.9800
O1—C71.380 (2)C11—C161.385 (2)
C1—C81.359 (2)C11—C121.387 (3)
C1—C21.449 (2)C12—C131.385 (3)
C2—C71.390 (2)C12—H120.9500
C2—C31.394 (2)C13—C141.378 (3)
C3—C41.384 (2)C13—H130.9500
C3—H30.9500C14—C151.381 (3)
C4—C51.405 (3)C14—H140.9500
C4—C91.510 (3)C15—C161.399 (2)
C5—C61.385 (3)C15—C171.498 (3)
C5—H50.9500C16—H160.9500
C6—C71.372 (3)C17—H17A0.9800
C6—H60.9500C17—H17B0.9800
C8—C101.480 (3)C17—H17C0.9800
C9—H9A0.9800
O2—S1—O3119.24 (8)C4—C9—H9C109.5
O2—S1—C1107.84 (8)H9A—C9—H9C109.5
O3—S1—C1108.75 (9)H9B—C9—H9C109.5
O2—S1—C11108.50 (8)C8—C10—H10A109.5
O3—S1—C11107.42 (8)C8—C10—H10B109.5
C1—S1—C11104.08 (8)H10A—C10—H10B109.5
C8—O1—C7106.93 (14)C8—C10—H10C109.5
C8—C1—C2107.54 (16)H10A—C10—H10C109.5
C8—C1—S1126.36 (15)H10B—C10—H10C109.5
C2—C1—S1125.99 (13)C16—C11—C12121.31 (17)
C7—C2—C3119.19 (17)C16—C11—S1119.99 (14)
C7—C2—C1104.37 (15)C12—C11—S1118.70 (13)
C3—C2—C1136.45 (16)C13—C12—C11118.97 (17)
C4—C3—C2118.84 (17)C13—C12—H12120.5
C4—C3—H3120.6C11—C12—H12120.5
C2—C3—H3120.6C14—C13—C12119.69 (19)
C3—C4—C5119.88 (17)C14—C13—H13120.2
C3—C4—C9120.16 (17)C12—C13—H13120.2
C5—C4—C9119.95 (17)C13—C14—C15122.04 (18)
C6—C5—C4122.18 (17)C13—C14—H14119.0
C6—C5—H5118.9C15—C14—H14119.0
C4—C5—H5118.9C14—C15—C16118.42 (17)
C7—C6—C5116.23 (17)C14—C15—C17121.33 (17)
C7—C6—H6121.9C16—C15—C17120.24 (17)
C5—C6—H6121.9C11—C16—C15119.54 (17)
C6—C7—O1125.76 (17)C11—C16—H16120.2
C6—C7—C2123.67 (18)C15—C16—H16120.2
O1—C7—C2110.56 (16)C15—C17—H17A109.5
C1—C8—O1110.60 (16)C15—C17—H17B109.5
C1—C8—C10134.37 (18)H17A—C17—H17B109.5
O1—C8—C10115.02 (16)C15—C17—H17C109.5
C4—C9—H9A109.5H17A—C17—H17C109.5
C4—C9—H9B109.5H17B—C17—H17C109.5
H9A—C9—H9B109.5
O2—S1—C1—C8150.31 (15)C1—C2—C7—O10.07 (18)
O3—S1—C1—C819.69 (18)C2—C1—C8—O10.81 (19)
C11—S1—C1—C894.58 (16)S1—C1—C8—O1177.28 (12)
O2—S1—C1—C233.86 (17)C2—C1—C8—C10178.18 (19)
O3—S1—C1—C2164.48 (14)S1—C1—C8—C101.7 (3)
C11—S1—C1—C281.25 (16)C7—O1—C8—C10.77 (18)
C8—C1—C2—C70.53 (18)C7—O1—C8—C10178.44 (15)
S1—C1—C2—C7177.01 (12)O2—S1—C11—C1616.89 (17)
C8—C1—C2—C3179.26 (19)O3—S1—C11—C16147.04 (14)
S1—C1—C2—C32.8 (3)C1—S1—C11—C1697.75 (15)
C7—C2—C3—C41.3 (2)O2—S1—C11—C12162.26 (14)
C1—C2—C3—C4178.44 (18)O3—S1—C11—C1232.11 (17)
C2—C3—C4—C51.0 (3)C1—S1—C11—C1283.10 (15)
C2—C3—C4—C9179.47 (15)C16—C11—C12—C130.5 (3)
C3—C4—C5—C60.2 (3)S1—C11—C12—C13179.62 (15)
C9—C4—C5—C6179.74 (17)C11—C12—C13—C141.1 (3)
C4—C5—C6—C70.2 (3)C12—C13—C14—C150.5 (3)
C5—C6—C7—O1178.79 (16)C13—C14—C15—C160.7 (3)
C5—C6—C7—C20.1 (3)C13—C14—C15—C17178.39 (19)
C8—O1—C7—C6178.39 (17)C12—C11—C16—C150.7 (3)
C8—O1—C7—C20.41 (18)S1—C11—C16—C15178.42 (13)
C3—C2—C7—C60.9 (3)C14—C15—C16—C111.3 (3)
C1—C2—C7—C6178.90 (16)C17—C15—C16—C11177.82 (16)
C3—C2—C7—O1179.76 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C11–C16 3-methylphenyl ring.
D—H···AD—HH···AD···AD—H···A
C10—H10C···O30.982.343.078 (3)131
C17—H17B···Cg1i0.982.883.478 (2)121
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C11–C16 3-methylphenyl ring.
D—H···AD—HH···AD···AD—H···A
C10—H10C···O30.982.343.078 (3)131.2
C17—H17B···Cg1i0.982.883.478 (2)121.2
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The X-ray centre of the Gyeongsang National University is acknowledged for providing access to the single-crystal diffractometer.

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191–195.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J. & Lee, U. (2013). Acta Cryst. E69, o817.  CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J. & Son, B. W. (1999). J. Korean Chem. Soc. 43, 606–608.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHowlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283–289.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOno, M., Kung, M. P., Hou, C. & Kung, H. F. (2002). Nucl. Med. Biol. 29, 633–642.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1073-o1074
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds