metal-organic compounds
κO)diaqua(2,2′-bipyridine-κ2N,N′)manganese(II)
of bis(acetato-aNational Centre for Catalysis Research, Department of Chemistry, Indian Institute of Technology-Madras, Chennai 600 036, India
*Correspondence e-mail: selvam@iitm.ac.in
In the title monomeric manganese(II) complex, [Mn(CH3COO)2(C10H8N2)(H2O)2], the metal ion is coordinated by a bidentate 2,2′-bipyridine (bpy) ligand, two water molecules and two axial acetate anions, resulting in a highly distorted octahedral environment. The aqua ligands are stabilized by the formation of strong intramolecular hydrogen bonds with the uncoordinated acetate O atoms, giving rise to pseudo-bridging arrangement of the terminal acetate groups. In the crystal, the molecules form [010] zigzag chains via O—H⋯O hydrogen bonds involving the aqua ligands and acetate O atoms. Further, the water and bpy ligands are trans to each other, and are arranged in an off-set fashion showing intermolecular π–π stacking between nearly parallel bipy rings, the centroid–centroid separations being 3.8147 (12) and 3.9305 (13) Å.
CCDC reference: 1006361
1. Related literature
For complexes with the same ligands as the title complex, see: Chen et al. (1995); Carballo et al. (2001); Hu et al. (2011); Ye et al. (1998); Zhao et al. (2009). For ionic radii, see: Shannon (1976).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
|
Data collection: APEX2 (Bruker, 2004); cell SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick 2008); software used to prepare material for publication: SHELXTL.
Supporting information
CCDC reference: 1006361
10.1107/S1600536814017814/gw2147sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814017814/gw2147Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814017814/gw2147Isup3.cdx
Synthesis of MnII(bpy)(OAc)2(H2O)2: Manganous acetate tetrahydrate (0.245 g, 1.0 mmol) was dissolved in an dry methanol (20 ml) and then an methanolic solution (10 ml) of 2,2'-bipyridine (0.156 g, 1.0 mmol) was added drop-wise with continuous stirring. The resulting mixture was refluxed for an hour and then filtered to remove the brownish precipitate. The light yellow filtrate was allowed to stand undisturbed for two weeks or so at room temperature, during which brown crystals of 1, suitable for X-ray
were deposited in ca 60% yield (based on Mn). Anal. Calcd. (%) for C14H20MnN2O6: C, 45.79; H, 5.49; N, 7.63. Found (%): C, 45.34; H, 5.37; N, 7.66.All H atoms were added according to theoretical models, assigned isotropic displacement parameters and allowed to ride on their respective parent atoms[C—H=0.93–0.97%A and Uiso=1.2Ueq].
Data collection: APEX2 (Bruker, 2004); cell
SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick 2008); software used to prepare material for publication: SHELXTL (Sheldrick 2008).Fig. 1. ORTEP of the molecule with atoms represented as 30% probability ellipsoids. | |
Fig. 2. Molecular packing of complex 1 viewed along b axis. |
[Mn(C2H3O2)2(C10H8N2)(H2O)2] | F(000) = 756 |
Mr = 365.24 | Dx = 1.505 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 12.8494 (8) Å | Cell parameters from 6258 reflections |
b = 8.1434 (5) Å | θ = 2.2–28.2° |
c = 15.5918 (10) Å | µ = 0.85 mm−1 |
β = 98.926 (2)° | T = 296 K |
V = 1611.73 (18) Å3 | Rectangular, brown |
Z = 4 | 0.30 × 0.25 × 0.16 mm |
Bruker APEXII CCD diffractometer | 2469 reflections with I > 2σ(I) |
ϕ and ω scans | Rint = 0.023 |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | θmax = 25.0°, θmin = 1.9° |
Tmin = 0.775, Tmax = 0.873 | h = −15→15 |
11092 measured reflections | k = −9→8 |
2820 independent reflections | l = −18→18 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.029 | w = 1/[σ2(Fo2) + (0.0349P)2 + 0.7672P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.076 | (Δ/σ)max = 0.001 |
S = 1.06 | Δρmax = 0.26 e Å−3 |
2820 reflections | Δρmin = −0.21 e Å−3 |
226 parameters |
[Mn(C2H3O2)2(C10H8N2)(H2O)2] | V = 1611.73 (18) Å3 |
Mr = 365.24 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 12.8494 (8) Å | µ = 0.85 mm−1 |
b = 8.1434 (5) Å | T = 296 K |
c = 15.5918 (10) Å | 0.30 × 0.25 × 0.16 mm |
β = 98.926 (2)° |
Bruker APEXII CCD diffractometer | 2820 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 2469 reflections with I > 2σ(I) |
Tmin = 0.775, Tmax = 0.873 | Rint = 0.023 |
11092 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.076 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.26 e Å−3 |
2820 reflections | Δρmin = −0.21 e Å−3 |
226 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.40953 (16) | 0.3913 (3) | 1.13971 (13) | 0.0389 (5) | |
H1 | 0.3553 | 0.4152 | 1.1709 | 0.047* | |
C2 | 0.51018 (17) | 0.4448 (3) | 1.17221 (15) | 0.0476 (6) | |
H2 | 0.5238 | 0.5018 | 1.2244 | 0.057* | |
C3 | 0.58959 (17) | 0.4107 (3) | 1.12467 (15) | 0.0501 (6) | |
H3 | 0.6579 | 0.4469 | 1.1439 | 0.060* | |
C4 | 0.56718 (15) | 0.3231 (3) | 1.04872 (14) | 0.0428 (5) | |
H4 | 0.6203 | 0.2987 | 1.0165 | 0.051* | |
C5 | 0.46481 (14) | 0.2714 (2) | 1.02057 (13) | 0.0316 (4) | |
C6 | 0.43430 (14) | 0.1760 (3) | 0.93939 (12) | 0.0327 (4) | |
C7 | 0.50731 (16) | 0.1105 (3) | 0.89147 (14) | 0.0437 (6) | |
H7 | 0.5791 | 0.1244 | 0.9102 | 0.052* | |
C8 | 0.47254 (19) | 0.0249 (3) | 0.81621 (15) | 0.0506 (6) | |
H8 | 0.5206 | −0.0184 | 0.7835 | 0.061* | |
C9 | 0.36604 (19) | 0.0042 (3) | 0.78996 (14) | 0.0500 (6) | |
