metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages m326-m327

Crystal structure of bis­­(acetato-κO)di­aqua­(2,2′-bi­pyridine-κ2N,N′)manganese(II)

aNational Centre for Catalysis Research, Department of Chemistry, Indian Institute of Technology-Madras, Chennai 600 036, India
*Correspondence e-mail: selvam@iitm.ac.in

Edited by T. N. Guru Row, Indian Institute of Science, India (Received 6 June 2014; accepted 2 August 2014; online 13 August 2014)

In the title monomeric manganese(II) complex, [Mn(CH3COO)2(C10H8N2)(H2O)2], the metal ion is coordinated by a bidentate 2,2′-bi­pyridine (bpy) ligand, two water mol­ecules and two axial acetate anions, resulting in a highly distorted octa­hedral environment. The aqua ligands are stabilized by the formation of strong intra­molecular hydrogen bonds with the uncoordinated acetate O atoms, giving rise to pseudo-bridging arrangement of the terminal acetate groups. In the crystal, the mol­ecules form [010] zigzag chains via O—H⋯O hydrogen bonds involving the aqua ligands and acetate O atoms. Further, the water and bpy ligands are trans to each other, and are arranged in an off-set fashion showing inter­molecular ππ stacking between nearly parallel bi­py rings, the centroid–centroid separations being 3.8147 (12) and 3.9305 (13) Å.

1. Related literature

For complexes with the same ligands as the title complex, see: Chen et al. (1995[Chen, X. M., Tong, Y. X., Xu, Z. T. & Mak, T. C. W. (1995). J. Chem. Soc. Dalton Trans. pp. 4001-4004.]); Carballo et al. (2001[Carballo, R., Covelo, B., García-Martínez, E. & Vázquez-López, E. M. (2001). Acta Cryst. E57, m597-m599.]); Hu et al. (2011[Hu, S., Wen, S. P., Hu, H.-M. & Liu, L. (2011). Acta Cryst. E67, m718.]); Ye et al. (1998[Ye, B. H., Chen, G. M., Xue, G. Q. & Ji, L. N. (1998). J. Chem. Soc. Dalton Trans. pp. 2827-2831.]); Zhao et al. (2009[Zhao, N., Lian, Z., Deng, Y., Gu, Y., Li, X. & Zhang, J. (2009). Z. Kristallogr. New Cryst. Struct. 224, 323-324.]). For ionic radii, see: Shannon (1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Mn(C2H3O2)2(C10H8N2)(H2O)2]

  • Mr = 365.24

  • Monoclinic, P 21 /n

  • a = 12.8494 (8) Å

  • b = 8.1434 (5) Å

  • c = 15.5918 (10) Å

  • β = 98.926 (2)°

  • V = 1611.73 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.16 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.775, Tmax = 0.873

  • 11092 measured reflections

  • 2820 independent reflections

  • 2469 reflections with I > 2σ(I)

  • Rint = 0.023

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.076

  • S = 1.06

  • 2820 reflections

  • 226 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—O4 2.1634 (15)
Mn1—O1 2.1736 (15)
Mn1—O3 2.1918 (15)
Mn1—O2 2.2038 (16)
Mn1—N1 2.2679 (15)
Mn1—N2 2.2869 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1X⋯O6i 0.80 (3) 2.05 (3) 2.815 (2) 161 (3)
O2—H2X⋯O5 0.89 (3) 1.76 (3) 2.636 (2) 169 (2)
O3—H3X⋯O6 0.80 (3) 1.90 (3) 2.684 (2) 168 (3)
O3—H4X⋯O5ii 0.91 (3) 1.84 (3) 2.734 (2) 169 (3)
Symmetry codes: (i) -x, -y, -z+2; (ii) -x, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The co-existence of solvent and bpy molecules in certain metal complexes have been reported in several lanthanide (III) complexes containing bpy and carboxylate ligands, (Chen et al., 1995) while the transition metal ions complexes, e.g., CoII(bpy)(OAc)2(H2O)2, NiII(bpy)(OAc)2(H2O)2 and NiII(bpy)(pda)2(H2O)2 complexes with mixed bpy, acetate and solvate molecules, is also established (Ye et al., 1998; Carballo et al., 2001; Hu et al., 2011). We describe herein the crystal structure of divalent manganese complex, viz. MnII(bpy)(OAc)2(H2O)2 with 2,2'-bipyridine, acetate and solvate molecule as the coordinating ligands, and the intermolecular hydrogen bonding interaction between the coordinated acetates and the solvent molecules.

The crystal structure of the complex 1 is illustrated in Fig. 1. The metal ion in the title complex is coordinated by bidentate bpy ligand, two water molecules and two axial acetate anions coordinated trans to each other resulting in a highly distorted octahedral [MnN2O4] coordination geometry. The Mn—N bond lengths range from 2.2679 (15)–2.2869 (16) Å and the shortest Mn—OAc axial bonds range from 2.163 (15)–2.173 (15) Å, may partially be ascribed to the mutual strong coordination between the anionic ligands to the divalent manganese center, as evidenced by the fact that the pyridine ring coordinates to the metal atom in a non planar fashion with the torsion angle Mn(1)—N(1)—C(2)—C(3) = 170.8°. The Mn—Npy (2.2679 (15) Å); Mn—OAc (2.2038 (16) Å), and Mn—O(w) (2.1918 (15) Å) bonds in 1 are longer than that of the respective Co- and Ni-analogues, viz., CoII(bpy)(OAc)2(H2O)2 and NiII(bpy)(OAc)2(H2O)2, with symmetrical M—N bonds (Co—Npy= 2.122 (14) Å); Ni—Npy= 2.069 (2) Å). Similarly, the Mn—O(w) and Mn—OAc bonds in MnII(bpy)(OAc)2(H2O)2 are also longer than the corresponding Co- and Ni-analogues (Co—OAc = 2.097 (13) Å; Ni—OAc = 2.079 (2) Å); Co—O(w) = 2.125 (13) Å; Ni—O(w) = 2.082 (2) Å), revealing the largest repulsion of hexacoordinated divalent manganese center due to its larger radius (0.97 Å), (Shannon, 1976) as compared to the analogous M(bpy)(OAc)2(H2O)2 complexes containing divalent cobalt (0.89 Å) and divalent nickel (0.83 Å). The most distorted O(2)—Mn—O(3) = 102.72° bond angles from an idealized octahedron resulting from the water molecules coordinated trans to bipyridine moiety.

In crystal lattice of MnII(bpy)(OAc)2(H2O)2, the coordinated water molecule showing significant intermolecular hydrogen bonding interaction with axially coordinated acetate anion and bpy ligands are arranged in a stacking interaction with close interplanar contacts of ca. 3.40 Å and the separation between the planes of each pair of adjacent pyridyl rings is ca. 8.14 Å (Fig. 2). Such relatively short interplanar contacts are indicative of extensive ππ stacking interaction between the pyridine rings. The existence of intermolecular hydrogen bonding and stacking interaction of bpy ligands is very important in stabilizing molecular structure in the solid state as shown in Fig. 1 and Fig. 2. A similar behavior was also noticed for mononuclear nickel complexes assembled into two-dimensional networks via hydrogen bonds and showing significant ππ stacking interactions where the close interchain bipyridyl groups, being a rranged in an off-set fashion, have an average face-to-face distance of 3.44 Å for Ni(bipy)(OAc)2(H2O)2 and 3.60 Å for Ni(dmbipy)(OAc)2(H2O)2 (Ye et al. 1998).

Related literature top

For complexes with the same ligands as the title complex, see: Chen et al. (1995); Carballo et al. (2001); Hu et al. (2011); Ye et al. (1998); Zhao et al. (2009). For ionic radii, see: Shannon (1976).

Experimental top

Synthesis of MnII(bpy)(OAc)2(H2O)2: Manganous acetate tetrahydrate (0.245 g, 1.0 mmol) was dissolved in an dry methanol (20 ml) and then an methanolic solution (10 ml) of 2,2'-bipyridine (0.156 g, 1.0 mmol) was added drop-wise with continuous stirring. The resulting mixture was refluxed for an hour and then filtered to remove the brownish precipitate. The light yellow filtrate was allowed to stand undisturbed for two weeks or so at room temperature, during which brown crystals of 1, suitable for X-ray diffraction analysis, were deposited in ca 60% yield (based on Mn). Anal. Calcd. (%) for C14H20MnN2O6: C, 45.79; H, 5.49; N, 7.63. Found (%): C, 45.34; H, 5.37; N, 7.66.

Refinement top

All H atoms were added according to theoretical models, assigned isotropic displacement parameters and allowed to ride on their respective parent atoms[C—H=0.93–0.97%A and Uiso=1.2Ueq].

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick 2008); software used to prepare material for publication: SHELXTL (Sheldrick 2008).

Figures top
[Figure 1] Fig. 1. ORTEP of the molecule with atoms represented as 30% probability ellipsoids.
[Figure 2] Fig. 2. Molecular packing of complex 1 viewed along b axis.
Bis(acetato-κO)diaqua(2,2'-bipyridine-κ2N,N')manganese(II) top
Crystal data top
[Mn(C2H3O2)2(C10H8N2)(H2O)2]F(000) = 756
Mr = 365.24Dx = 1.505 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.8494 (8) ÅCell parameters from 6258 reflections
b = 8.1434 (5) Åθ = 2.2–28.2°
c = 15.5918 (10) ŵ = 0.85 mm1
β = 98.926 (2)°T = 296 K
V = 1611.73 (18) Å3Rectangular, brown
Z = 40.30 × 0.25 × 0.16 mm
Data collection top
Bruker APEXII CCD
diffractometer
2469 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.023
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 25.0°, θmin = 1.9°
Tmin = 0.775, Tmax = 0.873h = 1515
11092 measured reflectionsk = 98
2820 independent reflectionsl = 1818
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0349P)2 + 0.7672P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.076(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.26 e Å3
2820 reflectionsΔρmin = 0.21 e Å3
226 parameters
Crystal data top
[Mn(C2H3O2)2(C10H8N2)(H2O)2]V = 1611.73 (18) Å3
Mr = 365.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.8494 (8) ŵ = 0.85 mm1
b = 8.1434 (5) ÅT = 296 K
c = 15.5918 (10) Å0.30 × 0.25 × 0.16 mm
β = 98.926 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2820 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2469 reflections with I > 2σ(I)
Tmin = 0.775, Tmax = 0.873Rint = 0.023
11092 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.26 e Å3
2820 reflectionsΔρmin = 0.21 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.40953 (16)0.3913 (3)1.13971 (13)0.0389 (5)
H10.35530.41521.17090.047*
C20.51018 (17)0.4448 (3)1.17221 (15)0.0476 (6)
H20.52380.50181.22440.057*
C30.58959 (17)0.4107 (3)1.12467 (15)0.0501 (6)
H30.65790.44691.14390.060*
C40.56718 (15)0.3231 (3)1.04872 (14)0.0428 (5)
H40.62030.29871.01650.051*
C50.46481 (14)0.2714 (2)1.02057 (13)0.0316 (4)
C60.43430 (14)0.1760 (3)0.93939 (12)0.0327 (4)
C70.50731 (16)0.1105 (3)0.89147 (14)0.0437 (6)
H70.57910.12440.91020.052*
C80.47254 (19)0.0249 (3)0.81621 (15)0.0506 (6)
H80.52060.01840.78350.061*
C90.36604 (19)0.0042 (3)0.78996 (14)0.0500 (6)
H90.34080.05290.73930.060*
C100.29791 (17)0.0702 (3)0.84067 (13)0.0434 (5)
H100.22600.05550.82330.052*
C110.11250 (15)0.5562 (3)0.92173 (12)0.0327 (5)
C120.11895 (19)0.7383 (3)0.90939 (18)0.0539 (6)
H12A0.09990.76430.84890.081*
H12B0.18960.77480.92930.081*
H12C0.07150.79240.94210.081*
C130.18311 (15)0.0662 (3)1.12096 (13)0.0358 (5)
C140.21073 (19)0.2375 (3)1.15213 (17)0.0507 (6)
H14A0.22820.30221.10490.076*
H14B0.15160.28581.17360.076*
H14C0.27000.23401.19790.076*
Mn10.21987 (2)0.23631 (4)1.00781 (2)0.03042 (11)
N10.38666 (12)0.3072 (2)1.06586 (10)0.0314 (4)
N20.32980 (12)0.1546 (2)0.91379 (10)0.0341 (4)
O10.19541 (10)0.48188 (18)0.95383 (9)0.0409 (4)
O20.08066 (12)0.1747 (2)0.91193 (12)0.0501 (4)
O30.14983 (11)0.3191 (2)1.11986 (10)0.0396 (4)
O40.23998 (10)0.00016 (18)1.07180 (9)0.0399 (3)
O50.02567 (10)0.48655 (18)0.89735 (10)0.0411 (4)
O60.10520 (12)0.0026 (2)1.14539 (12)0.0529 (4)
H2X0.056 (2)0.276 (4)0.9014 (17)0.063 (9)*
H1X0.034 (2)0.109 (4)0.9040 (18)0.070 (10)*
H4X0.096 (2)0.392 (4)1.1099 (17)0.074 (9)*
H3X0.131 (2)0.230 (4)1.1320 (17)0.054 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0341 (11)0.0412 (13)0.0416 (11)0.0004 (9)0.0067 (9)0.0019 (10)
C20.0427 (13)0.0515 (15)0.0458 (12)0.0095 (11)0.0023 (10)0.0010 (11)
C30.0290 (11)0.0636 (17)0.0547 (14)0.0136 (11)0.0033 (10)0.0107 (12)
C40.0204 (9)0.0604 (15)0.0478 (13)0.0004 (10)0.0065 (9)0.0129 (11)
C50.0212 (9)0.0355 (12)0.0385 (11)0.0021 (8)0.0056 (8)0.0123 (9)
C60.0247 (9)0.0384 (12)0.0359 (10)0.0054 (9)0.0074 (8)0.0114 (9)
C70.0297 (11)0.0552 (15)0.0485 (12)0.0116 (10)0.0135 (9)0.0120 (11)
C80.0550 (14)0.0572 (16)0.0443 (13)0.0194 (12)0.0231 (11)0.0063 (11)
C90.0593 (15)0.0561 (16)0.0358 (11)0.0080 (12)0.0115 (10)0.0001 (11)
C100.0378 (11)0.0534 (15)0.0383 (11)0.0008 (11)0.0039 (9)0.0017 (10)
C110.0308 (11)0.0349 (12)0.0335 (10)0.0036 (9)0.0088 (8)0.0018 (9)
C120.0463 (14)0.0355 (14)0.0749 (17)0.0024 (10)0.0067 (12)0.0028 (12)
