organic compounds
†
of 2,3,5,6-tetrakis[(methylsulfanyl)methyl]pyrazineaCanAm Bioresearch Inc., 9-1250 Waverley Street, Winnipeg, Manitoba, R3T 6C6, Canada, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch
The title compound, C12H20N2S4, synthesized by the reaction of 2,3,5,6-tetrakis(bromomethyl)pyrazine with sodium methanethiolate, crystallizes with a half -molecule in the The whole molecule is generated by inversion symmetry; the inversion centre being located in the centre of the pyrazine ring. The molecule has an S-shaped conformation with two (methylsulfanyl)methyl substituent arms directed above the plane of the pyrazine ring and two below. The C(H3)—S—C(H2)—C(aromatic) torsion angles are 70.47 (18) and −67.65 (17)°, respectively. In the crystal, molecules are linked via weak C—H⋯S hydrogen bonds, forming chains along [001] and enclosing R22(12) ring motifs. The chains are linked by further weak C—H⋯S hydrogen bonds, forming sheets lying parallel to (101).
Keywords: crystal structure; tetrakis-substituted; pyrazine; sulfanyl-methyl derivative; inversion symmetry.
CCDC reference: 1004261
1. Related literature
For syntheses of the starting reagent, 2,3,5,6-tetrakis(bromomethyl)pyrazine, see: Ferigo et al. (1994); Assoumatine (1999); Assoumatine & Stoeckli-Evans (2014). For the crystal structures of similar sulfanylmethyl derivatives of pyrazine, such as two triclinic polymorphs of 2,3,5,6 tetrakis(naphthalen-2-ylsulfanylmethyl)pyrazine both possessing inversion symmetry, see: Pacifico & Stoeckli-Evans (2004), and for 2,3,5,6-tetrakis(phenylsulfanylmethyl)pyrazine, which also crystallizes in P and possesses inversion symmetry, see: Assoumatine et al. (2007).
2. Experimental
2.1. Crystal data
|
2.2. Data collection
|
2.3. Refinement
|
|
Data collection: STADI4 (Stoe & Cie, 1997); cell STADI4; data reduction: X-RED (Stoe & Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2013, PLATON (Spek, 2009) and publCIF (Westrip, 2010).
Supporting information
CCDC reference: 1004261
10.1107/S1600536814011246/hb0006sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814011246/hb0006Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814011246/hb0006Isup3.cml
A mixture of sodium methanethiolate (0.94 g, 13 mmol, Fluka 95%) in ethanol (50 ml) was added slowly and drop wise with stirring to a refluxed solution of 2,3,5,6-tetrakis(bromomethyl)pyrazine [Assoumatine & Stoeckli-Evans, 2014], (1.5 g, 3.32 mmol) in ethanol (50 ml). Refluxing and stirring were continued for 4 h. The solvent was removed under reduced pressure and the resultant residue diluted with CH2Cl2 (200 ml). The organic layer was washed with water (3 × 30 ml) and saturated NaCl (30 ml), then dried over anhydrous MgSO4 and evaporated to dryness after filtration. The brown residue obtained was washed with acetonitrile till this solvent became colourless, yielding the title compound which was further dried under vacuum [Yield 0.55 g (52%), M.p. 418-419 K]; Rf 0.48 (solvent : CH2Cl2, δ = 3.97 (s, 8H, Pz—CH2—S), 2.13 (s, 12H, S—CH3) ppm. 13C-NMR (CDCl3, 100 MHz): δ = 149.50, 35.89, 15.65 ppm. Anal. for C12H20N2S4 (Mr = 320.58 g/mol) Calc. (%): C 44.96; H 6.30; N 8.74; S 40.00. Found (%): C 44.65; H 6.24; N 8.76; S 40.03. MS (EI, 70 eV), m/z (%): 320 ([M+], 89.4), 274 (95.2), 257 (50.1), 227 (100), 210 (25.4), 194 (37.9), 181 (54.2), 164 (29.2), 135 (28.1), 97 (23.8). IR (KBr disc, cm-1): 2967 w, 2915 w, 1425 ms, 1394 vs, 1311 w, 1248 w, 1218 s, 1120 ms, 988 ms, 903 w, 795 w, 754 w, 720 w, 679 w, 484 w.
: toluene/MeCO2Et, 10/1 v/v). Diffusion of an equal volume of ethanol into a concentrated CHCl3 (4 ml) solution of the title compound in a 16 mm diameter glass tube yielded suitable yellow plate-like crystals for X-ray Spectroscopic data: 1H-NMR (CDCl3, 400 MHz):The H atoms were included in calculated positions and treated as riding atoms: C—H = 0.96 - 0.97 Å with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms. No absorption correction was applied owing to the irregular shape of the crystal, and as there were no suitable reflections for psi scans.
Data collection: STADI4 (Stoe & Cie, 1997); cell
STADI4 (Stoe & Cie, 1997); data reduction: X-RED (Stoe & Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).C12H20N2S4 | Z = 1 |
Mr = 320.54 | F(000) = 170 |
Triclinic, P1 | Dx = 1.339 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.6773 (6) Å | Cell parameters from 33 reflections |
b = 6.9433 (4) Å | θ = 14.2–18.8° |
c = 9.5135 (5) Å | µ = 0.58 mm−1 |
α = 102.635 (6)° | T = 293 K |
β = 107.539 (5)° | Plate, yellow |
γ = 99.462 (9)° | 0.40 × 0.40 × 0.23 mm |
V = 397.61 (5) Å3 |
Stoe AED2 four-circle diffractometer | Rint = 0.018 |
Radiation source: fine-focus sealed tube | θmax = 25.5°, θmin = 2.3° |
Graphite monochromator | h = −8→7 |
2θ/ω scans | k = −8→8 |
2960 measured reflections | l = 0→11 |
1478 independent reflections | 3 standard reflections every 60 min |
1283 reflections with I > 2σ(I) | intensity decay: 1% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.032 | H-atom parameters constrained |
wR(F2) = 0.088 | w = 1/[σ2(Fo2) + (0.0451P)2 + 0.1143P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
1478 reflections | Δρmax = 0.24 e Å−3 |
85 parameters | Δρmin = −0.20 e Å−3 |
0 restraints | Extinction correction: SHELXL2013 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.064 (11) |
C12H20N2S4 | γ = 99.462 (9)° |
Mr = 320.54 | V = 397.61 (5) Å3 |
Triclinic, P1 | Z = 1 |
a = 6.6773 (6) Å | Mo Kα radiation |
b = 6.9433 (4) Å | µ = 0.58 mm−1 |
c = 9.5135 (5) Å | T = 293 K |
α = 102.635 (6)° | 0.40 × 0.40 × 0.23 mm |
β = 107.539 (5)° |
Stoe AED2 four-circle diffractometer | Rint = 0.018 |
2960 measured reflections | 3 standard reflections every 60 min |
1478 independent reflections | intensity decay: 1% |
1283 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.088 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.24 e Å−3 |
1478 reflections | Δρmin = −0.20 e Å−3 |
85 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
x | y | z | Uiso*/Ueq | ||
S1 | 0.10172 (10) | 0.33963 (9) | 0.10899 (6) | 0.0509 (2) | |
S2 | 0.37011 (9) | 0.28482 (9) | 0.80525 (6) | 0.0515 (2) | |
N1 | −0.0169 (2) | 0.2930 (2) | 0.44718 (16) | 0.0326 (4) | |
C1 | −0.0580 (3) | 0.4056 (3) | 0.34870 (19) | 0.0311 (5) | |
C2 | 0.0402 (3) | 0.3854 (3) | 0.59786 (19) | 0.0313 (5) | |
C3 | −0.1194 (3) | 0.2955 (3) | 0.1806 (2) | 0.0390 (6) | |
C4 | 0.2772 (5) | 0.2016 (4) | 0.2027 (3) | 0.0684 (10) | |
C5 | 0.0843 (3) | 0.2519 (3) | 0.7029 (2) | 0.0376 (6) | |
C6 | 0.4534 (4) | 0.1829 (4) | 0.6484 (3) | 0.0665 (9) | |
H3A | −0.23980 | 0.33950 | 0.12120 | 0.0470* | |
H3B | −0.16800 | 0.15040 | 0.16540 | 0.0470* | |
H4A | 0.33380 | 0.26610 | 0.31160 | 0.1030* | |
H4B | 0.39480 | 0.20040 | 0.16450 | 0.1030* | |
H4C | 0.19730 | 0.06420 | 0.18230 | 0.1030* | |
H5A | 0.02160 | 0.11060 | 0.64270 | 0.0450* | |
H5B | 0.01290 | 0.28160 | 0.77720 | 0.0450* | |
H6A | 0.36700 | 0.04660 | 0.59450 | 0.1000* | |
H6B | 0.60330 | 0.18130 | 0.68720 | 0.1000* | |
H6C | 0.43450 | 0.26620 | 0.57940 | 0.1000* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0731 (4) | 0.0608 (4) | 0.0394 (3) | 0.0318 (3) | 0.0335 (3) | 0.0242 (3) |
S2 | 0.0568 (4) | 0.0584 (4) | 0.0352 (3) | 0.0256 (3) | 0.0050 (2) | 0.0128 (2) |
N1 | 0.0386 (8) | 0.0332 (8) | 0.0285 (7) | 0.0114 (6) | 0.0133 (6) | 0.0097 (6) |
C1 | 0.0355 (9) | 0.0350 (9) | 0.0252 (8) | 0.0112 (7) | 0.0123 (7) | 0.0092 (7) |
C2 | 0.0340 (9) | 0.0371 (9) | 0.0272 (8) | 0.0112 (7) | 0.0134 (7) | 0.0123 (7) |
C3 | 0.0492 (11) | 0.0408 (10) | 0.0265 (9) | 0.0141 (8) | 0.0124 (8) | 0.0076 (8) |
C4 | 0.0750 (17) | 0.0855 (19) | 0.0741 (17) | 0.0467 (15) | 0.0399 (14) | 0.0415 (15) |
C5 | 0.0493 (11) | 0.0384 (10) | 0.0307 (9) | 0.0154 (8) | 0.0164 (8) | 0.0145 (8) |
C6 | 0.0570 (15) | 0.0784 (18) | 0.0633 (16) | 0.0307 (13) | 0.0207 (12) | 0.0090 (13) |
S1—C3 | 1.813 (2) | C3—H3B | 0.9700 |
S1—C4 | 1.789 (3) | C4—H4A | 0.9600 |
S2—C5 | 1.812 (2) | C4—H4B | 0.9600 |
S2—C6 | 1.790 (3) | C4—H4C | 0.9600 |
N1—C1 | 1.342 (2) | C5—H5A | 0.9700 |
N1—C2 | 1.342 (2) | C5—H5B | 0.9700 |
C1—C3 | 1.509 (2) | C6—H6A | 0.9600 |
C1—C2i | 1.401 (3) | C6—H6B | 0.9600 |
C2—C5 | 1.504 (3) | C6—H6C | 0.9600 |
C3—H3A | 0.9700 | ||
C3—S1—C4 | 101.45 (13) | S1—C4—H4B | 109.00 |
C5—S2—C6 | 100.09 (11) | S1—C4—H4C | 109.00 |
C1—N1—C2 | 118.31 (16) | H4A—C4—H4B | 109.00 |
N1—C1—C3 | 116.40 (17) | H4A—C4—H4C | 109.00 |
N1—C1—C2i | 120.78 (15) | H4B—C4—H4C | 109.00 |
C2i—C1—C3 | 122.82 (17) | S2—C5—H5A | 109.00 |
N1—C2—C5 | 116.03 (17) | S2—C5—H5B | 109.00 |
N1—C2—C1i | 120.91 (17) | C2—C5—H5A | 109.00 |
C1i—C2—C5 | 123.05 (15) | C2—C5—H5B | 109.00 |
S1—C3—C1 | 113.18 (14) | H5A—C5—H5B | 108.00 |
S2—C5—C2 | 113.56 (15) | S2—C6—H6A | 109.00 |
S1—C3—H3A | 109.00 | S2—C6—H6B | 109.00 |
S1—C3—H3B | 109.00 | S2—C6—H6C | 109.00 |
C1—C3—H3A | 109.00 | H6A—C6—H6B | 110.00 |
C1—C3—H3B | 109.00 | H6A—C6—H6C | 109.00 |
H3A—C3—H3B | 108.00 | H6B—C6—H6C | 109.00 |
S1—C4—H4A | 109.00 | ||
C4—S1—C3—C1 | 70.47 (18) | C2i—C1—C3—S1 | 77.1 (2) |
C6—S2—C5—C2 | −67.65 (17) | N1—C1—C2i—N1i | −0.5 (3) |
C2—N1—C1—C3 | 179.41 (18) | N1—C1—C2i—C5i | −180.00 (19) |
C2—N1—C1—C2i | 0.4 (3) | C3—C1—C2i—N1i | −179.35 (18) |
C1—N1—C2—C5 | 179.98 (18) | C3—C1—C2i—C5i | 1.1 (3) |
C1—N1—C2—C1i | −0.4 (3) | N1—C2—C5—S2 | 103.98 (18) |
N1—C1—C3—S1 | −101.84 (19) | C1i—C2—C5—S2 | −75.6 (2) |
Symmetry code: (i) −x, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3A···S2i | 0.97 | 2.89 | 3.589 (2) | 130 |
C5—H5B···S1ii | 0.97 | 2.95 | 3.7395 (19) | 139 |
C5—H5B···S1i | 0.97 | 2.93 | 3.614 (2) | 128 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, y, z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3A···S2i | 0.97 | 2.89 | 3.589 (2) | 130 |
C5—H5B···S1ii | 0.97 | 2.95 | 3.7395 (19) | 139 |
C5—H5B···S1i | 0.97 | 2.93 | 3.614 (2) | 128 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, y, z+1. |
Footnotes
†This work forms part of the PhD thesis (Neuchâtel, 1999) of TA.
Acknowledgements
This work was supported by the Swiss National Science Foundation and the University of Neuchâtel.
References
Assoumatine, T. (1999). PhD thesis, University of Neuchâtel, Switzerland. Google Scholar
Assoumatine, T., Gasser, G. & Stoeckli-Evans, H. (2007). Acta Cryst. C63, o219–o222. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Assoumatine, T. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, 51–53. CSD CrossRef CAS IUCr Journals Google Scholar
Ferigo, M., Bonhote, P., Marty, W. & Stoeckli-Evans, H. (1994). J. Chem. Soc. Dalton Trans. pp. 1549–1554. CSD CrossRef Web of Science Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pacifico, J. & Stoeckli-Evans, H. (2004). Acta Cryst. C60, o152–o155. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (1997). STADI4 and X-RED. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.