H9 | 0.3408 | −0.0529 | 0.7393 | 0.060* | |
C10 | 0.29791 (17) | 0.0702 (3) | 0.84067 (13) | 0.0434 (5) | |
H10 | 0.2260 | 0.0555 | 0.8233 | 0.052* | |
C11 | 0.11250 (15) | 0.5562 (3) | 0.92173 (12) | 0.0327 (5) | |
C12 | 0.11895 (19) | 0.7383 (3) | 0.90939 (18) | 0.0539 (6) | |
H12A | 0.0999 | 0.7643 | 0.8489 | 0.081* | |
H12B | 0.1896 | 0.7748 | 0.9293 | 0.081* | |
H12C | 0.0715 | 0.7924 | 0.9421 | 0.081* | |
C13 | 0.18311 (15) | −0.0662 (3) | 1.12096 (13) | 0.0358 (5) | |
C14 | 0.21073 (19) | −0.2375 (3) | 1.15213 (17) | 0.0507 (6) | |
H14A | 0.2282 | −0.3022 | 1.1049 | 0.076* | |
H14B | 0.1516 | −0.2858 | 1.1736 | 0.076* | |
H14C | 0.2700 | −0.2340 | 1.1979 | 0.076* | |
Mn1 | 0.21987 (2) | 0.23631 (4) | 1.00781 (2) | 0.03042 (11) | |
N1 | 0.38666 (12) | 0.3072 (2) | 1.06586 (10) | 0.0314 (4) | |
N2 | 0.32980 (12) | 0.1546 (2) | 0.91379 (10) | 0.0341 (4) | |
O1 | 0.19541 (10) | 0.48188 (18) | 0.95383 (9) | 0.0409 (4) | |
O2 | 0.08066 (12) | 0.1747 (2) | 0.91193 (12) | 0.0501 (4) | |
O3 | 0.14983 (11) | 0.3191 (2) | 1.11986 (10) | 0.0396 (4) | |
O4 | 0.23998 (10) | 0.00016 (18) | 1.07180 (9) | 0.0399 (3) | |
O5 | 0.02567 (10) | 0.48655 (18) | 0.89735 (10) | 0.0411 (4) | |
O6 | 0.10520 (12) | 0.0026 (2) | 1.14539 (12) | 0.0529 (4) | |
H2X | 0.056 (2) | 0.276 (4) | 0.9014 (17) | 0.063 (9)* | |
H1X | 0.034 (2) | 0.109 (4) | 0.9040 (18) | 0.070 (10)* | |
H4X | 0.096 (2) | 0.392 (4) | 1.1099 (17) | 0.074 (9)* | |
H3X | 0.131 (2) | 0.230 (4) | 1.1320 (17) | 0.054 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0341 (11) | 0.0412 (13) | 0.0416 (11) | −0.0004 (9) | 0.0067 (9) | 0.0019 (10) |
C2 | 0.0427 (13) | 0.0515 (15) | 0.0458 (12) | −0.0095 (11) | −0.0023 (10) | −0.0010 (11) |
C3 | 0.0290 (11) | 0.0636 (17) | 0.0547 (14) | −0.0136 (11) | −0.0033 (10) | 0.0107 (12) |
C4 | 0.0204 (9) | 0.0604 (15) | 0.0478 (13) | −0.0004 (10) | 0.0065 (9) | 0.0129 (11) |
C5 | 0.0212 (9) | 0.0355 (12) | 0.0385 (11) | 0.0021 (8) | 0.0056 (8) | 0.0123 (9) |
C6 | 0.0247 (9) | 0.0384 (12) | 0.0359 (10) | 0.0054 (9) | 0.0074 (8) | 0.0114 (9) |
C7 | 0.0297 (11) | 0.0552 (15) | 0.0485 (12) | 0.0116 (10) | 0.0135 (9) | 0.0120 (11) |
C8 | 0.0550 (14) | 0.0572 (16) | 0.0443 (13) | 0.0194 (12) | 0.0231 (11) | 0.0063 (11) |
C9 | 0.0593 (15) | 0.0561 (16) | 0.0358 (11) | 0.0080 (12) | 0.0115 (10) | 0.0001 (11) |
C10 | 0.0378 (11) | 0.0534 (15) | 0.0383 (11) | −0.0008 (11) | 0.0039 (9) | 0.0017 (10) |
C11 | 0.0308 (11) | 0.0349 (12) | 0.0335 (10) | 0.0036 (9) | 0.0088 (8) | 0.0018 (9) |
C12 | 0.0463 (14) | 0.0355 (14) | 0.0749 (17) | 0.0024 (10) | −0.0067 (12) | 0.0028 (12) |
C13 | 0.0258 (10) | 0.0354 (12) | 0.0454 (12) | −0.0028 (9) | 0.0029 (9) | 0.0009 (9) |
C14 | 0.0516 (14) | 0.0412 (14) | 0.0615 (15) | 0.0047 (11) | 0.0155 (12) | 0.0103 (11) |
Mn1 | 0.01912 (16) | 0.03294 (19) | 0.03953 (19) | 0.00163 (12) | 0.00552 (12) | 0.00237 (13) |
N1 | 0.0227 (8) | 0.0343 (10) | 0.0371 (9) | 0.0002 (7) | 0.0048 (7) | 0.0050 (7) |
N2 | 0.0268 (8) | 0.0405 (11) | 0.0355 (9) | 0.0034 (7) | 0.0065 (7) | 0.0054 (8) |
O1 | 0.0266 (7) | 0.0363 (9) | 0.0582 (9) | 0.0029 (6) | 0.0015 (6) | 0.0088 (7) |
O2 | 0.0291 (8) | 0.0373 (10) | 0.0783 (12) | −0.0018 (8) | −0.0089 (8) | −0.0034 (9) |
O3 | 0.0303 (8) | 0.0364 (10) | 0.0546 (9) | 0.0052 (8) | 0.0140 (7) | 0.0024 (8) |
O4 | 0.0316 (7) | 0.0356 (8) | 0.0548 (9) | 0.0042 (6) | 0.0143 (6) | 0.0086 (7) |
O5 | 0.0268 (7) | 0.0379 (9) | 0.0571 (9) | 0.0032 (6) | 0.0024 (6) | 0.0031 (7) |
O6 | 0.0374 (8) | 0.0409 (10) | 0.0865 (12) | 0.0016 (7) | 0.0284 (8) | 0.0067 (8) |
C1—N1 | 1.333 (3) | C11—O1 | 1.260 (2) |
C1—C2 | 1.384 (3) | C11—C12 | 1.499 (3) |
C1—H1 | 0.9300 | C12—H12A | 0.9600 |
C2—C3 | 1.379 (3) | C12—H12B | 0.9600 |
C2—H2 | 0.9300 | C12—H12C | 0.9600 |
C3—C4 | 1.374 (3) | C13—O6 | 1.257 (2) |
C3—H3 | 0.9300 | C13—O4 | 1.260 (2) |
C4—C5 | 1.386 (3) | C13—C14 | 1.501 (3) |
C4—H4 | 0.9300 | C14—H14A | 0.9600 |
C5—N1 | 1.346 (2) | C14—H14B | 0.9600 |
C5—C6 | 1.485 (3) | C14—H14C | 0.9600 |
C6—N2 | 1.351 (2) | Mn1—O4 | 2.1634 (15) |
C6—C7 | 1.393 (3) | Mn1—O1 | 2.1736 (15) |
C7—C8 | 1.378 (3) | Mn1—O3 | 2.1918 (15) |
C7—H7 | 0.9300 | Mn1—O2 | 2.2038 (16) |
C8—C9 | 1.376 (3) | Mn1—N1 | 2.2679 (15) |
C8—H8 | 0.9300 | Mn1—N2 | 2.2869 (16) |
C9—C10 | 1.377 (3) | O2—H2X | 0.89 (3) |
C9—H9 | 0.9300 | O2—H1X | 0.79 (3) |
C10—N2 | 1.340 (3) | O3—H4X | 0.91 (3) |
C10—H10 | 0.9300 | O3—H3X | 0.80 (3) |
C11—O5 | 1.257 (2) | ||
N1—C1—C2 | 123.1 (2) | O6—C13—O4 | 123.9 (2) |
N1—C1—H1 | 118.4 | O6—C13—C14 | 118.38 (19) |
C2—C1—H1 | 118.4 | O4—C13—C14 | 117.72 (19) |
C3—C2—C1 | 117.9 (2) | C13—C14—H14A | 109.5 |
C3—C2—H2 | 121.1 | C13—C14—H14B | 109.5 |
C1—C2—H2 | 121.1 | H14A—C14—H14B | 109.5 |
C4—C3—C2 | 119.60 (19) | C13—C14—H14C | 109.5 |
C4—C3—H3 | 120.2 | H14A—C14—H14C | 109.5 |
C2—C3—H3 | 120.2 | H14B—C14—H14C | 109.5 |
C3—C4—C5 | 119.5 (2) | O4—Mn1—O1 | 174.99 (5) |
C3—C4—H4 | 120.3 | O4—Mn1—O3 | 86.57 (6) |
C5—C4—H4 | 120.3 | O1—Mn1—O3 | 88.46 (6) |
N1—C5—C4 | 121.1 (2) | O4—Mn1—O2 | 97.86 (7) |
N1—C5—C6 | 116.15 (16) | O1—Mn1—O2 | 83.88 (6) |
C4—C5—C6 | 122.74 (18) | O3—Mn1—O2 | 102.72 (6) |
N2—C6—C7 | 120.87 (19) | O4—Mn1—N1 | 90.26 (6) |
N2—C6—C5 | 115.98 (16) | O1—Mn1—N1 | 89.49 (6) |
C7—C6—C5 | 123.15 (18) | O3—Mn1—N1 | 94.76 (6) |
C8—C7—C6 | 119.6 (2) | O2—Mn1—N1 | 161.08 (6) |
C8—C7—H7 | 120.2 | O4—Mn1—N2 | 89.74 (6) |
C6—C7—H7 | 120.2 | O1—Mn1—N2 | 94.94 (6) |
C9—C8—C7 | 119.4 (2) | O3—Mn1—N2 | 166.23 (6) |
C9—C8—H8 | 120.3 | O2—Mn1—N2 | 90.92 (6) |
C7—C8—H8 | 120.3 | N1—Mn1—N2 | 71.97 (6) |
C8—C9—C10 | 118.2 (2) | C1—N1—C5 | 118.82 (17) |
C8—C9—H9 | 120.9 | C1—N1—Mn1 | 122.94 (13) |
C10—C9—H9 | 120.9 | C5—N1—Mn1 | 118.11 (13) |
N2—C10—C9 | 123.5 (2) | C10—N2—C6 | 118.44 (17) |
N2—C10—H10 | 118.3 | C10—N2—Mn1 | 123.85 (13) |
C9—C10—H10 | 118.3 | C6—N2—Mn1 | 117.22 (13) |
O5—C11—O1 | 124.03 (19) | C11—O1—Mn1 | 131.20 (13) |
O5—C11—C12 | 118.15 (18) | Mn1—O2—H2X | 98.4 (17) |
O1—C11—C12 | 117.79 (19) | Mn1—O2—H1X | 140 (2) |
C11—C12—H12A | 109.5 | H2X—O2—H1X | 111 (3) |
C11—C12—H12B | 109.5 | Mn1—O3—H4X | 117.6 (17) |
H12A—C12—H12B | 109.5 | Mn1—O3—H3X | 94.8 (19) |
C11—C12—H12C | 109.5 | H4X—O3—H3X | 113 (3) |
H12A—C12—H12C | 109.5 | C13—O4—Mn1 | 128.52 (13) |
H12B—C12—H12C | 109.5 | ||
N1—C1—C2—C3 | 1.0 (4) | C2—C1—N1—Mn1 | −175.33 (17) |
C1—C2—C3—C4 | −1.4 (4) | C4—C5—N1—C1 | −1.2 (3) |
C2—C3—C4—C5 | 0.6 (4) | C6—C5—N1—C1 | 179.38 (18) |
C3—C4—C5—N1 | 0.8 (3) | C4—C5—N1—Mn1 | 174.66 (15) |
C3—C4—C5—C6 | −179.9 (2) | C6—C5—N1—Mn1 | −4.7 (2) |
N1—C5—C6—N2 | 8.5 (3) | C9—C10—N2—C6 | −0.1 (3) |
C4—C5—C6—N2 | −170.84 (19) | C9—C10—N2—Mn1 | −171.77 (17) |
N1—C5—C6—C7 | −171.14 (19) | C7—C6—N2—C10 | −0.7 (3) |
C4—C5—C6—C7 | 9.5 (3) | C5—C6—N2—C10 | 179.61 (19) |
N2—C6—C7—C8 | 1.1 (3) | C7—C6—N2—Mn1 | 171.52 (16) |
C5—C6—C7—C8 | −179.3 (2) | C5—C6—N2—Mn1 | −8.2 (2) |
C6—C7—C8—C9 | −0.6 (4) | O5—C11—O1—Mn1 | −16.3 (3) |
C7—C8—C9—C10 | −0.2 (4) | C12—C11—O1—Mn1 | 165.72 (16) |
C8—C9—C10—N2 | 0.5 (4) | O6—C13—O4—Mn1 | −4.4 (3) |
C2—C1—N1—C5 | 0.3 (3) | C14—C13—O4—Mn1 | 175.79 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H1X···O6i | 0.80 (3) | 2.05 (3) | 2.815 (2) | 161 (3) |
O2—H2X···O5 | 0.89 (3) | 1.76 (3) | 2.636 (2) | 169 (2) |
O3—H3X···O6 | 0.80 (3) | 1.90 (3) | 2.684 (2) | 168 (3) |
O3—H4X···O5ii | 0.91 (3) | 1.84 (3) | 2.734 (2) | 169 (3) |
Symmetry codes: (i) −x, −y, −z+2; (ii) −x, −y+1, −z+2. |
Mn1—O4 | 2.1634 (15) | Mn1—O2 | 2.2038 (16) |
Mn1—O1 | 2.1736 (15) | Mn1—N1 | 2.2679 (15) |
Mn1—O3 | 2.1918 (15) | Mn1—N2 | 2.2869 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H1X···O6i | 0.80 (3) | 2.05 (3) | 2.815 (2) | 161 (3) |
O2—H2X···O5 | 0.89 (3) | 1.76 (3) | 2.636 (2) | 169 (2) |
O3—H3X···O6 | 0.80 (3) | 1.90 (3) | 2.684 (2) | 168 (3) |
O3—H4X···O5ii | 0.91 (3) | 1.84 (3) | 2.734 (2) | 169 (3) |
Symmetry codes: (i) −x, −y, −z+2; (ii) −x, −y+1, −z+2. |
Acknowledgements
The authors thank the Department of Science and Technology (DST), Government of India, for funding the National Centre for Catalysis Research (NCCR), IIT-Madras. We also thank Mr V. Ramkumar for the data collection.
References
Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Carballo, R., Covelo, B., García-Martínez, E. & Vázquez-López, E. M. (2001). Acta Cryst. E57, m597–m599. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Chen, X. M., Tong, Y. X., Xu, Z. T. & Mak, T. C. W. (1995). J. Chem. Soc. Dalton Trans. pp. 4001–4004. CSD CrossRef Web of Science Google Scholar
Hu, S., Wen, S. P., Hu, H.-M. & Liu, L. (2011). Acta Cryst. E67, m718. Web of Science CSD CrossRef IUCr Journals Google Scholar
Shannon, R. D. (1976). Acta Cryst. A32, 751–767. CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ye, B. H., Chen, G. M., Xue, G. Q. & Ji, L. N. (1998). J. Chem. Soc. Dalton Trans. pp. 2827–2831. Web of Science CSD CrossRef Google Scholar
Zhao, N., Lian, Z., Deng, Y., Gu, Y., Li, X. & Zhang, J. (2009). Z. Kristallogr. New Cryst. Struct. 224, 323–324. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The co-existence of solvent and bpy molecules in certain metal complexes have been reported in several lanthanide (III) complexes containing bpy and carboxylate ligands, (Chen et al., 1995) while the transition metal ions complexes, e.g., CoII(bpy)(OAc)2(H2O)2, NiII(bpy)(OAc)2(H2O)2 and NiII(bpy)(pda)2(H2O)2 complexes with mixed bpy, acetate and solvate molecules, is also established (Ye et al., 1998; Carballo et al., 2001; Hu et al., 2011). We describe herein the crystal structure of divalent manganese complex, viz. MnII(bpy)(OAc)2(H2O)2 with 2,2'-bipyridine, acetate and solvate molecule as the coordinating ligands, and the intermolecular hydrogen bonding interaction between the coordinated acetates and the solvent molecules.
The crystal structure of the complex 1 is illustrated in Fig. 1. The metal ion in the title complex is coordinated by bidentate bpy ligand, two water molecules and two axial acetate anions coordinated trans to each other resulting in a highly distorted octahedral [MnN2O4] coordination geometry. The Mn—N bond lengths range from 2.2679 (15)–2.2869 (16) Å and the shortest Mn—OAc axial bonds range from 2.163 (15)–2.173 (15) Å, may partially be ascribed to the mutual strong coordination between the anionic ligands to the divalent manganese center, as evidenced by the fact that the pyridine ring coordinates to the metal atom in a non planar fashion with the torsion angle Mn(1)—N(1)—C(2)—C(3) = 170.8°. The Mn—Npy (2.2679 (15) Å); Mn—OAc (2.2038 (16) Å), and Mn—O(w) (2.1918 (15) Å) bonds in 1 are longer than that of the respective Co- and Ni-analogues, viz., CoII(bpy)(OAc)2(H2O)2 and NiII(bpy)(OAc)2(H2O)2, with symmetrical M—N bonds (Co—Npy= 2.122 (14) Å); Ni—Npy= 2.069 (2) Å). Similarly, the Mn—O(w) and Mn—OAc bonds in MnII(bpy)(OAc)2(H2O)2 are also longer than the corresponding Co- and Ni-analogues (Co—OAc = 2.097 (13) Å; Ni—OAc = 2.079 (2) Å); Co—O(w) = 2.125 (13) Å; Ni—O(w) = 2.082 (2) Å), revealing the largest repulsion of hexacoordinated divalent manganese center due to its larger radius (0.97 Å), (Shannon, 1976) as compared to the analogous M(bpy)(OAc)2(H2O)2 complexes containing divalent cobalt (0.89 Å) and divalent nickel (0.83 Å). The most distorted O(2)—Mn—O(3) = 102.72° bond angles from an idealized octahedron resulting from the water molecules coordinated trans to bipyridine moiety.
In crystal lattice of MnII(bpy)(OAc)2(H2O)2, the coordinated water molecule showing significant intermolecular hydrogen bonding interaction with axially coordinated acetate anion and bpy ligands are arranged in a stacking interaction with close interplanar contacts of ca. 3.40 Å and the separation between the planes of each pair of adjacent pyridyl rings is ca. 8.14 Å (Fig. 2). Such relatively short interplanar contacts are indicative of extensive π–π stacking interaction between the pyridine rings. The existence of intermolecular hydrogen bonding and stacking interaction of bpy ligands is very important in stabilizing molecular structure in the solid state as shown in Fig. 1 and Fig. 2. A similar behavior was also noticed for mononuclear nickel complexes assembled into two-dimensional networks via hydrogen bonds and showing significant π–π stacking interactions where the close interchain bipyridyl groups, being a rranged in an off-set fashion, have an average face-to-face distance of 3.44 Å for Ni(bipy)(OAc)2(H2O)2 and 3.60 Å for Ni(dmbipy)(OAc)2(H2O)2 (Ye et al. 1998).