C130.0258 (10)0.0354 (12)0.0454 (12)0.0028 (9)0.0029 (9)0.0009 (9)
C140.0516 (14)0.0412 (14)0.0615 (15)0.0047 (11)0.0155 (12)0.0103 (11)
Mn10.01912 (16)0.03294 (19)0.03953 (19)0.00163 (12)0.00552 (12)0.00237 (13)
N10.0227 (8)0.0343 (10)0.0371 (9)0.0002 (7)0.0048 (7)0.0050 (7)
N20.0268 (8)0.0405 (11)0.0355 (9)0.0034 (7)0.0065 (7)0.0054 (8)
O10.0266 (7)0.0363 (9)0.0582 (9)0.0029 (6)0.0015 (6)0.0088 (7)
O20.0291 (8)0.0373 (10)0.0783 (12)0.0018 (8)0.0089 (8)0.0034 (9)
O30.0303 (8)0.0364 (10)0.0546 (9)0.0052 (8)0.0140 (7)0.0024 (8)
O40.0316 (7)0.0356 (8)0.0548 (9)0.0042 (6)0.0143 (6)0.0086 (7)
O50.0268 (7)0.0379 (9)0.0571 (9)0.0032 (6)0.0024 (6)0.0031 (7)
O60.0374 (8)0.0409 (10)0.0865 (12)0.0016 (7)0.0284 (8)0.0067 (8)
Geometric parameters (Å, º) top
C1—N11.333 (3)C11—O11.260 (2)
C1—C21.384 (3)C11—C121.499 (3)
C1—H10.9300C12—H12A0.9600
C2—C31.379 (3)C12—H12B0.9600
C2—H20.9300C12—H12C0.9600
C3—C41.374 (3)C13—O61.257 (2)
C3—H30.9300C13—O41.260 (2)
C4—C51.386 (3)C13—C141.501 (3)
C4—H40.9300C14—H14A0.9600
C5—N11.346 (2)C14—H14B0.9600
C5—C61.485 (3)C14—H14C0.9600
C6—N21.351 (2)Mn1—O42.1634 (15)
C6—C71.393 (3)Mn1—O12.1736 (15)
C7—C81.378 (3)Mn1—O32.1918 (15)
C7—H70.9300Mn1—O22.2038 (16)
C8—C91.376 (3)Mn1—N12.2679 (15)
C8—H80.9300Mn1—N22.2869 (16)
C9—C101.377 (3)O2—H2X0.89 (3)
C9—H90.9300O2—H1X0.79 (3)
C10—N21.340 (3)O3—H4X0.91 (3)
C10—H100.9300O3—H3X0.80 (3)
C11—O51.257 (2)
N1—C1—C2123.1 (2)O6—C13—O4123.9 (2)
N1—C1—H1118.4O6—C13—C14118.38 (19)
C2—C1—H1118.4O4—C13—C14117.72 (19)
C3—C2—C1117.9 (2)C13—C14—H14A109.5
C3—C2—H2121.1C13—C14—H14B109.5
C1—C2—H2121.1H14A—C14—H14B109.5
C4—C3—C2119.60 (19)C13—C14—H14C109.5
C4—C3—H3120.2H14A—C14—H14C109.5
C2—C3—H3120.2H14B—C14—H14C109.5
C3—C4—C5119.5 (2)O4—Mn1—O1174.99 (5)
C3—C4—H4120.3O4—Mn1—O386.57 (6)
C5—C4—H4120.3O1—Mn1—O388.46 (6)
N1—C5—C4121.1 (2)O4—Mn1—O297.86 (7)
N1—C5—C6116.15 (16)O1—Mn1—O283.88 (6)
C4—C5—C6122.74 (18)O3—Mn1—O2102.72 (6)
N2—C6—C7120.87 (19)O4—Mn1—N190.26 (6)
N2—C6—C5115.98 (16)O1—Mn1—N189.49 (6)
C7—C6—C5123.15 (18)O3—Mn1—N194.76 (6)
C8—C7—C6119.6 (2)O2—Mn1—N1161.08 (6)
C8—C7—H7120.2O4—Mn1—N289.74 (6)
C6—C7—H7120.2O1—Mn1—N294.94 (6)
C9—C8—C7119.4 (2)O3—Mn1—N2166.23 (6)
C9—C8—H8120.3O2—Mn1—N290.92 (6)
C7—C8—H8120.3N1—Mn1—N271.97 (6)
C8—C9—C10118.2 (2)C1—N1—C5118.82 (17)
C8—C9—H9120.9C1—N1—Mn1122.94 (13)
C10—C9—H9120.9C5—N1—Mn1118.11 (13)
N2—C10—C9123.5 (2)C10—N2—C6118.44 (17)
N2—C10—H10118.3C10—N2—Mn1123.85 (13)
C9—C10—H10118.3C6—N2—Mn1117.22 (13)
O5—C11—O1124.03 (19)C11—O1—Mn1131.20 (13)
O5—C11—C12118.15 (18)Mn1—O2—H2X98.4 (17)
O1—C11—C12117.79 (19)Mn1—O2—H1X140 (2)
C11—C12—H12A109.5H2X—O2—H1X111 (3)
C11—C12—H12B109.5Mn1—O3—H4X117.6 (17)
H12A—C12—H12B109.5Mn1—O3—H3X94.8 (19)
C11—C12—H12C109.5H4X—O3—H3X113 (3)
H12A—C12—H12C109.5C13—O4—Mn1128.52 (13)
H12B—C12—H12C109.5
N1—C1—C2—C31.0 (4)C2—C1—N1—Mn1175.33 (17)
C1—C2—C3—C41.4 (4)C4—C5—N1—C11.2 (3)
C2—C3—C4—C50.6 (4)C6—C5—N1—C1179.38 (18)
C3—C4—C5—N10.8 (3)C4—C5—N1—Mn1174.66 (15)
C3—C4—C5—C6179.9 (2)C6—C5—N1—Mn14.7 (2)
N1—C5—C6—N28.5 (3)C9—C10—N2—C60.1 (3)
C4—C5—C6—N2170.84 (19)C9—C10—N2—Mn1171.77 (17)
N1—C5—C6—C7171.14 (19)C7—C6—N2—C100.7 (3)
C4—C5—C6—C79.5 (3)C5—C6—N2—C10179.61 (19)
N2—C6—C7—C81.1 (3)C7—C6—N2—Mn1171.52 (16)
C5—C6—C7—C8179.3 (2)C5—C6—N2—Mn18.2 (2)
C6—C7—C8—C90.6 (4)O5—C11—O1—Mn116.3 (3)
C7—C8—C9—C100.2 (4)C12—C11—O1—Mn1165.72 (16)
C8—C9—C10—N20.5 (4)O6—C13—O4—Mn14.4 (3)
C2—C1—N1—C50.3 (3)C14—C13—O4—Mn1175.79 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1X···O6i0.80 (3)2.05 (3)2.815 (2)161 (3)
O2—H2X···O50.89 (3)1.76 (3)2.636 (2)169 (2)
O3—H3X···O60.80 (3)1.90 (3)2.684 (2)168 (3)
O3—H4X···O5ii0.91 (3)1.84 (3)2.734 (2)169 (3)
Symmetry codes: (i) x, y, z+2; (ii) x, y+1, z+2.
Selected bond lengths (Å) top
Mn1—O42.1634 (15)Mn1—O22.2038 (16)
Mn1—O12.1736 (15)Mn1—N12.2679 (15)
Mn1—O32.1918 (15)Mn1—N22.2869 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1X···O6i0.80 (3)2.05 (3)2.815 (2)161 (3)
O2—H2X···O50.89 (3)1.76 (3)2.636 (2)169 (2)
O3—H3X···O60.80 (3)1.90 (3)2.684 (2)168 (3)
O3—H4X···O5ii0.91 (3)1.84 (3)2.734 (2)169 (3)
Symmetry codes: (i) x, y, z+2; (ii) x, y+1, z+2.
 

Acknowledgements

The authors thank the Department of Science and Technology (DST), Government of India, for funding the National Centre for Catalysis Research (NCCR), IIT-Madras. We also thank Mr V. Ramkumar for the data collection.

References

First citationBruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarballo, R., Covelo, B., García-Martínez, E. & Vázquez-López, E. M. (2001). Acta Cryst. E57, m597–m599.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChen, X. M., Tong, Y. X., Xu, Z. T. & Mak, T. C. W. (1995). J. Chem. Soc. Dalton Trans. pp. 4001–4004.  CSD CrossRef Web of Science Google Scholar
First citationHu, S., Wen, S. P., Hu, H.-M. & Liu, L. (2011). Acta Cryst. E67, m718.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, B. H., Chen, G. M., Xue, G. Q. & Ji, L. N. (1998). J. Chem. Soc. Dalton Trans. pp. 2827–2831.  Web of Science CSD CrossRef Google Scholar
First citationZhao, N., Lian, Z., Deng, Y., Gu, Y., Li, X. & Zhang, J. (2009). Z. Kristallogr. New Cryst. Struct. 224, 323–324.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages m326-m327
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds