organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o887-o888

Crystal structure of 2,3,5,6-tetra­kis[(methyl­sulfan­yl)meth­yl]pyrazine

aCanAm Bioresearch Inc., 9-1250 Waverley Street, Winnipeg, Manitoba, R3T 6C6, Canada, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 22 April 2014; accepted 15 May 2014; online 1 August 2014)

The title compound, C12H20N2S4, synthesized by the reaction of 2,3,5,6-tetra­kis­(bromo­meth­yl)pyrazine with sodium methane­thiol­ate, crystallizes with a half -mol­ecule in the asymmetric unit. The whole mol­ecule is generated by inversion symmetry; the inversion centre being located in the centre of the pyrazine ring. The mol­ecule has an S-shaped conformation with two (methyl­sulfan­yl)methyl substituent arms directed above the plane of the pyrazine ring and two below. The C(H3)—S—C(H2)—C(aromatic) torsion angles are 70.47 (18) and −67.65 (17)°, respectively. In the crystal, mol­ecules are linked via weak C—H⋯S hydrogen bonds, forming chains along [001] and enclosing R22(12) ring motifs. The chains are linked by further weak C—H⋯S hydrogen bonds, forming sheets lying parallel to (101).

1. Related literature

For syntheses of the starting reagent, 2,3,5,6-tetra­kis­(bromo­meth­yl)pyrazine, see: Ferigo et al. (1994[Ferigo, M., Bonhote, P., Marty, W. & Stoeckli-Evans, H. (1994). J. Chem. Soc. Dalton Trans. pp. 1549-1554.]); Assoumatine (1999[Assoumatine, T. (1999). PhD thesis, University of Neuchâtel, Switzerland.]); Assoumatine & Stoeckli-Evans (2014[Assoumatine, T. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, 51-53.]). For the crystal structures of similar sulfanylmethyl derivatives of pyrazine, such as two triclinic polymorphs of 2,3,5,6 tetra­kis­(naphthalen-2-ylsulfanylmeth­yl)pyrazine both possessing inversion symmetry, see: Pacifico & Stoeckli-Evans (2004[Pacifico, J. & Stoeckli-Evans, H. (2004). Acta Cryst. C60, o152-o155.]), and for 2,3,5,6-tetra­kis­(phenyl­sulfanylmeth­yl)pyrazine, which also crystallizes in space group P[\overline{1}] and possesses inversion symmetry, see: Assoumatine et al. (2007[Assoumatine, T., Gasser, G. & Stoeckli-Evans, H. (2007). Acta Cryst. C63, o219-o222.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C12H20N2S4

  • Mr = 320.54

  • Triclinic, [P \overline 1]

  • a = 6.6773 (6) Å

  • b = 6.9433 (4) Å

  • c = 9.5135 (5) Å

  • α = 102.635 (6)°

  • β = 107.539 (5)°

  • γ = 99.462 (9)°

  • V = 397.61 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 293 K

  • 0.40 × 0.40 × 0.23 mm

2.2. Data collection

  • Stoe AED2 four-circle diffractometer

  • 2960 measured reflections

  • 1478 independent reflections

  • 1283 reflections with I > 2σ(I)

  • Rint = 0.018

  • 3 standard reflections every 60 min intensity decay: 1%

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.088

  • S = 1.08

  • 1478 reflections

  • 85 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯S2i 0.97 2.89 3.589 (2) 130
C5—H5B⋯S1ii 0.97 2.95 3.7395 (19) 139
C5—H5B⋯S1i 0.97 2.93 3.614 (2) 128
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, y, z+1.

Data collection: STADI4 (Stoe & Cie, 1997[Stoe & Cie (1997). STADI4 and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1997[Stoe & Cie (1997). STADI4 and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL2013, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Experimental top

Synthesis and crystallization top

A mixture of sodium methane­thiol­ate (0.94 g, 13 mmol, Fluka 95%) in ethanol (50 ml) was added slowly and drop wise with stirring to a refluxed solution of 2,3,5,6-tetra­kis(bromo­methyl)­pyrazine [Assoumatine & Stoeckli-Evans, 2014], (1.5 g, 3.32 mmol) in ethanol (50 ml). Refluxing and stirring were continued for 4 h. The solvent was removed under reduced pressure and the resultant residue diluted with CH2Cl2 (200 ml). The organic layer was washed with water (3 × 30 ml) and saturated NaCl (30 ml), then dried over anhydrous MgSO4 and evaporated to dryness after filtration. The brown residue obtained was washed with aceto­nitrile till this solvent became colourless, yielding the title compound which was further dried under vacuum [Yield 0.55 g (52%), M.p. 418-419 K]; Rf 0.48 (solvent : CH2Cl2, eluent : toluene/MeCO2Et, 10/1 v/v). Diffusion of an equal volume of ethanol into a concentrated CHCl3 (4 ml) solution of the title compound in a 16 mm diameter glass tube yielded suitable yellow plate-like crystals for X-ray diffraction analysis. Spectroscopic data: 1H-NMR (CDCl3, 400 MHz): δ = 3.97 (s, 8H, Pz—CH2—S), 2.13 (s, 12H, S—CH3) ppm. 13C-NMR (CDCl3, 100 MHz): δ = 149.50, 35.89, 15.65 ppm. Anal. for C12H20N2S4 (Mr = 320.58 g/mol) Calc. (%): C 44.96; H 6.30; N 8.74; S 40.00. Found (%): C 44.65; H 6.24; N 8.76; S 40.03. MS (EI, 70 eV), m/z (%): 320 ([M+], 89.4), 274 (95.2), 257 (50.1), 227 (100), 210 (25.4), 194 (37.9), 181 (54.2), 164 (29.2), 135 (28.1), 97 (23.8). IR (KBr disc, cm-1): 2967 w, 2915 w, 1425 ms, 1394 vs, 1311 w, 1248 w, 1218 s, 1120 ms, 988 ms, 903 w, 795 w, 754 w, 720 w, 679 w, 484 w.

Refinement top

The H atoms were included in calculated positions and treated as riding atoms: C—H = 0.96 - 0.97 Å with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms. No absorption correction was applied owing to the irregular shape of the crystal, and as there were no suitable reflections for psi scans.

Related literature top

For syntheses of the starting reagent, 2,3,5,6-tetrakis(bromomethyl)pyrazine, see: Ferigo et al. (1994); Assoumatine (1999); Assoumatine & Stoeckli-Evans (2014). For the crystal structures of similar sulfanylmethyl derivatives of pyrazine, such as two triclinic polymorphs of 2,3,5,6 tetrakis(naphthalen-2-ylsulfanylmethyl)pyrazine both possessing inversion symmetry, see: Pacifico & Stoeckli-Evans (2004), and for 2,3,5,6-tetrakis(phenylsulfanylmethyl)pyrazine, which also crystallizes in space group P1 and possesses inversion symmetry, see: Assoumatine et al. (2007).

Computing details top

Data collection: STADI4 (Stoe & Cie, 1997); cell refinement: STADI4 (Stoe & Cie, 1997); data reduction: X-RED (Stoe & Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule, with atom labelling (unlabelled atoms are generated by inversion symmetry with symmetry code: -x, -y+1, -z + 1). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial view along the a axis of the crystal packing of the title compound, showing the formation of the C—H···S hydrogen-bonded chains along [001], enclosing R22(12) ring motifs (H atoms not involved in these hydrogen bonds have been omitted for clarity).
2,3,5,6-Tetrakis[(methylsulfanyl)methyl]pyrazine top
Crystal data top
C12H20N2S4Z = 1
Mr = 320.54F(000) = 170
Triclinic, P1Dx = 1.339 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6773 (6) ÅCell parameters from 33 reflections
b = 6.9433 (4) Åθ = 14.2–18.8°
c = 9.5135 (5) ŵ = 0.58 mm1
α = 102.635 (6)°T = 293 K
β = 107.539 (5)°Plate, yellow
γ = 99.462 (9)°0.40 × 0.40 × 0.23 mm
V = 397.61 (5) Å3
Data collection top
Stoe AED2 four-circle
diffractometer
Rint = 0.018
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 2.3°
Graphite monochromatorh = 87
2θ/ω scansk = 88
2960 measured reflectionsl = 011
1478 independent reflections3 standard reflections every 60 min
1283 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0451P)2 + 0.1143P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1478 reflectionsΔρmax = 0.24 e Å3
85 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL2013 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.064 (11)
Crystal data top
C12H20N2S4γ = 99.462 (9)°
Mr = 320.54V = 397.61 (5) Å3
Triclinic, P1Z = 1
a = 6.6773 (6) ÅMo Kα radiation
b = 6.9433 (4) ŵ = 0.58 mm1
c = 9.5135 (5) ÅT = 293 K
α = 102.635 (6)°0.40 × 0.40 × 0.23 mm
β = 107.539 (5)°
Data collection top
Stoe AED2 four-circle
diffractometer
Rint = 0.018
2960 measured reflections3 standard reflections every 60 min
1478 independent reflections intensity decay: 1%
1283 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.08Δρmax = 0.24 e Å3
1478 reflectionsΔρmin = 0.20 e Å3
85 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.10172 (10)0.33963 (9)0.10899 (6)0.0509 (2)
S20.37011 (9)0.28482 (9)0.80525 (6)0.0515 (2)
N10.0169 (2)0.2930 (2)0.44718 (16)0.0326 (4)
C10.0580 (3)0.4056 (3)0.34870 (19)0.0311 (5)
C20.0402 (3)0.3854 (3)0.59786 (19)0.0313 (5)
C30.1194 (3)0.2955 (3)0.1806 (2)0.0390 (6)
C40.2772 (5)0.2016 (4)0.2027 (3)0.0684 (10)
C50.0843 (3)0.2519 (3)0.7029 (2)0.0376 (6)
C60.4534 (4)0.1829 (4)0.6484 (3)0.0665 (9)
H3A0.239800.339500.121200.0470*
H3B0.168000.150400.165400.0470*
H4A0.333800.266100.311600.1030*
H4B0.394800.200400.164500.1030*
H4C0.197300.064200.182300.1030*
H5A0.021600.110600.642700.0450*
H5B0.012900.281600.777200.0450*
H6A0.367000.046600.594500.1000*
H6B0.603300.181300.687200.1000*
H6C0.434500.266200.579400.1000*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0731 (4)0.0608 (4)0.0394 (3)0.0318 (3)0.0335 (3)0.0242 (3)
S20.0568 (4)0.0584 (4)0.0352 (3)0.0256 (3)0.0050 (2)0.0128 (2)
N10.0386 (8)0.0332 (8)0.0285 (7)0.0114 (6)0.0133 (6)0.0097 (6)
C10.0355 (9)0.0350 (9)0.0252 (8)0.0112 (7)0.0123 (7)0.0092 (7)
C20.0340 (9)0.0371 (9)0.0272 (8)0.0112 (7)0.0134 (7)0.0123 (7)
C30.0492 (11)0.0408 (10)0.0265 (9)0.0141 (8)0.0124 (8)0.0076 (8)
C40.0750 (17)0.0855 (19)0.0741 (17)0.0467 (15)0.0399 (14)0.0415 (15)
C50.0493 (11)0.0384 (10)0.0307 (9)0.0154 (8)0.0164 (8)0.0145 (8)
C60.0570 (15)0.0784 (18)0.0633 (16)0.0307 (13)0.0207 (12)0.0090 (13)
Geometric parameters (Å, º) top
S1—C31.813 (2)C3—H3B0.9700
S1—C41.789 (3)C4—H4A0.9600
S2—C51.812 (2)C4—H4B0.9600
S2—C61.790 (3)C4—H4C0.9600
N1—C11.342 (2)C5—H5A0.9700
N1—C21.342 (2)C5—H5B0.9700
C1—C31.509 (2)C6—H6A0.9600
C1—C2i1.401 (3)C6—H6B0.9600
C2—C51.504 (3)C6—H6C0.9600
C3—H3A0.9700
C3—S1—C4101.45 (13)S1—C4—H4B109.00
C5—S2—C6100.09 (11)S1—C4—H4C109.00
C1—N1—C2118.31 (16)H4A—C4—H4B109.00
N1—C1—C3116.40 (17)H4A—C4—H4C109.00
N1—C1—C2i120.78 (15)H4B—C4—H4C109.00
C2i—C1—C3122.82 (17)S2—C5—H5A109.00
N1—C2—C5116.03 (17)S2—C5—H5B109.00
N1—C2—C1i120.91 (17)C2—C5—H5A109.00
C1i—C2—C5123.05 (15)C2—C5—H5B109.00
S1—C3—C1113.18 (14)H5A—C5—H5B108.00
S2—C5—C2113.56 (15)S2—C6—H6A109.00
S1—C3—H3A109.00S2—C6—H6B109.00
S1—C3—H3B109.00S2—C6—H6C109.00
C1—C3—H3A109.00H6A—C6—H6B110.00
C1—C3—H3B109.00H6A—C6—H6C109.00
H3A—C3—H3B108.00H6B—C6—H6C109.00
S1—C4—H4A109.00
C4—S1—C3—C170.47 (18)C2i—C1—C3—S177.1 (2)
C6—S2—C5—C267.65 (17)N1—C1—C2i—N1i0.5 (3)
C2—N1—C1—C3179.41 (18)N1—C1—C2i—C5i180.00 (19)
C2—N1—C1—C2i0.4 (3)C3—C1—C2i—N1i179.35 (18)
C1—N1—C2—C5179.98 (18)C3—C1—C2i—C5i1.1 (3)
C1—N1—C2—C1i0.4 (3)N1—C2—C5—S2103.98 (18)
N1—C1—C3—S1101.84 (19)C1i—C2—C5—S275.6 (2)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···S2i0.972.893.589 (2)130
C5—H5B···S1ii0.972.953.7395 (19)139
C5—H5B···S1i0.972.933.614 (2)128
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···S2i0.972.893.589 (2)130
C5—H5B···S1ii0.972.953.7395 (19)139
C5—H5B···S1i0.972.933.614 (2)128
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1.
 

Footnotes

This work forms part of the PhD thesis (Neuchâtel, 1999) of TA.

Acknowledgements

This work was supported by the Swiss National Science Foundation and the University of Neuchâtel.

References

First citationAssoumatine, T. (1999). PhD thesis, University of Neuchâtel, Switzerland.  Google Scholar
First citationAssoumatine, T., Gasser, G. & Stoeckli-Evans, H. (2007). Acta Cryst. C63, o219–o222.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAssoumatine, T. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, 51–53.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerigo, M., Bonhote, P., Marty, W. & Stoeckli-Evans, H. (1994). J. Chem. Soc. Dalton Trans. pp. 1549–1554.  CSD CrossRef Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPacifico, J. & Stoeckli-Evans, H. (2004). Acta Cryst. C60, o152–o155.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1997). STADI4 and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o887-o888
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds